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Abstract: Non-tuberculous mycobacteria are widely distributed in environments and are capable
of infecting humans, particularly those with a compromised immune system. The most prevalent
species that cause nontuberculous mycobacterial lung diseases are slow-growing bacteria from the
Mycobacterium avium complex (MAC), mainly M. avium or M. intracellulare. The key treatment of
MAC infections includes macrolides, ethambutol, and rifampicin; however, the therapy outcomes
are unsatisfactory. Phenotypic drug susceptibility testing is a conditional recommendation prior
to treatment, and critical concentrations for clarithromycin, amikacin, moxifloxacin, and linezolid
have been established. In this review, data from studies on the determination of MIC of clinical
isolates using the broth microdilution method were summarized. A significant variation in the
MIC distributions from different studies was found. The main reasons could impact the findings:
insufficient reproducibility of the phenotypic testing and variation in species lineages identified in
different laboratories, which could have various intrinsic susceptibility to drugs. For most of the
drugs analyzed, the MICs are too high, which could undermine the treatment efficiency. Further
improvement of treatment outcomes demands the validation of microbiological resistance criteria
together with the identification of molecular mechanisms of resistance.

Keywords: nontuberculous mycobacteria; avium; intracellular; MAC complex; resistance; MIC;
macrolides; amikacin; ethambutol

1. Introduction

The genus Mycobacterium contains about 200 species, of which the best known are
M. tuberculosis and M. leprae [1]. All other mycobacteria, called nontuberculous mycobac-
teria (NTM), are considered conditionally pathogenic to humans and capable of causing
generalized disease under certain conditions, particularly in immunocompromised indi-
viduals. Studies in North America, Europe, and Asia have shown an increased incidence of
NTM in recent decades [2–4]. The estimated prevalence of NTM increased from 2.4 cases per
100,000 in the early 1980s to 15.2 cases per 100,000 in 2013 in the United States [5], in Canada
the incidence in 2010 was as high as 20–25 cases per 100,000 population [6]. In South Korea,
NTM disease increased from 9.4 in 2009 to 36.1 in 2016 cases per 100,000 population [7].
The incidence of pulmonary disease caused by NTM ranged from 1.07 in French Guiana
in 2018 [2] to 4.73 in 2015 in the USA [8]. The annual prevalence in the latter study was
estimated to be 11.7 per 100,000 which is caused by the long duration of the disease. A
lower prevalence of 4.5 was recorded in 2019 in The Netherlands [9], which is close to the
estimated rate of 4.8 in South Korea in 2016 [4].

The rates of pulmonary NTM disease increase dramatically with age: the incidence
and prevalence in people aged 65 and older were equal to 18.37 and 47.48, respectively [8].
Furthermore, certain groups of people are predisposed to the development of NTM disease.
These include patients with genetic or acquired structural lung diseases such as cystic fibro-
sis, chronic obstructive pulmonary disease, bronchiectasis, alpha-1-antitrypsin deficiency,
tuberculosis and lung cancer, pulmonary fibrosis, and pneumoconiosis [10]. Patients with
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immunosuppression due to primary [11] and acquired immunodeficiency syndromes that
accompany HIV infection and hematologic malignancies, and patients receiving systemic
glucocorticosteroid or cytostatic therapy are also susceptible to NTM infection [12]. The
clinical significance of NTM detection in the verification of infectious complications in
cardiothoracic and aesthetic surgery has been observed [13].

The range of species detected in clinical studies differs markedly from country to
country and region to region, often due to laboratory diagnostic capabilities. How-
ever, mycobacterial diseases are most often caused by the slow-growing species of MAC
complex—M. avium ssp. and M. intracellulare ssp. or by fast-growing species of Chelonae-
Abscessus group (ABS)—M. abscessus ssp., M. chelonae and M. immunogenum. Mycobacteria
of the MAC complex dominate in almost all published studies, taking about 50% of all
isolates [14].

The natural habitats of NTM are water and soil, and the main route of pulmonary infec-
tions is the inhalation of aerosols and dust [15]. Water supply chains such as shower heads,
plumbs, and heater-cooler devices were traced as the sources of clinical isolates [16,17]. The
possible transmission of the MAC strain from human to human was proposed since clusters
of genetically close clinical isolates obtained from different patients were identified [18].
However, the case of transmission is hardly distinguished from the acquisition of the strain
from the same source.

