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Abstract: The COVID-19 pandemic caused by SARS-CoV-2 has placed severe constraints on health-
care systems around the globe. The SARS-CoV-2 virus has caused upheaval in the healthcare and
economic sectors worldwide. On the 20th of May 2020, the World Health Organisation declared
COVID-19 a global pandemic due to the unprecedented number of cases reported around the globe.
As of the 4th of November 2022, there were 637,117,429 coronavirus cases reported globally by
Worldometer stats, with 6,602,572 related deaths. In South Africa, there were approximately 4,029,496
coronavirus cases and 102,311 associated deaths. As such, there is a need for efficacious therapeutic
regimes. There has been a paucity of knowledge encompassing the use of effective and specific
antiviral drug therapies for treating COVID-19 since the outbreak. In this review, we provide valu-
able insights into the repurposing of current drugs for COVID-19. Drug repurposing provides a
suitable option for the discovery of efficacious drugs for COVID-19, thereby decreasing the costs and
turnaround times of drug development strategies. This review provides an overview of ten drugs,
including antimalarial, antiparasitic, anti-inflammatory, nucleoside analogue, monoclonal-antibody
drugs, that were repurposed for the potential treatment of COVID-19.

Keywords: COVID-19; repurposing of drugs

1. Introduction

COVID-19 was first discovered in 2019 in Wuhan, China [1–4]. The disease is caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the
family Coronaviridae [5–7], genus Betacoronavirus, and subgenus Sarbecovirus [1,5]. The
viral structure of SARS-CoV-2 comprises structural proteins, such as spike, membrane,
nucleocapsid, and envelope proteins (Figure 1).
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There is a paucity of knowledge pertaining to the treatment therapies for COVID-19
and to antiviral drugs [9]. The rapid spread of COVID-19 has resulted in unprecedented
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challenges, with millions of deaths and severe repercussions for economies and health
worldwide [1,10]. Currently, the measures in place for controlling the spread of COVID-19
are supportive and preventative measures, such as quarantining and self-isolation [10–12].

The emergence of variants of SARS-CoV-2 jeopardises the success of current vaccina-
tions and COVID-19 therapies worldwide [13–16]. The rollout of the COVID-19 vaccine has
progressed significantly and has decreased the rate of mortality worldwide, but the emer-
gence of the omicron variant in 2021 has resulted in uncertain times [17].The emergence of
new COVID-19 variants has exacerbated the need for drug treatment regimens [18]. Due to
the re-emerging viral infections, effective drug strategies are currently not available [19].

There has been a paucity of knowledge encompassing the use of drugs to treat COVID-
19 since its outbreak. There is a severe need for effective antiviral drug treatments for
COVID-19. There are currently no gold-standard drug therapy regimes in place for the
treatment of COVID-19, which exacerbates the increasing rate of mortality and overall
cases worldwide [9]. Drug development and clinical evaluations are not easy tasks and
can take up to several years to develop from the proof of concept to production [9,20]. In
drug discovery, it takes approximately 10–12 years for the development of a drug from
proof of concept to commercialisation. However, new drug therapy approaches can take
longer—up to 15 years [20]. There is a need for antiviral drugs that display high specificity
for and efficacy against COVID-19. Due to the long turnaround times for the development
of new drugs, a lucrative COVID-19 treatment strategy for decreasing the current burden
on healthcare systems is the repurposing of known/existing drugs. Drug repurposing can
be implemented as an effective strategy, firstly, in order to shorten delivery times, as well
as to lower production costs [21]. De novo drug development strategies are estimated to
cost approximately USD 1 billion [22].

As such, this review focuses on the repurposing of ten existing anti-inflammatory,
antimalarial, and antiparasitic drugs, as well as nucleoside analogues and monoclonal
antibodies. In this review paper, we conducted an extensive search in the available online
literature on anti-inflammatory, antimalarial, and antiparasitic drugs, as well as nucleoside
analogues and monoclonal antibodies, while taking the adverse side effects and the FDA
recommendations into consideration. The keyword search criteria included: COVID-19,
chloroquine, hydroxychloroquine, ivermectin, ebselen, remdesivir, molnupiravir, favipi-
ravir, bebtelovimab, sotrovimab, and crizanlizumab. Furthermore, we decided to proceed
with the ten aforementioned drugs for the repurposing of possible COVID-19 treatments.

