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Abstract: Staphylococcus aureus can cause chronic infections which are closely related to persister
formation. Purine metabolism is involved in S. aureus persister formation, and purN, encoding phos-
phoribosylglycinamide formyltransferase, is an important gene in the purine metabolism process. In
this study, we generated a ∆purN mutant of the S. aureus Newman strain and assessed its roles in
antibiotic tolerance and virulence. The ∆purN in the late exponential phase had a significant defect in
persistence to antibiotics. Complementation of the ∆purN restored its tolerance to different antibiotics.
PurN significantly affected virulence gene expression, hemolytic ability, and biofilm formation in
S. aureus. Moreover, the LD50 (3.28 × 1010 CFU/mL) of the ∆purN for BALB/c mice was significantly
higher than that of the parental strain (2.81 × 109 CFU/mL). Transcriptome analysis revealed that
58 genes that were involved in purine metabolism, alanine, aspartate, glutamate metabolism, and
2-oxocarboxylic acid metabolism, etc., were downregulated, while 24 genes involved in ABC trans-
porter and transferase activity were upregulated in ∆purN vs. parental strain. Protein-protein
interaction network showed that there was a close relationship between PurN and GltB, and SaeRS.
The study demonstrated that PurN participates in the formation of the late exponential phase S. aureus
persisters via GltB and regulates its virulence by activating the SaeRS two-component system.

Keywords: Staphylococcus aureus; purN; persister; virulence; purine metabolism

1. Introduction

Staphylococcus aureus is a common pathogen and usually resides asymptomatically on
the skin and mucous membranes of humans and animals [1]. S. aureus can synthesize and
produce various virulence factors, such as fibronectin-, fibrinogen-, and immunoglobulin-
cell wall binding proteins and capsular polysaccharides, pore-forming toxins, enterotoxins,
toxic shock syndrome toxin-1 (TSST-1), exfoliative toxins, multiple tissue-damaging ex-
oenzymes, etc. [2–6]. These virulence factors and the biofilm, which are established by
attaching to medical implants and host tissues, are responsible for a variety of acute or
chronic and relapsing suppurative infections such as impetigo, bacteremia, and endo-
carditis, pneumonia and empyema, osteomyelitis, infections of implanted devices, septic
arthritis, etc. [7,8] and toxin-mediated diseases including scalded skin syndrome, food
poisoning and toxic shock [6]. S. aureus has become a significant burden on the health care
system and a major cause of nosocomial and community-acquired infections [8]. Due to the
formation of persisters and the emerging resistance to antibiotics, the treatment of S. aureus
infections, especially chronic and relapsing infections, has become quite challenging [9].
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Persisters are a small subpopulation of bacterial cells in a genetically homogenous
population that show tolerance to lethal doses of antibiotics without genetic mutations
and present as phenotypic variants in a nongrowing dormant state [10]. Persister cells
have been identified in every major pathogen [11,12], such as Borrelia burgdorferi, My-
cobacterium tuberculosis, S. aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella ty-
phimurium, etc. and are responsible for post-treatment relapse and can lead to chronic and
recurrent infections [13–18].

Persisters are dormant cells [10,19]; however, there are similarities and differences in
the mechanisms by which different bacteria form persisters. The mechanisms of persister
formation and survival have been studied mainly in E. coli, and various genes and pathways
have been confirmed to be involved in persister formation or survival [12]. The best-
known pathways include toxin-antitoxin modules (HipA/B) [20]; energy production (SucB,
UbiF) [21]; the trans-translation mediated pathway (SsrA and SmpB) [22]; the stringent
response (RelA) [23]; the phosphate and cellular metabolism PhoU-mediated pathway [24];
SOS response/DNA repair (LexA) [25], etc. However, the mechanisms of persistence
in S. aureus are not well understood. Recent studies have identified several pathways
involved in persister formation in S. aureus, such as biosynthesis of amino acids (ArgJ) [26];
purine biosynthesis metabolism (PurF, PurB, and PurM) [27,28]; energy production (CtaB,
SucA, SucB, SdhA, and SdhB) [29–31]; glycerol metabolism [32]; protein degradation
(ClpX) [31]; and phosphate metabolism (PhoU) [33]. Numerous studies have demonstrated
that persister formation in stationary phase bacteria is significantly higher than that of the
bacteria in the exponential phase [10,12,34–37]. This indicates that there may be differences
in the mechanisms of persister formation at different growth phases. Furthermore, multiple
persistence-related genes such as argJ, lysR, phoU, and msaABCR [26,33,38,39] are involved
in regulating S. aureus virulence, indicating that the persister formation mechanism is
associated with virulence.