The pathogenesis of pulmonary diseases caused by nontuberculous mycobacteria is
similar to that of tuberculosis, but the therapeutic regimens used in tuberculosis therapy
cannot be tolerated due to the natural resistance of mycobacteria to most drugs [19].

Macrolides, rifampicin, and ethambutol are currently recommended by international
respiratory medicine and infectious diseases societies for the treatment of MAC infections;
in the case of resistance to macrolides, moxifloxacin or isoniazid are included in the regimen.
The use of injectable amikacin or streptomycin [20], which can cause serious complications,
especially with prolonged therapy, is also offered at the discretion of the physician in
severe cases. The percentage of positive therapy outcomes is currently recognized as
unsatisfactory, and a significant number of patients do not achieve sputum conversion
within 12 months of therapy [21]. This is particularly important in macrolide-resistant
mycobacterial diseases with conversion rates of 15–36% [21]. Continuation of antibiotic
therapy for 12 months after sputum conversion is currently recommended to improve
the rate of positive outcomes [20,22]. However, a recurrent disease develops in 33% of
patients [23].

Clarithromycin and amikacin resistance testing is recommended when prescribing
treatment of MAC infection, and a broader panel of drugs should be tested for the macrolide-
resistant cases. However, the phenotypic data from the isolates should ‘guide, but not
dictate, treatment regimens’ [20].

The microtiter plate method for MIC determination is now widely used, as recom-
mended by CLSI [24]. The use of Sensititre SLOMYCO and RAPMYCO plates with pre-
diluted and lyophilized drugs [25] is particularly convenient in routine laboratory practice.
Although criteria have been developed to determine the resistance of MAC isolates to
clarithromycin, moxifloxacin, amikacin, and linezolid [24], it should be noted that the
low success rate of drug therapy most likely requires the rethinking of the results of the
pathogen phenotypic analysis, their relationship with pharmacokinetic data, and finally,
the analysis of clinical outcomes. The question of the reproducibility of the phenotypic
results of non-tuberculous mycobacteria has already been raised, and the results of parallel
testing of typical strains have been found to be unsatisfactory [26]. In this regard, it is
of particular interest to compare the resistance spectra of clinical mycobacterial isolates
performed in different regions of the world, since these data are used both to adjust therapy
and to develop or validate criteria for phenotypic resistance detection.
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2. The Studies Included in the Review

Relevant publications were searched with PubMed and Google. Some articles were
identified during a review on related topics and were not found using queries such as
‘minimal inhibiting concentration AND avium’.

The publications were analyzed for sample type, the phenotypic method used, and
availability of raw data. Studies performed using a solid medium and the radiomet-
ric Bactec 460 method were excluded. A large percentage of studies that reported only
population-based MIC50 and MIC90 or binary resistant/susceptible data based on the
currently approved criteria were also excluded from the review. Some studies reported
only a graphical distribution of MICs without providing the exact number of isolates. In
this case, the data were obtained by parsing histograms using the vector graphics edi-
tor. The resulting small error in the number of isolates did not exceed 0.3%. The final
list of studies included in the review is presented in Table 1. Characteristics of all stud-
ies analyzed are given in the Supplementary Materials (Table S1). EUCAST MIC data
for amikacin, clarithromycin, ethambutol, linezolid, moxifloxacin, rifampicin, rifabutin,
and trimethoprim-sulfamethoxazole for M. avium and M. intracellulare were added to
the analysis.

Table 1. Source of MIC data used in the review.

Study PMID or ID Method
Max Number of Isolates Tested

Reference
M. avium M. intracellulare

EUCAST
(10 October 2022) - 1271 399 [27]

Lin, 2022 35804298 SLOMYCO 13 81 [28]

Ying, 2022 biorXiv DOI:
10.1101/2022.05.03.490561 SLOMYCO 24 122 [29]

Umpeleva, 2022 DOI:10.36488/
cmac.2022.2.147-154 SLOMYCO 33 34 [30]

Yu, 2021 34785916 CLSI 41 48 [31]

Jaffré, 2020 32140138 SLOMYCO 80 40 [32]

Andrews, 2020 NA SLOMYCO 212 50 [33]

Litvinov, 2018 30222736 SLOMYCO 161 16 [34]

Kwon, 2018 30012759 SLOMYCO 126 148 [35]