A review conducted by Hossen et al. (2020) stated that the U.S. FDA and National
Institutes for Health (NIH) recommended the use of a nucleoside analogue, remdesivir, as
it displays promising potential for the treatment of SARS-CoV-2 [9]. According to Valle
et al. (2020) there were approximately 2400 clinical trials reported; however, they stated
that the drugs tested were limited to 20. It should be noted that their mechanisms of action
require further investigation [23]. As such, the aforementioned authors also stated that
the swiftest approach to drug therapy for COVID-19 would be the repurposing of existing
drugs that are currently in the market and used for other diseases [23].

2. Repurposing of Drugs for Treatment of COVID-19
2.1. Antimalarial Drugs
Chloroquine and Hydroxychloroquine

Chloroquine is an antimalarial drug that displays broad-spectrum antiviral proper-
ties [24,25]. Chloroquine is classified as a 4-aminoquinoline compound (Figure 2), and
it is employed to treat diseases such as malaria, rheumatoid arthritis and autoimmune
diseases such as lupus erythematosus [21,26–28]. It is also a weak base, and the precise
mode of action has not been elucidated for all microorganisms. However, there are two
key proposed mechanisms of action for chloroquine; the first occurs in the vesicles of both
fungi and bacteria, and this is the alkalisation of the phagolysosome. This process inhibits
viral replication, fusion, and uncoating, as these processes are dependent on a low-pH
environment [27]. An in vitro study conducted by Wang et al. reported that chloroquine
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treatment was efficacious against SARS-CoV-2 with an effective concentration (EC50) of
1.13 µM [29].
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Hydroxychloroquine is a structural analogue of chloroquine (Figure 3) [30,31]. The
mode of action and activity are similar to those of chloroquine. Hydroxychloroquine
contains a hydroxyl group and is less toxic, with a better safety profile [30,31]. It was
previously used to treat diseases such as lupus, rheumatoid arthritis, and malaria, since it
exhibits immunomodulatory activities [9,31–34]. A study conducted by Yao et al. (2020)
tested hydroxychloroquine and chloroquine in vitro on the Vero cell line. The data indicated
that hydroxychloroquine had an EC50 of 0.72 µM, whereas chloroquine had an EC50 of
5.47 µM [31]. The hydroxychloroquine drug was administered based on physiologically
based pharmacokinetic (PBPK) models 400 mg twice per day, with a subsequent 200 mg
double dose daily (4 days) [31].
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The proposed mechanism of action is that the drug alters the pH on the cells’ surfaces,
thereby inhibiting the virus from binding to the cell membranes of the host. It inhibits viral
replication, release, and assembly, protein glycosylation of the virus, and the transportation
of new viral particles [26]. Hydroxychloroquine inhibits the coronavirus via a series of
steps; however, the exact molecular mechanism has not yet been elucidated [31].

Clinical trials are currently underway to assess the efficacy of hydroxychloroquine for
the treatment of COVID-19 [30]. Since there is limited information regarding the efficacy
and safety of the aforementioned drug in the treatment of SARS-CoV-2, patients and
doctors worldwide should be informed about the potential risks, side effects, and benefits
associated with their prescribed medications [35]. Some adverse side effects are retinopathy,
hypoglycaemia, gastrointestinal discomfort, allergic reactions, and kidney, heart, and liver
problems [33,34].

The FDA initially issued an EUA for hydroxychloroquine in the treatment of COVID-
19 [30]. On the 15th of June 2020, the FDA revoked the EUA because the criteria in
Section 564(c)(2) of the Food, Drug, and Cosmetic Act were not fulfilled, since there were
adverse side effects that were related to adverse cardiac-related effects. Therefore, the risks
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outweighed the potential benefits and the EUA for chloroquine and hydroxychloroquine
as effective treatment strategies for COVID-19 was revoked [36].