Previously, we found that purine metabolism plays a role in antibiotic tolerance and
that PurB and PurM are involved in persister formation in S. aureus [27]. purN, encod-
ing phosphoribosylglycinamide formyltransferase, is an important gene in the purine
metabolism process. PurN catalyzes glycinamide ribonucleotide (GAR) to formylglyci-
namide ribonucleotide (fGAR), which is an important step to produce inosine monophos-
phate (IMP) [40]. In this study, we generated a purN mutant of the S. aureus Newman
strain, and the effects of the purN deletion on bacterial growth, antibiotic tolerance, and
virulence were investigated. Mutation analysis indicated that purN was important for
persister formation and virulence in S. aureus. Our work provides new insights into the
mechanisms of antibiotic tolerance and the factors affecting virulence in S. aureus and
furnishes new therapeutic targets for improved treatment of S. aureus persistent infections.

2. Results
2.1. ∆purN Had Significantly Decreased Antibiotic Tolerance

Based on our previous study, that PurB and PurM participated in purine metabolism
and were involved in persister formation in S. aureus [27], we constructed a mutant strain
of purN encoding phosphoribosylglycinamide formyltransferase in S. aureus Newman
strain by homologous recombination to further explore the mechanisms by which purine
metabolism regulates persister formation and virulence of S. aureus in this study.

In order to investigate the effect of the purN knockout on the formation of S. aureus
persisters, antibiotic exposure tests at different culture time points were performed to
determine the survival of the wild-type and ∆purN. Compared to the parental strain,
∆purN showed significantly increased susceptibility to ampicillin in 5-h cultures and was
completely killed after 3 days of drug exposure, while the wild-type had approximately
106 CFU/ mL of viable cells remaining. Even on the 10th day of ampicillin treatment,
the wild-type still had 102 CFU/mL of bacteria remaining (Figure 1A). There were no
significant differences in the survival of the wild-type and ∆purN strains upon ampicillin
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exposure when the bacteria were cultured for 9 and 18 h. Approximately 103 CFU/mL of
bacteria remained after 10 days of drug exposure (Figure 1B,C).
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Similar results were observed for levofloxacin exposure. Compared with the parental
strain, ∆purN showed increased sensitivity to levofloxacin when the bacteria were cultured
for 5 and 9 h (Figure 1D,E). Among them, the most significant difference was observed
in the 5-h cultures. After 3 days of levofloxacin exposure, ∆purN exhibited no surviving
bacteria, whereas more than 103 CFU/mL of bacteria remained for the parental strain.
The persister level of S. aureus wild-type with levofloxacin exposure was similar to that of
∆purN in 18-h cultures (Figure 1F).

2.2. Complementation of the purN Restored Tolerance to Various Antibiotics

To further confirm the relationship between purN and S. aureus persister formation, the
pRAB11 plasmid was used to complement ∆purN and the wild-type. Newman::pRAB11,
∆purN::pRAB11, ∆purN::pRABpurN, and Newman::pRBpurN were successfully obtained.
The growth curves for these four strains indicated no differences in either the log phase or
stationary phases under non-stressed conditions (Supplementary Figure S1). Compared
with the Newman::pRAB11 strain, RT-qPCR confirmed that the expression levels of purN
in the complemented ∆purN::pRABpurN strain (log2 fold change: 5.58 ± 0.16) and New-
man::pRBpurN strain (log2 fold change: 6.48 ± 0.22) induced by anhydrotetracycline (Atc)
were significantly higher than that of the wild-type with pRAB11 (p < 0.05).

An antibiotic exposure experiment was carried out for the constructed S. aureus strains.
Due to the pRAB11 used in the complementation study being an Atc induced plasmid,
all the complemented strains were cultured in TSB medium containing Atc (100 ng/mL)
which can produce certain inhibition of S. aureus growth. The growth rates of each S. aureus
complemented by pRAB11 or pRABpurN significantly decreased so that the numbers
of live bacteria were still less than 108 CFU/mL after 9 h of culture, and they were still
in the exponential phase. In 5-h culture, the antibiotics (e.g., ampicillin, vancomycin,
gentamicin, and levofloxacin) exposure experiment demonstrated that ∆purN::pRAB11
all died after 24 h of drug treatment, while Newman::pRAB11, ∆purN::pRABpurN, and
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Newman::pRBpurN had more than 102 CFU/mL of bacteria remaining. After 48 h of
antibiotic exposure, the Newman::pRAB11, ∆purN::pRABpurN, and Newman::pRBpurN
strains had no viable bacteria (Figure 2A,C,E,G). Similar growth curves were observed in
the 9-h cultures (Figure 2B,D,F,H). The purN complemented strain restored tolerance to
antibiotics (e.g., vancomycin, gentamicin, and levofloxacin) except for ampicillin. However,
for the 18-h cultures, except for the ∆purN::pRAB11, which had less than 103 CFU/mL of
bacteria remaining after 10 days of levofloxacin exposure, the other strains showed significant
tolerance to ampicillin, vancomycin, gentamicin, and levofloxacin, with many viable bacteria
remaining after 10 days of antibiotic exposure (Supplementary Figure S2A–D).
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Figure 2. Drug exposure results of Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN, and
Newman::pRBpurN to ampicillin (A,B), vancomycin (C,D), gentamicin (E,F) and levofloxacin (G,H)
at different culture times. 5-h culture (A,C,E,G); 9-h culture (B,D,F,H).