Maurer, 2019 29906595 SLOMYCO 333 77 [36]

Cho, 2018 29223615 CLSI 1006 823 [37]

Renvoisé, 2014 25274991 SLOMYCO 186 154 [38]

Zhao, 2014 25131955 CLSI 52 [39]

Inagaki, 2011 21393190 CLSI 167 78 [40]

Cavusoglu, 2007 18080676 CLSI 5 8 [41]

Kobashi, 2006 16944258 In-house 30 22 [42]

For two studies [30,34], the strains with the two highest MIC values were combined
into one category, which was due to the technical aspect of the processing of the results.
The MIC distributions of the isolates given below are presented on a synthetic scale: the
distributions were normalized to values between 1 and 4, proportional to the maximum
value in the distribution. Therefore, it became possible to compare studies with significantly
different numbers of isolates in one graph.
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3. Antibacterial Drugs
3.1. Macrolides

Macrolides are a key drug in the therapy of MAC infections [20,22]. For clarithromycin,
CLSI has approved the criteria for the interpretation of MICs obtained by the broth mi-
crodilution method: strains with MIC ≤ 8 mg/L are classified as susceptible, strains with
MIC = 16 mg/L—intermediate, and with MIC ≥ 32 mg/L—resistant to macrolides [24].
For strains in the intermediate category, a follow-up monitoring of MIC levels is considered
necessary, as such levels may indicate the development of resistance.

The clarithromycin MIC data for 3458 strains of M. avium and 1896 strains of M. intracellulare
species were analyzed in total (Figure 1). The M. avium isolates are characterized by a wide
variety of resistance spectra with a range of distribution modes from 0.25 to 16 mg/L. The
distributions of MICs obtained using SLOMYCO plates form a more compact group with
modes ranging from 2 to 16 mg/L. Discrepancies in the results may be due to problems
with the MIC measurement method, namely, the dependence on the pH of the medium [43].
An alternative explanation could be the heterogeneity of the M. avium population and the
heterogeneity of the phenotypic characteristics of isolates in different regions. The better
convergence of clarithromycin MIC test results for M. intracellulare strains may support this
assumption (Figure 1). All distributions can be classified into three groups with maximums
of 1 or 2 mg/L and a broadened distribution with maximums of 4–8 mg/L. The results of
two studies, Inagaki, 2011 [40] and Litvinov, 2018 [34], differ noticeably from the others.
In the former, only extreme values of clarithromycin MICs were found, which can be
attributed both to the peculiarities of strain sampling and to technical measurement errors.
In the latter, the observed bimodal distribution with peaks at 0.5 and 4 mg/L may be due
to the small number of strains taken into the study.
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Figure 1. Clarithromycin MIC distribution for clinical isolates of M. avium (a) and M. intracellulare (b).
* MIC obtained using Sensititre SLOMYCO plates.

In most studies, the distribution increases at MIC values 64 mg/L and this resistance
is associated with mutations at positions 2058 and 2059 of the rrl gene that encodes the 23S
rRNA [44,45]. Many studies have reported high (>90%) sensitivity of resistance detection
by analysis of these mutations [40,46]. Furthermore, the commercial molecular test system
Hain Lifescience GenoType NTM-DR, capable of detecting mutations at positions 2058–2059
of the rrl gene, also has a high diagnostic performance to detect resistant strains [47,48].
However, in the Christianson study, low specificity was reported, which was due to
the phenomenon of mixed populations: in about half of the resistant M. avium isolates
mutations were detected by sequencing only after additional cultivation with the drug
in vitro [46].
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The therapeutic efficacy of macrolides can be attributed to the increased concentration
of the drug in macrophages and lung lesions compared to plasma [49] and to the synergistic
action with other drugs [50]. On the other hand, clarithromycin does not have bactericidal
action against resting forms, and concomitant administration of rifampicin or rifabutin dra-
matically reduces plasma concentrations of clarithromycin [51]. The immunomodulatory
properties of macrolides are also expected [52], but the lack of clinical effects of macrolide
use in macrolide-resistant diseases does not support this assumption [53].

