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Abstract: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a common nosocomial pathogen
causing severe infectious diseases, and ST307 CRKP is an emerging clone. In this study, we collected
five ST307 CRKP isolates, evaluated their antimicrobial susceptibility using microbroth dilution, and
their clonality and population structure by PFGE, cgMLST, and SNP-based phylogenetic analysis.
Then, the genome characteristics, such as antimicrobial resistance genes and plasmid profiles, were
studied by subsequent genomic analysis. The plasmid transfer ability was evaluated by conjugation,
and the carbapenem resistance mechanism was elucidated by gene cloning. The results showed
that all five ST307 CRKP isolates harboured blaCMY-6, blaOXA-48, and blaNDM-1; however, the end
of the blaNDM-1 signal peptide was interrupted and truncated by an IS10 element, resulting in the
deactivation of carbapenemase. The ST307 isolates were closely related, and belonged to the globally
disseminated clade. blaOXA-48 and blaNDM-1 were located on the different mobilisable IncL/M- and
IncA/C2-type plasmids, respectively, and either the pOXA-48 or pNDM-1 transconjugants were
ertapenem resistant. Gene cloning showed that blaCMY-6 could elevate the MICs of carbapenems up
to 64-fold and was located on the same plasmid as blaNDM-1. In summary, ST307 is a high-risk clone
type, and its prevalence should be given additional attention.

Keywords: sequence type 307; carbapenem-resistant; Klebsiella pneumoniae; truncated NDM-1;
blaOXA-48; blaCMY-6

1. Introduction

Klebsiella pneumoniae is responsible for multiple human infectious diseases, such as
abdominal infections, respiratory tract infections, and bloodstream infections, which result
in severe morbidity and mortality [1]. Carbapenems are commonly used for the treatment
of severe bacterial infections and are considered ‘last-resort’ antibiotics for using against
multidrug-resistant (MDR) Gram-negative bacteria [2]. However, with extensive use,
the rate of development of resistance to carbapenems has accelerated rapidly in recent
decades [3], and nationwide surveillance has shown that the prevalence of carbapenem-
resistant K. pneumoniae (CRKP) has reached 27.5% in China (http://chinets.com (accessed
on 23 September 2022)).
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It is well known that the leading carbapenem resistance mechanism is the produc-
tion of carbapenemases, which commonly include KPC, NDM, OXA, IMP, and VIM [4].
Previous epidemiological research showed that blaKPC was the most widely disseminated
carbapenemase in China, accounting for 74% of CRKP strains, whereas 17% of CRKP strains
were blaNDM positive [5]. Recently, an increased prevalence of blaOXA-48 with relatively
weak carbapenem antibiotic hydrolysis ability has been reported [6]. Sequence type (ST) 11,
closely related to the globally spreading epidemic clonal group (CG) 258, is the most com-
mon clone of CRKP prevailing in China and is closely associated with the carbapenemase
KPC; meanwhile, other CRKP clone types, such as CG15, ST307, and ST147, have recently
emerged globally [7,8].

In this study, we found five ST307 CRKP isolates that coharboured blaCMY-6, blaOXA-48,
and a truncated blaNDM-1. Antimicrobial susceptibility testing (AST), clonality analysis, and
genomic analysis were performed to identify the phylogenetic relationship and genomic
characteristics of ST307 CRKP. The conjugation assay showed that either the pOXA-48 or
pNDM-1 transconjugants were resistant to ertapenem, and even pNDM-1 had a truncated
blaNDM-1. In addition, long-read sequencing analysis and gene cloning experiments were
performed to explore the carbapenem resistance mechanism among these isolates.

2. Results
2.1. Clonality Analysis and Population Structure of ST307

In this study, the AST showed that the isolates were resistant to aztreonam, ceftazidime,
imipenem, meropenem, and ertapenem; as a result, these isolates were considered CRKP.
Five CRKP isolates all belonged to ST307; furthermore, their pulsed-field gel electrophoresis
(PFGE) patterns were indistinguishable, and there were fewer than three different bands
among these isolates. Similarly, core genome multilocus sequence typing (cgMLST) analysis
indicated that the average core gene allele difference of these isolates was 6.8 ± 3.6, which
indicated that they were closely related (Figure S1A,B).