2.3. Knockout of purN Affected the Expression of Virulence Factors in S. aureus

To further investigate the effect of purN knockout on the expression of S. aureus
virulence factors, RT-qPCR was used to compare the gene expression levels of the major
virulence factors, including hla, hlgA, hlgB, hlgC, lukS, lukF, eta, sea, and coa, in the S. aureus
Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRBpurN, and Newman::pRBpurN strains.
The expression levels of the major virulence genes in the ∆purN::pRAB11 strain were
significantly lower than those in the Newman::pRAB11 strain (p < 0.05). The complemented
strain, ∆purN::pRBpurN, exhibited restored expression levels of virulence genes. Moreover,
the expression levels of hlgC and coa in ∆purN::pRBpurN were significantly higher than
those for Newman::pRAB11 (p < 0.05). In addition, the expression levels of hla, lukS, lukF,
and coa in Newman::pRBpurN were significantly higher than those in Newman::pRAB11
(p < 0.05) (Figure 3A).

2.4. The Ability of the ∆purN to Lyse Sheep Erythrocytes Was Significantly Reduced

To investigate the effect of the purN mutation on the hemolysis characteristics of
S. aureus, the Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRBpurN, and Newman::pRBpurN
strains were inoculated on sheep blood TSA plates containing Atc (100 ng/mL) at 37 ◦C
for 10, 14 (images not shown), 24 and 48 h, respectively. The β-hemolytic rings around
the colony of the Newman::pRAB11 colony (Figure 3(Ba,Be)) were larger and clearer
than those of ∆purN::pRAB11 (Figure 3(Bb,Bf)) at 24 and 48 h. In the 24- and 48-h cul-
tures, the hemolytic rings of ∆purN::pRBpurN (Figure 3(Bc,Bg)) and Newman::pRBpurN
(Figure 3(Bd,Bh)) tended to be consistent with that of Newman::pRAB11. Hemolysis assays
of each S. aureus culture indicated that at 10 and 14 h, the hemolyzing ability of New-
man::pRAB11 cultures was significantly higher than that for ∆purN::pRAB11 (p < 0.01,
Figure 3(Bi,Bj)). With the prolongation of culture time and accumulation of hemolytic
toxins, the differences in hemolytic ability between Newman::pRAB11 and ∆purN::pRAB11
disappeared at 24 h and 48 h. However, when purN was overexpressed, compared with
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Newman::pRAB11 and ∆purN::pRAB11, the hemolytic ability of the ∆purN::pRBpurN and
Newman::pRBpurN strains was enhanced (p < 0.05, Figure 3(Bk,Bl)).
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and Newman::pRBpurN in S. aureus. (A) The virulence gene expression levels detected by RT-
qPCR. (B) Variation of hemolysis in different strains. Hemolysis status of Newman::pRAB11 (a,e),
∆purN::pRAB11 (b,f), ∆purN::pRABpurN (c,g), and Newman::pRBpurN (d,h) cultured for 24 h (a–d)
and 48 h (e–h) on blood TSA plates. The hemolysis assay of the four strains was measured in different
time points cultures. (i)10 h, (j) 14 h, (k) 24 h, and (l) 48 h. (C) The biofilm formation abilities of the
four S. aureus strains in 96-well plates. Comparison of OD550 and biofilm images in 96-well plate of
different strains. * p < 0.05, ** p < 0.01.
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2.5. Knockout of purN Affected Biofilm Formation in S. aureus

The biofilm formation abilities of Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN,
and Newman::pRBpurN were measured in 96-well plates. The results showed that the biofilm
formation ability of Newman::pRAB11 was significantly higher than that of ∆purN::pRAB11
(p < 0.01, Figure 3C). After complementation, the biofilm formation ability of ∆purN::pRBpurN
was restored. Furthermore, when purN was overexpressed, the biofilm formation ability
of ∆purN::pRBpurN was significantly higher than that of Newman::pRAB11 (p < 0.05,
Figure 3C). In addition, there were no significant differences in biofilm formation between
Newman::pRAB11 and Newman::pRBpurN.

2.6. The LD50 Values of ∆purN in Mice Were Significantly Higher Than That of
Wild-Type S. aureus

To further explore the effect of the purN mutation on the virulence of S. aureus, we
determined the LD50 of the S. aureus Newman strain and the ∆purN in BALB/c mice.
Different doses of the wild-type and ∆purN bacterial suspensions were injected intraperi-
toneally. The LD50 values for the wild-type and ∆purN in BALB/c mice were calcu-
lated according to the survival status of the mice, and the results showed that the LD50
of the ∆purN mutant (3.28 × 1010 CFU/mL) was significantly higher than that of the
wild-type (2.81 × 109 CFU/mL).