On the basis of MIC data, it could be concluded that isolates of the MAC complex have
a reduced susceptibility to macrolides at least, which is due to unknown determinants [54].
They lack a major resistance gene found in a wide spectrum of infectious agents, the erm
gene, which encodes the rRNA methyltransferase, responsible for inducible resistance
to macrolides in strains of the Mycobacterium abscessus complex [55] and resistance of
M. tuberculosis [56]. Other possible mechanisms found in other bacterial species include
substitutions in the ribosomal proteins L4 and L22 [57,58], drug export [59], and reduced
cell wall permeability [60].

3.2. Ethambutol

Ethambutol is a first-line drug for the therapy of susceptible forms of tuberculosis. De-
spite its lack of sterilizing activity and its effect only on the growing forms of the pathogen,
ethambutol has effectively replaced streptomycin in therapy regimens due to comparable
efficacy and lower toxicity [61]. For nontuberculous mycobacteria, there are currently
no established criteria for determining resistance, and there are no recommendations for
adjusting therapy if a high MIC is detected.

The MIC distributions of M. avium strains of ethambutol converge significantly better
than the MIC distributions of clarithromycin. In almost all studies they are bell-shaped
curves with a mode of 8 mg/L (Figure 2, Table S3). Distributions with a restricted range
may have an increase in the upper bond value because they include all strains with
an MIC greater than or equal to the previous one. Thus, strains in the Cho, 2018 [37]
distribution plotted at MIC = 64 mg/L in the graph (Figure 2A) have MIC ≥ 32 mg/L, and
the distribution itself may also be bell-shaped.
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However, in the case of M. intracellulare, the same considerations about the same
study by Cho, 2018 [37] are probably no longer applicable, because the number of strains
with MIC ≥ 32 mg/L is too high and two subpopulations of strains possessing different
MICs in vitro can be assumed. Furthermore, the bimodal distribution was also found in
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Umpeleva, 2022 [30], Litvinov, 2018 [20], and Zhao, 2014 [39]. Most studies show the first
mode of distribution at 4 mg/L, which is slightly lower compared to M. avium.

The activity of ethambutol, its mechanisms of resistance, and clinical efficacy have been
thoroughly investigated in the application to tuberculosis therapy. The MIC distribution of
ethambutol-resistant and embB gene mutations bearing clinical strains of M. tuberculosis
partially overlaps with susceptible strains, and has a maximum distribution at a value of
8 mg/L [62]. Most resistant strains have a MIC from 4 to 16 mg/L, which almost coincides
with the MIC distributions for presumably susceptible M. avium and M. intracellulare
isolates. In tuberculosis therapy, a critical concentration of 5 mg/L is accepted to determine
resistance to ethambutol in a liquid medium [63]. This concentration is lower than the
maximum concentration achieved in plasma at standard doses; for example, the average
maximum concentration was only 3.3 mg/L at a dose of 19.5 mg/kg [64]. However,
ethambutol has been shown to accumulate in lung tissue and cavities, exceeding the
necessary thresholds of action [61].

There are several important aspects with respect to the clinical relevance of MIC mea-
surement of ethambutol for the treatment of nontuberculous mycobacterial infections. First,
in a clinical study of 37 patients with clarithromycin-resistant MAC infection, ethambutol
significantly increased sputum conversion rates compared to rifampicin, streptomycin, or
fluoroquinolones [53]. Clarithromycin did not have an effect in this study, as expected.
Second, the use of ethambutol in macrolide-sensitive MAC infections is believed to reduce
the rate of resistance development [65,66].

Currently, there is no consensus on the correlation between the MIC of ethambutol
and the clinical outcome of therapy. Adachi et al. believe that there is no such correlation,
but only a small sample of cases has been studied, ranging from 1 to 3 isolates with each
MIC [53]. In contrast, in the study by Kwon et al., there is a notable negative correlation
between favorable outcome rates with the MIC of rifampicin and ethambutol [35]. This
study included 274 cases of mycobacterial diseases caused by M. avium and M. intracellulare,
and therapy outcomes were evaluated for at least several dozen cases with each MIC of
the pathogen.

3.3. Rifampicin

Rifampicin is the most effective first-line drug for the treatment of susceptible tuber-
culosis introduced in the 1960s. Its mechanism of action and resistance mechanisms in
M. tuberculosis has been extensively investigated; however, the critical concentration used
for decades has recently been reduced from 1.0 mg/L to 0.5 mg/L [67], resulting in the
reclassification of some susceptible strains as resistant.