A meta-analytical review conducted by Deng et al. (2021) involved 61,221 hospitalised
COVID-19 patients, and they concluded that they would not recommend continued or fu-
ture treatment of hospitalised COVID-19 patients with chloroquine or hydroxychloroquine
based on the lack of efficacy, since there were no significant reductions in the occurrence
of mechanical ventilations, mortality, or length of stay in the hospital [37]. In another
meta-analysis conducted by Di Stefano et al. (2022), the authors reiterated that chloroquine
and hydroxychloroquine were not efficacious in the treatment of hospitalised COVID-19 pa-
tients [38]. However, another article published by Chen et al. (2021) stated that chloroquine
and hydroxychloroquine had been involved in more than a hundred clinical trials [39];
once all of these trials were completed, a statement regarding efficacy could conclusively
be made [40].

2.2. Antiparasitic Drugs
Ivermectin

Ivermectin—also referred to as Stromectol [9]—is derived from avermectin, which
is produced by Streptomyces avermitilis [41]. Ivermectin is classified as a broad-spectrum
antiparasitic drug [42,43], and it was previously utilised in the treatment of diseases such
as river blindness and lymphatic filariasis, as well as in the treatment of parasitic worm
infections [41,43]. Its mechanism of action in parasites affects the gamma-amino butyric
acid (GABA) neurotransmitters by attaching to their glutamate chloride channels [43]. It is
an FDA-approved drug [12]. Ivermectin is considered a wonder drug because it has a range
of therapeutic uses, since it displays anti-cancer, anti-bacterial, and antiviral properties [44].
Ivermectin exhibits antiviral activities on RNA viruses such as dengue, Avian influenza A,
and SARS-CoV-2 [44].

In an in vitro study conducted by Carly et al. (2020), the authors observed a 5000-time
reduction in viral RNA after a 48 h treatment with ivermectin on the Vero/hSLAM cell
line [12]. A review conducted by Heidary and Gharebaghi (2020) stated that in order
for ivermectin to be efficacious, it should ideally be administered in the early stages of
COVID-19 infection; however, human clinical trials are required [44].

The efficacy of ivermectin for the treatment of COVID-19 was reviewed by Izcovich
et al. (2021); after a systematic review, they concluded that previous reports pertaining
to the benefits of ivermectin were flawed, as there were methodological limitations. They
also stated that ivermectin’s use as a prophylactic intervention and its effects on clinical
improvement in COVID-19 patients were uncertain; therefore, they concluded that further
research on ivermectin is required [45]. A report conducted by Schmith et al. (2020)
concluded that the initial approved dose of 200 µg/kg of ivermectin was not adequate,
since after oral administration, the predicted concentration eventually reaching the human
lungs would not be efficacious in the treatment of COVID-19 (yielding low predicted lung
concentrations of approximately 0.0873 µM). Therefore, they recommended the use of
higher doses. However, this poses the risk of side effects, such as the outbreak of rashes,
nausea, dizziness, and headaches [46]. The dosing (posology) and efficacy of ivermectin are
highly controversial topics; therefore, more research needs to be conducted [47]. The ideal
dose of ivermectin for the prophylaxis of COVID-19 was not successfully determined [46].
Chronic usage of ivermectin has also not been established [47]. There is also a paucity of
knowledge encompassing the pharmacokinetic profile of ivermectin in humans [43]. The
elucidation of the pharmacodynamics and pharmacokinetics of ivermectin with different
dose responses is required in order to determine the effective dose in humans [46,48].
Therefore, further investigation is required for in vivo and clinical trials in humans in order
to decipher the effects of the aforementioned drug on humans infected with COVID-19.
Ivermectin is currently in phase 3 clinical trials with a 600 mcg dose. After these trials are
completed, we can then make a conclusion regarding potential clinical management [49,50].
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2.3. Anti-Inflammatory Drugs
Ebselen