2.7. Comparative Transcriptome Analysis of the ∆purN and the Wild-Type

To gain further insights into the molecular mechanisms by which PurN affects persister
formation and virulence in S. aureus, the DEGs of the ∆purN mutant and the wild-type
strain were profiled by RNA-seq. Compared with its parental strain, 58 genes were down-
regulated, and 24 genes were upregulated in the ∆purN mutant with a cutoff value of
log2 fold change less than −2 or more than 2 (Supplementary Table S1). Thirteen DEGs
were selected as target genes (e.g., saeS, saeR, ilvA, NWMN_1873, lukS, hla, hlgC, lukF,
NWMN_2510, NWMN_2262, NWMN_2266, NWMN_0485, and NWMN_0845) for valida-
tion by RT-qPCR and the results confirmed the reliability of the transcriptome analysis
(Supplementary Table S2). The DEGs were assigned to the following functional categories.
KEGG pathway enrichment analysis suggested that these DEGs were mainly involved in
purine metabolism, alanine, aspartate, and glutamate metabolism, 2-oxocarboxylic acid
metabolism, histidine metabolism, biosynthesis of amino acids, ABC transporters, quorum
sensing, etc. (Figure 4A). To evaluate the DEG associations, a PPI was constructed based on
the STRING database, and the network showed that there were close relationships between
purN and gltB and saeR and saeS (Figure 4B). Furthermore, compared with the wild-type,
the transcription levels of virulence-related genes, including lukS, lukF, hlgA, hlgB, hlgC,
and hla, were downregulated significantly in the ∆purN mutant (Supplementary Table S1).

To further explore the relationships between purN and gltB and saeR and saeS, RT-
qPCR was used to detect the gltB, saeR, and saeS expression in the Newman::pRAB11,
∆purN::pRAB11, ∆purN::pRBpurN, and Newman::pRBpurN strains. Compared with New-
man::pRAB11, the expression level of gltB in ∆purN::pRAB11 was significantly lower
(p < 0.05), whereas in Newman::pRBpurN, it was higher (p < 0.05), and there was no
significant difference in ∆purN::pRBpurN. Meanwhile, compared with Newman::pRAB11,
the expression levels of saeR and saeS in ∆purN::pRAB11 were significantly lower (p < 0.05),
whereas in purN overexpressed strains, ∆purN::pRBpurN and Newman::pRBpurN were
significantly higher (p < 0.05) (Figure 4C). purN affected the expression of gltB, saeR, and
saeS in S. aureus and was consistent with the PPI network (Figure 4B).
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Figure 4. Comparative analyses of the transcriptomics of ∆purN and wild-type, and the gltB, saeR, and
saeS expression in Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRBpurN, and Newman::pRBpurN
strains. (A) DEGs and pathways involved in the comparison of ∆purN and wild-type. The genes in
the green box and red box are downregulated and upregulated genes, respectively. (B) Protein-protein
interaction network of DEGs between ∆purN and parental strain by STRING database. The line
thickness of the network indicates the strength of association/binding. (C) Comparison of expression
levels of the gltB, saeR, and saeS in the four S. aureus strains (* p < 0.05).

2.8. purN Affects the Persister Formation in S. aureus via gltB

To verify the PPI network based on the transcriptome analysis of the ∆purN mutant and
the wild-type, ∆gltB::pRAB11 and ∆gltB::pRBpurN were constructed. Further experiments
showed that ∆gltB::pRAB11, ∆gltB::pRBpurN, Newman::pRBpurN, and ∆purN::pRABpurN
had similar growth curves (Supplementary Figure S1). RT-qPCR confirmed that the ex-
pression level of purN in the ∆gltB::pRABpurN strain (log2fold change: 4.99 ± 0.016)
was significantly higher than that in ∆gltB::pRAB11 (p < 0.05). To further explore the
association between purN and gltB in the formation of S. aureus persisters, four strains,
Newman::pRAB11, ∆gltB::pRAB11, ∆gltB::pRBpurN, and Newman::pRBpurN, were in-
cubated for 5, 9, and 18 h, respectively. Each strain was exposed to lethal concentrations
of antibiotics, including ampicillin (10 µg/mL), levofloxacin (20 µg/mL), vancomycin
(40 µg/mL), and gentamicin (100 µg/mL), to observe the differences in persister formation
ability. The results showed that the four strains in 5-h cultures were completely killed after
1–2 days of drug exposure (Figure 5A,C,E,G). However, after 9 h of incubation, the changing
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characteristics of the viable in ∆gltB::pRBpurN and ∆gltB::pRAB11 strains were similar and
were completely killed after 2 days of antibiotic exposure, while the Newman::pRAB11
and Newman::pRBpurN strains retained more than 102 CFU/mL of viable bacteria. The
Newman::pRAB11 was killed after 3 days of drug exposure, while Newman::pRBpurN was
completely killed after approximately 4–5 days of antibiotic exposure (Figure 5B,D,F,H). In
the 18-h cultures, the numbers of viable bacteria in ∆gltB::pRAB11 and ∆gltB::pRBpurN
were less than those of Newman::pRAB11 and Newman::pRBpurN after 10 days of drug
exposure (Supplementary Figure S3A–D). The results showed that when gltB was knocked
out, overexpression of purN did not increase persister formation, indicating that purN
affects persister formation in S. aureus via gltB.
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3. Discussion