The MIC distributions of clinical strains of M. avium and M. intracellulare, even obtained
by the same method on SLOMYCO plates, have significant differences. Most distributions
have two modes, one in the range of 2–4 mg/L and the other in the range of 8 mg/L or
higher (Figure 3, Table S4). Apparently, despite the absence of an arr locus that leads to
resistance to rifampicin in most nontuberculous mycobacteria, other determinants could be
responsible for the reduced susceptibility and variability in MIC data of MAC isolates.

The role of rifampicin in the therapy of MAC infections is controversial [68,69], ri-
fampicin is markedly less effective compared to macrolides and ethambutol, and may be
used as a third drug in complex therapy. In the Kwon study [35], there was a marked
correlation between the drop in the percentage of favorable outcomes depending on the
MIC of rifampicin as for ethambutol. On the other hand, co-administration of rifampicin
or rifabutin dramatically lowers the plasma concentration of clarithromycin [51], as men-
tioned above.
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A possible alternative to rifampicin is the semi-synthetic drug rifabutin, which is also
present on the SLOMYCO panel for MIC testing. A total of 641 strains of M. avium and
370 strains of M. intracellulare were analyzed in six published studies and EUCAST data.
Three more studies had data on MAC isolates without species determination (Table S5).
Most M. avium strains had MICs ≤ 0.25 mg/L (n = 378, 59%). One study for 33 strains [30]
had a distinct distribution, with 23 strains having MIC ≥ 8 mg/L. For M. intracellulare
strains rifabutin MIC distributions are shifted to higher values, strains with a minimally
detectable MIC ≤ 0.25 mg/L accounting for 31% (n = 113 of 370) (Table S5).

The benefits of rifabutin in the form of higher tissue concentrations and lower MICs
compared to rifampicin are diminished by higher levels of side effects [70]. Furthermore,
a meta-study of clinical data did not show an increased efficacy of rifabutin compared to
rifampicin in the therapy of MAC infections [71].

3.4. Fluoroquinolones

Fluoroquinolones are widely used in drug-resistant tuberculosis therapy regimens.
M. tuberculosis resistance to fluoroquinolones is associated with the emergence of substi-
tutions in the A and B subunits of DNA gyrase. The epidemiological threshold ECOFF is
estimated to be 0.5 mg/L, and the currently approved clinical breakpoint is 2 mg/L [63].

The MIC distributions of moxifloxacin isolates of MAC vary less than the results
obtained for clarithromycin, and, in general, the main number of strains have MIC of
moxifloxacin in the range of 1 to 8 mg/L (Figure 4, Table S6), which is comparable to the
MICs of fluoroquinolone-resistant strains of M. tuberculosis. The strains show even higher
levels of resistance to ciprofloxacin (Figure 5, Table S7).

For MAC isolates, CLSI recommends two breakpoint moxifloxacin concentrations of 1
and 2 mg/L [24]; strains with MIC = 2 mg/L are classified as intermediately resistant. Only
studies by Lin, 2022 [28] and Ying, 2022 [29] with bimodal MIC distributions meet these
criteria, but the number of strains tested is small. An attempt to detect mutations in the
gyrA and gyrB genes in strains presumably resistant to moxifloxacin using CLSI criteria
was unsuccessful [72].
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Moxifloxacin can accumulate within macrophages at concentrations 6–7 times higher
than plasma concentrations, but it has no effect on intracellular forms [73], apparently due
to the pathogen being in dormant state with dramatically reduced replication and division
rates. Assessment of the critical concentration of moxifloxacin at 0.25 mg/L, obtained
in the hollow-fiber M. avium model, and the high natural MIC of clinical strains exclude
the possibility of its effective use in therapy [73]. Fluoroquinolones have not been shown
to accelerate sputum conversion in macrolide-resistant MAC infections [54,74], do not
prevent the development of resistance to macrolides, and, in general, are not currently
recommended for the treatment of MAC infections [65].

3.5. Isoniazid

Isoniazid, along with rifampicin, is one of the main drugs for the treatment of tubercu-
losis. Isoniazid is activated in the cell by KatG catalase-peroxidase, and the differences in
substrate specificity of this enzyme explain the differences in sensitivity to isoniazid of dif-
ferent mycobacterial species [75]. The critical concentration of isoniazid on liquid media for
the M. tuberculosis clinical strains is 0.1 mg/L, the clinical breakpoint is 0.4 mg/L [24], the
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ECOFF of susceptible strains is 0.125 mg/L [76], while the MIC of resistant M. tuberculosis
strains is greater than or equal to 4 mg/L.