Ebselen—also known as PZ-51, DR3305, and SPI-1005.—is categorised as a selenor-
ganic drug (Figure 4), and it is capable of peroxynitrite and hydroperoxide activities [51–53].
This 2-phenyl-1,2-benzoisoselenazol-3(2H)-one compound was reported to have cytopro-
tective, anti-bacterial, anti-oxidant, and anti-inflammatory properties [53–55]. It also acts as
an apoptosis inducer and a free-radical scavenger, and it is a neuroprotective agent [55].
It was identified as a mimetic glutathione peroxidase-1 and peroxiredoxin drug [52,53].
Ebselen was used to treat noise-induced hearing loss and bipolar mood disorder [56,57].
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A study conducted by Jin et al. (2020) screened over 10,000 drugs with high-throughput
methods in conjunction with structure-based virtual techniques to identify the potential
main protease inhibitors of SARS-CoV-2. Their findings indicated that ebselen displayed
promising antiviral activity with an EC50 of 4.67 µM [2].

SARS-CoV-2 encodes two cysteine proteases—first, the main protease, and then the
papain-like protease [58]. These papain-like proteins have a role in viral replication (such
as in the cleavage of viral proteins) and a role in the host immune response [58,59]. Ebselen
was identified as a nonspecific cysteine modifier and a main and papain-like protease
inhibitor [58,60]. However, in the presence of 1,4-dithiothreitol, protease inhibition was
reduced or abolished [61]. Ma et al. concluded that ebselen is a non-specific protease
inhibitor, and its mechanism of action is promiscuous, since other drug targets (nsp13 and
nsp14) could be involved in the antiviral activities of SARS-CoV-2 [60].

This anti-inflammatory drug (ebselen) is currently in phase 2 clinical trials for the
treatment of COVID-19 patients exhibiting mild to severe symptoms (NCT04483973 and
NCT04484025) [55]. Further research needs to be conducted on ebselen, such as in vivo
studies, as well as randomised clinical trials, in order to determine its efficacy as a drug
treatment for COVID-19 [52].

2.4. Nucleoside Analogues
2.4.1. Remdesivir

Remdesivir is classified as a nucleoside analogue (Figure 5) [9,62]. Remdesivir is also
known as Veklury [63,64]. It should be noted that the aforementioned drug is not approved
by the Food and Drug Administration. However, in 2020, they issued an emergency use
authorisation (EUA) for patients suffering from severe COVID-19 symptoms [64].

According to Hossen et al. (2020), remdesivir is considered a promising drug for the
treatment of COVID-19, since it has broad-spectrum antiviral activities in vitro against
an array of RNA viruses, such as Pneumoviridae, Orthocoronavirinae, Filoviridae, and
Paramyxoviridae [9]. The mode of action is the inhibition of RNA-dependent RNA poly-
merases, and it results in the early termination of RNA transcription, since it competes for
inhibition with adenosine triphosphate (Figure 6) [29,65].
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A clinical trial conducted by Beigel et al. (2020) revealed that COVID-19 patients had
a decreased recovery of 10 days in comparison with that of the control group (placebo),
which took 15 days [65]. Another study conducted by Grein et al, (2020) applied remdesivir
for compassionate use in 53 COVID-19 patients; the oxygen support levels of 68% of
these patients improved, but there were also side effects, such as liver dysfunction, renal
impairment, diarrhoea, deep vein thrombosis, and septic shock [62]. Remdesivir was
administered intravenously to the patients for 10 days, with an initial dose of 200 mg on
day 1; 100 mg was given for the subsequent 9 days [62]. It should be noted that the sample
size of the patients was small (n = 53) [62].

Remdesivir displayed antiviral activity in vitro in the Vero E6 cell line with an EC50
value of 23.15 µM [68]. Another study by Wang et al. (2020) reported that the aforemen-
tioned drug potently blocked SARS-CoV-2 infection with an EC50 of 0.77 µM [29].