Persister formation in S. aureus is closely related to the growth phase of culture
[10,12,35,36]. Previous studies have shown that purine biosynthesis plays an important
role in persister formation in S. aureus [27]. purN is a crucial gene in the third step of purine
biosynthesis. We analyzed the effect of the purN mutant of S. aureus and found that its
mutation resulted in persister reduction in late exponential phase cultures, indicating PurN
is important for persister formation.

purN participates in several important pathways, including purine metabolism, one
carbon pool by folate, metabolic pathways, and biosynthesis of secondary metabolites. A
large number of studies have confirmed that ATP production [16,41], alarmone ppGpp [10],
amino acid synthesis, and metabolism in bacterial cells play important roles in the formation
and regulation of persisters in bacteria [26,42,43].

It is well known that purine metabolism is crucial for ATP energy supply. PurN
catalyzes GAR to fGAR, which is an important step in the purine metabolism process
to produce IMP. IMP is converted to guanosine 5′-monophosphate (GMP) or adenosine
5′-monophosphate (AMP) by subsequent enzymes. In this process, both ribosylamine-5P
produced by phosphoribosyl pyrophosphate (PRPP) and formylglycinamidine ribonu-
cleotide (fGAM) produced by fGAR require glutamine to provide amido, and glutamate
is also produced. At the same time, glycine is required to participate in the process of
ribosylamine-5P to generate GAR, and aspartate is required to participate in the process
of 5-amino-4-carboxyaminoimidazole ribonucleotide (CAIR) to generate N-succinylo-5-
aminoimidazole-4-carboxamide ribonucleotide (SAICAR) [40] (Figure 6). The PPI network
established by our data indicated that purN affected the persister formation in S. aureus via
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gltB (Figure 4B). gltB, encoding the large subunit of glutamate synthase, is the key gene
in glutamine and glutamate metabolism, which catalyzes L-glutamine and 2-oxoglutarate
into two molecules of L-glutamate [44]. Transcriptome analysis found that gltB expression
decreased in the ∆purN mutant (Figure 4A). Thus, glutamine and glutamate synthesis were
reduced. The decrease of gltB resulted in an increase of 2-oxoglutartate, which has been
shown to promote the TCA cycle and cause increased ATP production [45,46], which in
turn would inhibit persister formation of the ∆purN mutant (Figure 6).
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Biofilm formation, a major virulence factor in S. aureus infections, accelerates bacterial
colonization in host tissues and promotes persister formation and antimicrobial agents.
Our data revealed that the purN mutant significantly decreased biofilm formation. In other
previous studies, purine biosynthesis was shown to affect biofilm formation through the
secondary messenger, cyclic di-AMP (c-di-AMP) [28,47]. PurN is involved in the third
step of purine biosynthesis, which affects ATP production. c-di-AMP is synthesized by
di-adenylate cyclase via the condensation of two ATPs, one of the final products of purine
biosynthesis [48]. The ∆purN mutant may inhibit c-di-AMP synthesis from preventing
bacterial biofilm formation in S. aureus. However, the underlying mechanisms deserve
future detailed studies.

S. aureus has a complex regulatory network to control its virulence [49]. The regula-
tory systems include the accessory gene regulator (agr) quorum-sensing system [50], SarA
protein family regulators [51], two-component system (TCS) of the SaeRS [52], SrrAB [53],
ArlRS [54], and the alternative sigma factors (SigB and SigH) [51]. Transcriptome analyses
of ∆purN and wild-type strains indicate that the expression levels of saeR and saeS encoding
the SaeRS TCS were significantly decreased in the ∆purN, and due to this, the expression
levels of multiple virulence factors, including α-hemolysin, γ-hemolysin, PVL, and coag-
ulase, were also significantly reduced. This is consistent with our mouse study, in which
we found that the virulence of ∆purN was significantly reduced, as well as the results of
the hemolysis assay (Figure 3B). The SaeRS TCS is an important regulatory system for the
virulence of S. aureus [52]. SaeS is the sensor histidine kinase, which can sense signals in
the environment and autophosphorylate at the His131 residue and then the phosphoryl
group is transferred to Asp51 of SaeR, and the phosphorylated SaeR (SaeR-P) binds to
the SaeR binding sequence (SBS) to activate the transcription of the target genes [52,55,56].
Several Sae target genes have been discovered, most of which are related to the virulence
of S. aureus, including coa, fnbA, eap, sbi, efb, fib, saeP, hla, hlb, and hlgC [57,58]. The currently
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reported signals of SaeRS TCS activation mainly include human neutrophil peptide 1, 2,
and 3 (HNP1–3), calprotectin, hydrogen peroxide, etc. [59,60]. Our data showed that the ex-
pression levels of saeR and saeS were higher in the purN overexpressed strains (Figure 4C).
The results confirmed the PPI networks (Figure 4B), which PurN may affect virulence
through the SaeRS in S. aureus (Figure 6).