Even in early studies, the high MICs of isoniazid of the M. avium complex isolates were
observed [77]. Analysis of MIC distributions confirmed that M. avium and M. intracellulare
resistance levels are equal to or greater than the MICs of M. tuberculosis isoniazid-resistant
isolates with mutations at the katG and inhA loci (Figure 5, Table S8). In most studies,
strains have MICs ≥ 8 mg/L, with the exception of the MIC distribution of M. avium
isolates obtained in the Maurer study [36]. This study reported lower MICs, ranging from 2
to 8 mg/L (Figure 6, Table S8).
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Isoniazid is indicated for use in macrolide-resistant MAC infection by the British
Thoracic Society with the lowest grade of recommendation D [20]. The use of isoniazid for
the therapy of MAC infections has been removed from current recommendations of the
American Thoracic Society (ATS) [22] based on numerous observations of ineffectiveness;
in an earlier version of 1990, isoniazid was part of therapy regimens [78].

3.6. Amikacin

Amikacin, a semi-synthetic broad-spectrum drug from the aminoglycoside group,
inhibits protein synthesis by binding to the A-site of the ribosome [79]. For a long time,
amikacin was included together with kanamycin and capreomycin in the second-line
therapy for tuberculosis. However, due to the high level of side effects, it is currently placed
in group C of the WHO recommendations, used only when group A and B drugs cannot be
administered [80]. The main mechanism of resistance to amikacin is a 1401 g substitution
(corresponds to 1408 position in E. coli and M. avium numbering) in the 16S rRNA gene,
which also leads to cross-resistance to kanamycin and capreomycin [81]. The approved
critical concentration of 1 mg/L for clinical M. tuberculosis strains has been confirmed in a
large number of studies, and the MIC of resistant strains shifts to the range of more than
30 mg/L [63].

Amikacin is considered effective against MAC infections and is approved for the ther-
apy of nontuberculous mycobacterial diseases [20,22,70]. ATS also recommends amikacin
susceptibility determination [22], despite a low evidence base of clinical effects [82]. Strains
with MIC ≤ 16 mg/L are classified as susceptible, MIC ≥ 64 mg/L as resistant, and
strains with MIC = 32 mg/L are assigned to the intermediate resistance category [24]. An
increase in the MIC of the pathogen with a 1408 g mutation in the 16S rRNA gene has
been observed during failed therapy in the clinic [83]. Other types of substitutions in the
peptidyl-transferase center of the ribosome have also been detected in resistant isolates [84].

A liposomal inhaled formulation of amikacin (ALIS) was developed to reduce the
side effects of amikacin administration. This drug formulation led to higher concentrations
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of the drug in lung tissue, while plasma concentrations were 4 times lower compared to
intravenous administration. Consequently, the critical resistance concentration for this
form of the drug is adjusted to 64 mg/L [24]. Clinical safety and efficacy studies have
shown higher sputum conversion rates when ALIS is added to standard therapy [85]. ALIS
has also been suggested to be a good alternative to ethambutol in the therapy of MAC
infection to prevent the development of resistance [65]. This form of amikacin is currently
approved by the FDA for use in difficult-to-treat MAC infections [22].

The analysis of the MIC distribution of M. avium isolates for most of the studies
performed using SLOMYCO plates converged well (Figure 7, Table S9), with maximums
located at 16–32 mg/L, except for one study with a small number (n = 13) of isolates [28].
A study of 1006 Cho strains performed according to CLSI standards yields a broader
distribution. Similar results were obtained for M. intracellulare, although all distributions
shifted toward higher MICs within 1 dilution compared to M. avium. Interestingly, in an
external quality assessment study of European laboratories, the MIC results for amikacin
converged worse than those for clarithromycin [26]. However, in this review, the opposite
is observed.
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3.7. Linezolid

Linezolid, also as amikacin, is a drug that acts on the bacterial translational apparatus
by binding to the ribosome and is, therefore, widely used in the therapy of various infectious
diseases. In tuberculosis therapy, it is among the group A drugs for the treatment of drug-
resistant tuberculosis [80]. The critical concentration in liquid media in the Bactec MGIT960
system is 1 mg/L [63]. In the therapy of nontuberculous mycobacterial infections, linezolid
is used only in the continuation phase as an adjunctive drug for infections caused by
M. abscessus [20].