In a paper by Young et al. (2021) that was published in Lancet Infectious Diseases, the
authors stated that after reviewing a randomized phase 3, open-labelled clinical trial with
584 patients who experienced severe and moderate COVID-19 symptoms [1], the use of
remdesivir did not offer a significant benefit after 28 days for the COVID-19 patients [69,70].
However, if remdesivir was administered early, i.e., less than ten days into the illness, it
could shorten the recovery time and decrease the risk of progression of hyperinflamma-
tion [70]. However, the aforementioned clinical trial that was reviewed had limitations,
such as the fact that the original protocol was confined to Asia, its open-label design re-
sulted in a bias in the reported data and patient care, and the fact that remdesivir’s effect
on the viral load of SARS-CoV-2 was not evaluated [69].

For the efficacy and safety of remdesivir, its lung penetration (tissue distribution) needs
to be assessed, as the intravenous mode of administration in COVID-19 patients was not
sufficient [71,72]. Larger multi-centre clinical trials are required to assess the efficacy, different
routes of administration, and safety of remdesivir before it can be utilised for the treatment of
COVID-19. Additionally, combinations of immune modulatory agents and antiviral therapies
can be investigated for potential treatments for COVID-19 patients [72,73].

2.4.2. Molnupiravir

Molnupiravir—also referred to as MK-4482 and EIDD-2801 (Figure 7)—is another
nucleoside analogue that has antiviral activities against a multiplicity of viruses, such as the
SARS-CoV, ebola, MERS-CoV, SARS-CoV-2, and influenza viruses [18,74]. Molnupirvir is
currently undergoing clinical trials for the treatment of COVID-19, and it exhibits anti-RNA
polymerase activities [74].

Molnupiravir targets RNA-dependent RNA polymerase, which is important in the
pathophysiology of COVID-19 and is a key enzyme in viral replication [74]. According to
a review conducted by Pourkarim et al. (2021), molnupiravir is effective in the treatment
of COVID-19 in animals; however, clinical trials are essential to the determination of
its effect on COVID-19 patients [74]. The United Kingdom approved this antiviral first.
Molnupiravir can be administered to patients suffering from mild to moderate COVID-19
symptoms and who may be at risk of developing a comorbidity, such as diabetes [75].

Molnupiravir decreases the replication of SARS-CoV-2, thereby impeding COVID-
19 [21]. According to a review conducted by Zarenezhad and Marzi (2022) [76] and a
perspective paper published by Lee et al. (2021) [77], it was indicated that clinical trials
resulted in a decreased risk of fatality or hospitalisation in patients displaying mild to
moderate COVID-19 symptoms [76,77].

Host esterases found in plasma convert molnupiravir into EIDD-193 [74]. A study
conducted by Cox et al. (2021) involved a study of molnupiravir in ferrets (MK-4482/EIDD-
2801). Prior to in vivo analyses, they tested the prodrug in vitro on the Vero E6 cell line,
where it displayed an EC50 of 3.4 µM. According to a review article by Cox et al. (2021),
molnupiravir is in advanced stages of clinical trials as a result of the successful completion
of NCT04392219 (clinical trial phase 1) [78,79].
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The use of molupiravir can provide the following benefits if taken during the early
stages of infection: it can decrease local outbreaks, it can reduce the socioeconomic and
emotional effects associated with increased isolation periods, it can reduce the progression
of COVID-19, and it aids in speedy recovery [78]. The side effects associated with molnupi-
ravir include influenza symptoms, diarrhoea, back pain, nausea, pain in the extremities,
and headaches [74,79].