Our findings further suggest that there is a close relationship between persister for-
mation and bacterial virulence. In addition to the reported multiple persistence-related
genes, such as argJ, lysR, phoU, and msaABCR, which are involved in bacterial viru-
lence [26,33,38,39], the PurN of S. aureus is another multifunctional factor that not only
participates in persister formation but also participates in virulence regulation.

In summary, this study has demonstrated that PurN participates in the formation of
the late exponential phase S. aureus persister formation via the key gene, gltB, in glutamate
synthesis and regulates bacterial virulence by activating the SaeRS two-component system.
Therefore, PurN can potentially serve as a novel therapeutic target to develop more effective
treatments to control persistent S. aureus infections in the future.

4. Materials and Methods
4.1. Culture Media, Antibiotics, and Animals

Tryptic soy broth (TSB) and tryptic soy agar (TSA) were obtained from Becton Dickin-
son (BD). Luria-Bertani (LB) medium and anhydrotetracycline (Atc) were obtained from
Solarbio (Beijing, China). The rationale for selecting the antibiotics used in antibiotics
exposure experiments is based on clinically used antibiotics in treating S. aureus infections
and three classes of bactericidal antibiotics commonly used for persister assays, i.e., cell wall
inhibitors, aminoglycosides, and fluoroquinolones. Ampicillin, levofloxacin, rifampin, chlo-
ramphenicol, vancomycin, and gentamicin were obtained from Sangon Biotech (Shanghai,
China), and their stock solutions were freshly prepared, filter-sterilized, and used at appro-
priate concentrations as indicated. BALB/c mice were purchased from Lanzhou University
(China). The study was approved by the Ethics Committee of Lanzhou University.

4.2. Bacterial Strains and Culture Conditions

The bacterial strains and plasmids used in this study are listed in Table 1. All the S.
aureus strains were cultivated in TSA and TSB. The E. coli DC10B strain was cultivated in
LB. The shuttle vector, pRAB11, harbors a tet operator that is induced by Atc. In the process
of inducing high expression of purN, S. aureus ∆purN::pRBpurN, Newman::pRABpurN,
and ∆gltB::pRBpurN mutants, and the control strains, S. aureus ∆purN::pRB11, New-
man::pRAB11, and ∆gltB::pRAB11 were all inoculated in TSB medium containing Atc
(100 ng/mL). For the persister assays, antibiotics were used at the following concen-
trations: ampicillin, 10 µg/mL; levofloxacin, 20 µg/mL; vancomycin, 40 µg/mL; and
gentamicin, 100 µg/mL.

4.3. Susceptibility of Mutants to Antibiotics

In order to assess the effects of purN knockout on persister formation, overnight
cultures of the relevant S. aureus were diluted 1:1000 with TSB in bacterial culture tubes
and cultured at 37 ◦C with shaking (180 rpm). At 5, 9, and 18 h of incubation, cultures were
collected, and ampicillin (10 µg/mL), levofloxacin (20 µg/mL), vancomycin (40 µg/mL),
and gentamicin (100 µg/mL) were added to assess persister survival. The cultures exposed
to drugs were incubated without shaking at 37 ◦C for up to ten days. Aliquots of cultures
exposed to antibiotics were taken at different time points and washed in TSB, and the
number of viable cells was counted after serial dilutions.
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Table 1. Bacteria and plasmids used in this study.

Strains or Plasmid Relevant Genotype and Property Source or Reference

S. aureus Strains
Newman Clinical isolate, ATCC 25904 ATCC
∆purN Newman with a deletion of purN This study
Newman::pRAB11 Newman with pRAB11 This study
∆purN::pRAB11 ∆purN with pRAB11 This study
∆purN::pRBpurN
∆gltB::pRAB11
∆gltB::pRBpurN

∆purN with pRAB11-purN
∆gltB with pRAB11
∆gltB with pRAB11-purN

This study
This study
This study

Escherichia coli strains
DC10B ∆dcm in the DH10B background; Dam methylation only [33]
plasmids
pMX10 A pKOR1 derivate for gene knockout, CmR, AmpR [29]
pRAB11 Atc inducible shuttle plasmid, CmR, AmpR [15]
pRAB11-purN Overexpression plasmid for purN This study

CmR: Chloramphenicol resistance; AmpR: Ampicillin resistance. The antibiotics were used at the following
concentrations: ampicillin at 100 µg/mL and chloramphenicol at 10 µg/mL to maintain the plasmids resistance.