The analysis of the MIC distributions of clinical M. avium and M. intracellulare strains
also varies greatly from study to study. However, virtually no strains with MIC ≤ 2 mg/L
have been reported in all studies; the majority of isolates have MICs in the range of 8 to
64 mg/L (Figure 8, Table S10). In pharmacokinetic/pharmacodynamic studies, the Cmax
of linezolid at the standard 600 mg dosage was 21 ± 6 mg/L [86,87], which limits its
applicability if the MIC of the pathogen is ≥ 8 mg/L.
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High MICs of linezolid led to studies of the evaluation of next-generation oxazo-
lidinones. For MAC mycobacteria sutezolid MIC distributions are shifted toward lower
values: for M. avium MICs are in the range from 1 to 8 mg/L; for M. intracellulare are in the
range from 0.25 to 4 mg/L [31]. In the same study, the MIC distributions of tedizolid and
delpazolid were almost identical to those of linezolid. However, in an earlier study, the
MIC50 and MIC90 of tedizolid were significantly lower than those of linezolid [88]. Further
studies on the resistance of MAC isolates are needed to establish the feasibility of using
linezolid and its analogues in therapy.

3.8. Other Drugs

Co-trimoxazole (trimethoprim-sulfamethoxazole) is recommended only for the treat-
ment of M. abscessus and M. simiae as an adjuvant to the main therapy [20,70]. There are no
clinical studies of this drug against MAC infections, with the exception of a retrospective
study of the efficacy of preventing MAC infections in HIV-positive patients [89]. The MIC
distributions obtained in the different studies, as for most drugs, are not entirely compara-
ble, but most strains have MICs in the range 1/19–4/76 mg/L range (Table S11). Given that
the plasma concentration of sulfamethoxazole can reach 161.01 ± 69.154 mg/L [90], it can
be assumed that co-trimoxazole may be active against a part of the clinical MAC isolates.

Extremely high MICs that exclude any possibility of their efficiency have been re-
ported for three other drugs presented on the SLOMYCO plate. The MIC distributions of
streptomycin, ethionamide, and doxycycline are given in the Supplements (Tables S12–S14).

4. Discussion

There are only a few effective drugs against mycobacterial MAC infections with
approved resistance criteria [91]. The range of MICs of presumably susceptible isolates
is very wide and is hardly comparable between studies, even if the same method is used.
This leads to the question of whether susceptible isolates are really susceptible [92]. The
problem in determining the resistance of nontuberculous mycobacteria lies both in the
poorly studied nature of clinically relevant mycobacterial populations and in the poor
reproducibility of the MIC results in different laboratories, as previously shown [26] and
also as shown in this review. Studies not included in this study that contain only population
MIC50 and MIC90 parameters also report significant differences in resistance levels.

The parameters of the phenotypic method for determining MIC, such as the microbial
medium, in particular its pH value, and the stability of antibacterial substances, which is
especially important in long-term cultivations of slow-growing mycobacteria [40], influence
the results. The method of plate reading could also be important—the use of resazurin
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was shown to improve the reproducibility of MIC determination compared to the standard
protocol [93]. The genetic variability of isolated strains in different regions of the world
cannot be excluded either. Although different species and subspecies in the MAC complex
do not have identical MIC50 and MIC90 values [94], the five lineages of M. avium may also
differ in the level of intrinsic resistance to antibacterial drugs [95].

It should be mentioned that the microbiological characterization of clinical isolates may
be difficult due to the presence of a phase variation effect in M. avium ssp. experimentally
observed as a difference in colony color when stained with Congo red [96]. In clinical
specimens, white colonies with elevated levels of antimicrobial resistance are predominantly
isolated. The transition in vitro to a stained phenotype is often observed, and the reverse
transition appears to be difficult or impossible [97].

Another factor that makes it difficult to determine the phenotype of clinical isolates is
the phenomenon of heteroresistance, when a mixture of wild-type and mutant strains is
found in the same sample [46]. The in vitro MIC of such a mixture could be significantly
lower than the MIC of the mutant resistant fraction, but rapid resistance selection will occur
during therapy.