2.4.3. Favipiravir

Favipiravir (T-705)—also known as 6-fluoro-3-hydroxy-2-pyrazinecarboxamide—is
classified as an antiviral. The aforementioned drug has a structure of a modified pyrazine
analogue (Figure 8) [28]. It undergoes phosphorylation and ribosylation to provide an
activated form of the drug (favipiravir-RTP) [28,81]. Essentially, this active metabolite is a
nucleotide analogue and causes RNA-dependent RNA polymerase inhibition, thereby
terminating viral replication in the SARS-CoV-2 genome via lethal mutagenesis and
chain termination [28,82]. Favipiravir was initially developed for the treatment of in-
fluenza [19,28,81,83]. This prodrug displays a broad spectrum of antiviral properties
in vitro [83], since the catalytic domain (influenza virus) is similar to those of other RNA
viruses, such as SARS-CoV-2. According to a review conducted by Aherfi et al, (2021), the
results of in vitro analyses were inconclusive [28]. There were two in vitro studies in which
the Vero E6 cell line was treated with favipiravir; both concluded that the aforementioned
drug was efficacious based on its cytopathic effects. However, they reported high EC50
values of 207 µM [82] and 204 µM [84] in the respective studies. However, clinical trials
are underway in Italy, the United Kingdom, and China [82]. China approved the use of
favipiravir for the treatment of SARS-CoV-2 in March 2020 [9].

An open-label clinical study observed the efficacy of favipiravir for the treatment of
COVID-19 patients; on day one, a dose of 1600 mg was administered twice, followed by
600 mg twice daily for days 2–14. On the 14th day, there was a 91.43% improvement in
the patients [85]. Another controlled study with 96 patients indicated that there was a
reduction in hospitalisation and mechanical ventilation of COVID-19 patients [86].
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It should also be noted that some of the side effects of using favipiravir are hyper-
uricemia and teratogenicity [81]. Therefore, it is not recommended that pregnant women
use the drug, as it can cause birth defects or abnormalities in the embryo [21,81,85]. As such,
more clinical testing is required to fully understand the pharmacokinetics, advantages, and
disadvantages of the drug.

2.5. Monoclonal Antibodies (mAbs)
2.5.1. Bebtelovimab

Bebtelovimab is classified as a recombinant monoclonal antibody (IgG1λ) [87].
Bebtelovimab is also known as LY-CoV1404 [15]. According to Westendorf et al. (2022),
bebtelovimab displays highly potent neutralisation activities against the delta and omicron
variants of SARS-CoV-2, and it exhibits a conserved epitope [15]. In vitro analyses were
conducted in Vero E6 cell lines, and plaque reduction was measured and quantified with a
dose–response model, with an EC50 value of approximately 6.4 ng/mL [87].

According to the FDA monoclonal antibodies such as bebtelovimabab displayed
activity against the omicron variants BA.4/BA.5 and BA.2.12.1; as such, an EUA was issued
in February 2022, since this drug can be used to treat COVID-19 patients who are adults
and children who show mild to moderate symptoms (older than 12 years, with a minimum
weight of forty kilograms) [87]. The dosage is 87.5 mg/mL [87].

The aforementioned drug binds to the spike protein of SARS-CoV-2 and inhibits the
binding to the ACE2 receptor with an approximate dissociation constant of 0.046–0.075 nM
(Figure 9) [87,88]. It has a half-maximal inhibitory concentration (IC50) of 0.39 nM. With
regards to animal toxicology, according to the FDA, there were no severe effects on rats that
were intravenously treated with bebtelovimab, and in cross-reactivity studies of human
tissue, binding of clinical concern was not observed in the tissues [87]. Randomised phase 1
and 2 clinical trials are currently underway (BLAZE-4 trial (NCT04634409)) [87]. According
to the FDA, the phase 2 and 3 data indicate that bebtelovimab can be utilised for the
treatment of patients presenting with mild to moderate symptoms [87].

2.5.2. Sotrovimab

Sotrovimab is also referred to as Xevudy®, and it is synthesised by Vir Biotechnology in
conjunction with GlaxoSmithKline [89]. The FDA issued an EUA for the use of sotrovimab,
which is a pan-sarbecovirus monoclonal antibody that is utilised in the treatment of patients
exhibiting mild to moderate symptoms of COVID-19 or patients at risk for the rapid
progression of the disease, such as those for whom this might result in hospitalisation
or eventual fatality [89–91]. On the 17th of December 2021, it was fully approved in the
European Union. It received its first full approval on 17 December 2021 [89].
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There is a paucity of knowledge encompassing the clinical use of sotrovimab; adverse
side effects, such as hypersensitivity and anaphylaxis, may occur, or infusion-related
symptoms, such as dizziness, headache, fever, myalgia, arrhythmia, nausea, and difficulty
breathing, might be experienced [90].