4.4. Construction of Gene Knockout and Overexpression Strains

To construct purN knockout mutants of S. aureus, we followed the method described
previously [15]. The plasmid, pMX10, was used for gene knockout in S. aureus. Q5
Master Mix PCR (New England BioLabs) was used for all PCR experiments, and restriction
enzymes and T4 DNA Ligase (Thermo Fisher Scientific, Waltham, MA, USA) were used
to construct the recombinant plasmids used in this study. The Primers used for purN of S.
aureus gene knockout included purN-uf, purN-ur, purN-df, and purN-dr, and the primer
sequences are listed in Supplementary Table S3.

To construct knockout mutants, upstream and downstream fragments of each gene
were amplified with the corresponding primers using the genomic DNA of the S. aureus
wild-type strain Newman as a template. Two fragments of each gene were then used as
templates to amplify a fusion fragment with appropriate primers. The fusion fragment and
pMX10 plasmid were digested with Kpn I and Mlu I, respectively, and ligated with T4 DNA
ligase, and the recombinant plasmids were transformed into E. coli DC10B competent cells.
The transformed DC10B was screened on LB agar plates containing ampicillin (100 µg/mL),
and the positive clones were verified by restriction digestion and DNA sequencing. The
recombinant plasmid was electrotransformed into the S. aureus Newman strain, as we
described previously [32]. Mutants selection was carried out following the previously
published protocol [61]. Using the same method, we also obtained gltB knockout mutants
of S. aureus.

The pRAB11 plasmid was used for inducible overexpression of purN in S. aureus. The
full sequence of purN of wild-type S. aureus Newman was amplified with the primers
OEpurN-f and OEpurN-r (Supplementary Table S3). After digestion with KpnI and EcoRI,
the fragment was inserted into pRAB11. The recombinant plasmid pRAB11-purN was
transformed into E. coli DC10B competent cells. The recombinant plasmid pRAB11-
purN, was verified by DNA sequencing and then electrotransformed into ∆purN and
∆gltB mutants and Newman wild-type to obtain ∆purN::pRABpurN, ∆gltB::pRBpurN and
Newman::pRBpurN, while the empty pRAB11 was transformed into ∆purN, ∆gltB mu-
tants and Newman wild-type and ∆purN::pRAB11, ∆gltB::pRAB11 and Newman::pRAB11
were obtained.

4.5. RT-qPCR Detected Genes Expression

After the cultures of S. aureus were treated with lysostaphin (Shanghai Hi-tech Bioengi-
neering Co., Ltd., Shanghai, China), total RNA was extracted using the Sangon RNeasy kit
(Sangon Biotech, China), and the quality and concentration of the extracted RNA were
analyzed using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Wilmington,
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DE, USA). Reverse transcription was performed with SuperScript III First-Strand synthesis
(Takara Bio, Japanese) using 1 µg of total RNA that was isolated according to the manufac-
turer’s instructions. RT-qPCR was performed using SYBR Green Supermix (Yeasen Biotech,
Shanghai, China), and the relative fold changes in gene expression were calculated using
16S rRNA as an endogenous control gene [62]. The data represent the results from three in-
dependent experiments. The primers for each gene were designed using Primer Premier 5.0
software (PREMIER Biosoft International, San Francisco, USA), and the primer sequences
are listed in Supplementary Table S3. All data were analyzed with GraphPad Prism 8.0
(GraphPad Software, San Diego, CA, USA) and compared using the independent-samples
t-test. Differences with p-value < 0.05 were considered statistically significant.

4.6. Hemolysis Assay

S. aureus Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN, and Newman::pRBpurN
were inoculated on TSA plates containing 10% sheep blood and Atc (100 ng/mL), incu-
bated at 37 ◦C for 10, 14, 24 and 48 h, and the hemolysis that formed around the colonies
were observed. The hemolysis analysis was conducted as described previously [63] with
some modifications. Briefly, Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN, and
Newman::pRBpurN were cultured in TSB medium with chloramphenicol (10 µg/mL) for
18 h at 180 rpm, diluted 1:1000 and cultured in 5 mL of TSB containing Atc (100 ng/mL)
for 10, 14, 24 and 48 h. Each culture was centrifuged at 9000× g for 3 min. Then, 200 µL of
supernatant was mixed with an equal volume of 4% (v/v) sheep red blood cells suspended
in PBS buffer and incubated at 37 ◦C for 1.5 h with shaking at 180 rpm. Supernatants were
collected after centrifugation (12,000× g for 1 min), and the optical density at 540 nm was
measured with a spectrophotometer. All experiments were performed in triplicate.