The standard pharmacokinetics/pharmacodynamics model of antibacterial drug ac-
tion takes into account the maximum plasma concentration Cmax achieved at a given dose,
the MIC of the drug against the pathogen in vitro, the time of exceeding the MIC, or the
area under the curve (AUC) of the drug concentration as a function of time. The bacterici-
dal effect of the drug depends either on the ratio of Cmax and MIC concentrations of the
causative agent or on the time of exceeding the MIC of the drug in plasma. Doses used
for the treatment of mycobacterial diseases are already known to be close to maximum
tolerability, and efficacy indices are low compared to other pathogens. Only a minor part
of patients attain the desired pharmacodynamic value to MIC ratios [98].

The main group of drugs against MAC infections are macrolides, which belong to
the “time-dependent” antibacterial drugs, i.e., whose action depends on the time of ex-
ceeding the drug concentration over the MIC. Thus, for macrolides the elimination or
killing rate becomes most important, which in turn is proportional to the bacterial growth
rate [99]. An insufficient killing rate leads to the selection of cells with slower metabolism
or drug-tolerant fraction. This is equivalent to increasing interim resistance, and also the
surviving part of the pathogen could serve as a pool for the selection of resistant forms [100].
The growth rates of M. tuberculosis and M. avium are not so different, with one division
occurring in about 23 h and 16 h, respectively [101–103]. The MIC distributions of clar-
ithromycin are likely also similar (Table S2), so the critical concentrations of macrolides
against M. tuberculosis and M. avium are expected to be quite close; however, macrolides
are not considered effective in tuberculosis therapy, but are among the drugs of choice
in the therapy of MAC disease. Since the clarithromycin susceptibility of M. tuberculosis
obtained by the microdilution method is insufficient, it is still an open question whether
macrolides are effective against tuberculosis, or if there is a significant difference in killing
rates between M. tuberculosis and M. avium.

Studies are currently underway to find more effective drugs and treatment schemes.
Clofazimine and bedaquiline are promising drugs. The efficacy of clofazimine in the
treatment of MAC infections is comparable to that of rifampicin, but is not sufficient
to prevent the emergence of macrolide resistance similar to ethambutol [65]. However,
retrospective studies in the Netherlands have shown a benefit of a regimen with clofazimine
and intravenous amikacin compared to standard macrolide, ethambutol, and rifampicin
therapy [104].

Bedaquiline, on the other hand, shows low in vitro inhibitory concentrations against
MAC pathogens, comparable to those for M. tuberculosis [105–108], which gives hope that
it will be effective. However, for a small number of cases, the bimodal distribution of be-
daquiline MICs was recorded with an increase at high (2–8 mg/L) concentrations [109,110],
which indicates the existence of intrinsically resistant strains.
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5. Conclusions

In conclusion, the poor convergence of the MIC distributions obtained in different
studies and performed according to the same protocol should be noted first. Second,
for Mycobacterium avium complex isolates, MICs of all drugs are rather high, which does
not allow for effective elimination of infection due to a low ratio of drug concentration
in the site of infection and MIC of the pathogen. In addition to the standardization of
phenotypic methods, future validation of resistance criteria for non-tuberculosis infections
should include MIC data, pK/pD, and clinical outcomes of therapy. The role of molecular
methods for genotyping of pathogens and identification of resistance determinants for the
development of treatment regimens is also indisputable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11121756/s1, Table S1: Studies taken into the review, Table S2: MIC distributions
for clarithromycin in clinical isolates, Table S3: MIC distributions for ethambutol in clinical isolates,
Table S4: MIC distributions for rifampicin in clinical isolates, Table S5: MIC distributions for rifabutin
in clinical isolates, Table S6: MIC distributions for moxifloxacin in clinical isolates, Table S7: MIC
distributions for ciprofloxacin in clinical isolates, Table S8: MIC distributions for isoniazid in clinical
isolates, Table S9: MIC distributions for amikacin in clinical isolates, Table S10: MIC distributions
for linezolid in clinical isolates, Table S11: MIC distributions for trimethoprim/sulfamethoxazole in
clinical isolates, Table S12: MIC distributions for streptomycin in clinical isolates, Table S13: MIC
distributions for ethionamide in clinical isolates, Table S14: MIC distributions for doxycycline in
clinical isolates.
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