Sotrovimab should ideally be administered within seven days of a patient displaying
COVID-19 symptoms, with a 500 mg dose via a single intravenous infusion [90]. The
aforementioned drug is a recombinant human monoclonal antibody (IgG1-kappa); the
mechanism of action is the binding of the drug to the receptor binding domain of the
spike protein of SARS-CoV-2 (conserved epitope region), with a dissociation constant of
approximately 0.21 nM [90]. The neutralisation activities of sotrovimab were tested in vitro
against SARS-CoV-2 in the Vero E6 cell line, yielding an EC50 of 0.67 nM [90].

Clinical trials are currently underway; in a phase 3 double-blind placebo clinical trial
(COMET-ICE, clinical trial government number: NCT04545060) with 583 patients as the
sample size, the trial sites were located in four countries: Spain, the United States, Brazil,
and Canada [91]. The findings of the aforementioned study indicated that sotrovimab
decreased the risk of the disease progression of COVID-19 [91].

2.5.3. Crizanlizumab

Crizanlizumab is a humanised monoclonal antibody [92]. Crizanlizumab is also re-
ferred to as SEG101 and Adakveo®; it was initially used for the treatment of sickle cell
disease in patients aged 16 years and older [93]. The mechanism of action of crizanl-
izumab is its binding to P-selectin protein, thereby preventing the interaction with the
P-selectin glycoprotein ligand 1 [92,93]. In severe cases of COVID-19, it is associated with
thrombosis, elevated levels of P-selectin protein, and vascular inflammation [94]. In a
placebo-controlled double-blind pilot clinical trial conducted by Leucker et al. (2021), 54
hospitalised COVID-19 patients displaying moderate symptoms were randomised [94].
A single dose of crizanlizumab was administered intravenously at 5.0 mg/kg; there was
a reduction in P-selectin levels and an increase in D-dimer levels, and they concluded
that a larger trial needs to be conducted [94]. According to McCarthy (2022), crizanl-
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izumab showed therapeutic promise in a small cohort of COVID-19 patients [95]. ACTIV-4a
provides a platform for testing various classes of repurposed drugs [95]. ACTIV-4a is a mul-
ticentre, open-label clinical trial study monitoring numerous targets involved in vascular
homeostasis and the clotting cascades in COVID-19 patients [95]. The aforementioned mon-
oclonal antibody is currently in ACTIV-4a continuous enrolment Q1 and phase 4 clinical
trials for ACTIV-4a; the results will be available in 2023 for clinical management [49,50].

This review provides an overview of the drug repurposing for antimalarial, antipar-
asitic, anti-inflammatory, nucleoside analogue, and monoclonal-antibody drugs for the
potential treatment of COVID-19 (refer to Tables 1 and 2); however, the respective drugs
have to undergo rigorous clinical trials in order to determine their efficacy and safety and
to establish the effective dosages.

Table 1. A summary of the mechanisms of action of the ten drugs discussed in this review.

Drug Mechanism of action References

Chloroquine Alkalisation of the phagolysosome; this process inhibits viral replication, fusion,
and uncoating. [27]

Hydroxychloroquine Alters the pH on the cell surface, inhibiting the virus from binding to the cell
membrane of the host. Inhibition of viral replication. [26]

Ivermectin Affects the GABA neurotransmitters by attaching to their glutamate
chloride channels. [43]

Ebselen A mimetic glutathione peroxidase-1 and peroxiredoxin drug. [52,53]

Remdesivir Inhibition of RNA-dependent RNA polymerases; results in early termination of
RNA transcription. [29,65]

Molnupiravir Targets RNA-dependent RNA polymerase. [74]