4.7. Establishment of an In Vitro S. aureus Biofilm Model

The ability of the S. aureus strains to form biofilm was tested in a 96-well plate according
to a previously published method [64]. Two hundred microliters of TSB with 0.25% glucose
and Atc (100 ng/mL) were transferred to each of the wells on the microtiter plate. Two
microliters of each overnight culture of S. aureus were transferred to the wells, except for
the blank control. Each S. aureus strain was tested in three parallel wells. The 96-well plate
was incubated at 37 ◦C for 24 h. The wells were then washed three times with 200 µL of
PBS and left to dry at 60 ◦C for 60 min. Then, 200 µL of crystal violet (0.5% solution, Sigma
Aldrich, St. Louis, MO, USA) was added and incubated at room temperature for 30 min.
The wells were washed five times with 200 µL of tap water. In order to extract the crystal
violet from the biofilm, 200 µL of 33% glacial acetic acid was added. The optical density of
the solutions at 550 nm was measured.

4.8. Median Lethal Dose Determination

Seventy-five female BALB/c mice weighing approximately 18–22 g were randomly
divided into 15 groups to measure the median lethal dose (LD50) of the S. aureus Newman
wild-type strain and the ∆purN mutant. The overnight S. aureus Newman wild-type and
the ∆purN were diluted 1:100 in 100 mL TSB and shaken overnight at 37 ◦C. The cultures
were centrifuged at 12,000 rpm for 3 min, and the pellets were washed twice with sterile
PBS. After the removal of the supernatant, the pellets were resuspended in 10 mL PBS, and
the viable bacteria in the suspension were counted by serial dilution. Then, the suspensions
were diluted to form 7 concentration gradients using a double dilution method. Each
mouse in each group was injected intraperitoneally with 0.6 mL of a bacterial suspension
at doses ranging from 108–1010 CFU/mL. After 5 days of observation, the LD50 value of
each strain was calculated by the Reed-Muench method [65].

4.9. Transcriptome Analysis

To identify the key genes regulating the differential responses between the parental
Newman strain and ∆purN mutant, triplicate samples cultured for 5 h in TSB after di-
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lution of 1:1000 were collected and subjected to high-throughput mRNA transcriptome
sequencing. Total RNA was extracted as mentioned above. Sequencing libraries were
generated according to the manufacturer’s protocol (NEBNext®UltraTM RNA Library
Prep Kit for Illumina®) [66]. Cleaved RNA fragments were copied into first-strand cDNA
using reverse transcriptase and random primers. The cDNA library preferentially selected
fragments of 200–250 bp in length, which were prepared by the AMPure XP system. Then,
the fragment products were amplified by Illumina cBot and sequenced on an Illumina
HiSeq 2500 system (Illumina, San Diego, CA USA). Library construction and sequencing
were performed at the Shanghai Applied Protein Technology Co., Ltd. By using Hisat2
(v2.0.5) (https://daehwankimlab.github.io/hisat2/manual/ (accessed on 19 August 2020)),
paired-end clean reads were aligned to the reference genome of S. aureus Newman on the
NCBI website. The number of reads corresponding to each gene was calculated using
Feature Counts v1.5.0-p3. Then, each gene fragment per kilobase million (FPKM) was
calculated based on the gene lengths and read counts mapped to this gene. In order to
control the false discovery rate, Benjamini and Hochberg’s approach was used to adjust
the p-values to compare FPKM values between the mutant and wild-type groups. Genes
with Padj < 0.05 and log2 fold change >2 or <−2 were defined as differentially expressed
genes (DEGs). RT-qPCR, which was performed in triplicate, was used to confirm the RNA
expression levels, and the primer sequences are listed in Supplementary Table S2.

4.10. Protein-Protein Interaction Network

In order to explore the interactive relationships among DEGs, the web portal for
the STRING database (http://www.string-db.org/ (accessed on 1 April 2021)) was used
for protein–protein interaction (PPI) network analysis. The following two criteria were
applied to detect the important nodes: (1) medium confidence equal to 0.4 and (2) network
clustering by K-means clustering.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11121702/s1, Table S1: DEGs between ∆purN and its
parental strain (log2 fold change greater than 2 or less than −2); Table S2: Oligonucleotide sequences
of RT-qPCR primers used in this study. RT-qPCR verified DEGs between ∆purN and its parental strain
from transcriptome analysis. Results were normalized using 16S rRNA and expressed as fold change
(mean ± SD, p < 0.05); Table S3: Primers and oligonucleotides used in this study; Figure S1: The
growth curves for S. aureus Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN, ∆gltB::pRAB11,
∆gltB::pRABpurN and Newman::pRABpurN strains; Figure S2: Drug exposure results of 18-h culture
of Newman::pRAB11, ∆purN::pRAB11, ∆purN::pRABpurN, and Newman::pRBpurN to ampicillin
(A), vancomycin (B), gentamicin (C) and levofloxacin (D); Figure S3: Drug exposure results of
18-h culture of Newman::pRAB11, ∆gltB::pRAB11, ∆gltB::pRABpurN, and Newman::pRBpurN to
ampicillin (A), levofloxacin (B), gentamicin (C) and vancomycin (D).
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