Favipiravir RNA-dependent RNA polymerase inhibition, terminating viral replication in the
SARS-CoV-2 genome via lethal mutagenesis and chain termination. [28,82]

Bebtelovimab Binds to the spike protein of SARS-CoV-2 and inhibits the binding to the
ACE2 receptor. [87,88]

Sotrovimab This drug binds to the SARC-CoV-2 spike protein’s receptor binding domain
(conserved epitope region). [90]

Crizanlizumab Crizanlizumab binds to the P-selectin protein, thereby preventing the interaction
with P-selectin glycoprotein ligand 1. [92,93]

Table 2. A summary of the ten repurposed drugs for potential COVID-19 treatment that are under
clinical trials.

Drug Type of Drug Clinical Trial References

Chloroquine Antimalarial Phase 1, 2, and 3 clinical trials
completed/withdrawn [39]

Hydroxychloroquine Antimalarial Phase 3 clinical trials ended, withdrawn, terminated,
and continuing. [39]

Ivermectin Antiparasitic Phase 3 clinical trials [49,50]

Ebselen Anti-inflammatory Phase 2 clinical trials [96]

Remdesivir Nucleoside analogue Continuing phase 3 clinical trials [49,50,97]

Molnupiravir Nucleoside analogue Phase 3 clinical trials [98,99]

Favipiravir Nucleoside analogue Phase 2 and 3 clinical trials [97]

Bebtelovimab Monoclonal antibody Phase 1, 2, and 3 clinical trials [87]

Sotrovimab Monoclonal antibody Phase 3 clinical trials [91]

Crizanlizumab Monoclonal antibody Phase 4 and continuous enrolment for Q1 2023 [49,50]
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3. Conclusions

COVID-19 has caused unprecedented challenges in healthcare systems and a global
socioeconomic upheaval. The COVID-19 pandemic has urged scientists around the globe
to rapidly find effective treatment regimens for SARS-CoV-2. There are numerous factors
to consider when developing new drugs, and drug repurposing is a viable option. The
development of new drugs will cost billions; in order for us to combat the disease, scientists
need to utilise drug-repurposing strategies to provide suitable drug therapies for COVID-19.
Herein, we provided an overview of ten drugs that can potentially be employed to treat
SARS-CoV-2.

Most reviews assess the use of antivirals, nucleoside analogues, and antimalarial
drugs for the treatment of COVID-19. We reported the use of monoclonal antibodies
(bebtelovimab and sotrovimab) that were highly efficacious thus far in the treatment of
COVID-19. However, they are currently in phase 2 and 3 clinical trials. Clinical trials are
underway to investigate the potential side effects and pharmacokinetics of chloroquine,
hydroxychloroquine, ivermectin, ebselen, remdesivir, molnupiravir, and flavipiravir.

Currently, there is no effective approved clinical therapy for COVID-19 [73]. The time
factor in drug discovery is a major limitation; since COVID-19 originated in 2019, large
amounts of data are have resulted from tests in clinical trials. Generally, the approximate
time for a drug for the treatment of a particular disease to go from proof of concept to
commercialisation is 10–12 years. Therefore, it will be cumbersome to synthesise and
develop new drugs for the treatment of COVID-19 rapidly in less than five years; as such,
in this review, we reviewed the repurposing of ten existing drugs for the aforementioned
therapy. In addition, the field of drug discovery is vast and rapid; as such, not all of the
drugs used to treat COVID-19 can be discussed, since a new drug is being tested every
day; future studies can elaborate further. This review provided a holistic overview of
drug repurposing, and it included drugs such as remdesivir and monoclonal antibodies
that, according to preliminary clinical trials, showed great promise for the treatment of
COVID-19. It must be noted that we also included other drugs that were not as efficacious.

Future studies can employ molecular docking coupled with in vitro assays to aid in
the discovery of potent drugs that can be repurposed for the treatment of COVID-19 [28].
In addition, research studies can also investigate the use of recombinant DNA method-
ologies to clone and express SARS-CoV-2 and purify these proteins via chromatography
complemented with mass spectrometry.
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