According to Shropshire et al., the global ST307 population could be divided into
four clades. The Houston-based ST307 clades belonged to clades 1, 3, and 4; however, the
globally disseminated ST307 was located in clade 2 [9]. ST307 had a unique endemic spread
in Houston, and we tried to identify the cluster location of ST307 in this study within the
international population. For this purpose, we randomly selected the globally distributed
ST307 genome from a public database, and the phylogenetic tree could be divided into two
clades. The results showed that the Houston-based isolates belonged to clade 1, whereas the
isolates in this study belonged to clade 2, which is a globally disseminated clade (Figure 1).

2.2. Antimicrobial Resistance Genes in the Isolates

All five isolates were positive for blaCMY-6, blaNDM-1, blaOXA-48, blaSHV-106, and blaTEM-1,
and two of them, CHN14001 and CHN24069, were additionally blaCTX-M-15 and blaOXA-1
positive (Table 1). However, we found that blaNDM-1 was truncated by IS10 at amino
acid position 25, and the residues from position 27 to 270 of the intact amino acids were
completely identical (Figure S2). Because fragment 1–28 is considered as a signal peptide
(UniProt entry C7C422), the insertion at this site resulted in inactivation of the blaNDM-1
gene. The results of the gene cloning experiment indicated that truncation of blaNDM-1 led
to carbapenem susceptibility, whereas the clone with intact blaNDM-1 was resistant.

2.3. Difference in pNDM-1 and pOXA-48 among These Isolates

Due to the closely related core genomic backgrounds of these isolates, we intended
to explore the similarity of the plasmid profile in these isolates. The results of S1-PFGE
and Southern blotting showed that blaNDM-1 and blaOXA-48 were located on the different
plasmids among these isolates. The molecular sizes of plasmids that harboured truncated
blaNDM-1 (pNDM-1) were essentially the same; however, the plasmids encoding blaOXA-48
(pOXA-48) seemed distinct, with pOXA-48 in CHN24001 and CHN24069 being smaller
than that in CHN24003, CHN24025, and CHN24039 (Figure 2A).
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To obtain an elaborate understanding of the plasmid structure, we performed long-
read sequencing. The results showed that pNDM-1 was an IncA/C2 plasmid (149,808
bp), which had bleMBL, rmtC, sul1, aac(6′)-Ib11, blaCMY-6, and truncated blaNDM-1, and
pOXA-48 was an IncL/M plasmid (62,546 bp), which only had blaOXA-48 (Figure 2B). The
plasmid comparison showed that the IS1SD element-mediated insertion event made the
pOXA-48 of CHN24003, CHN24025, and CHN24039 larger than that in CHN24001 and
CHN24069 (Figure 2C).

2.4. Conjugation Assay and Gene Cloning Experiments

To understand the transmission ability of these plasmids, we performed a conjugation
assay. The pOXA-48 transconjugants were obtained when CHN24039 was set as the
donor, and the pNDM-1 transconjugants were obtained when CHN24001, CHN24025, or
CHN24039 was set as the donor. For all the transconjugants harbouring pOXA-48 or pNDM-
1, both the plasmids were believed to be transmissible between different bacteria. The
AST results showed that either the pOXA-48 or pNDM-1 transconjugants were resistant to
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ertapenem, and even pNDM-1 had a truncated NDM-1, which was inactive, as previously
presented (Table 2).

Table 1. The department, specimen type, ST, antimicrobial susceptibility, and beta-lactam resistance
genes of K. pneumoniae.

Isolates Department Specimen
Type ST

MIC (mg/L) 1

Beta-Lactamases
ATM IPM MEM ETP CAZ

CHN24001 Department of
Burns Blood 307 >64 64 64 >64 >64 blaNDM-1

2, blaOXA-48,
blaCMY-6, blaCTX-M-15,
blaSHV-106, blaTEM-1, blaOXA-1

CHN24003 Department of
Burns Secretion 307 >64 16 16 >64 >64 blaNDM-1

2, blaOXA-48,
blaCMY-6, blaSHV-106, blaTEM-1

CHN24025 Department of
Burns Secretion 307 >64 32 32 >64 >64 blaNDM-1

2, blaOXA-48,
blaCMY-6, blaSHV-106, blaTEM-1

CHN24039 Department of
Burns Secretion 307 >64 16 16 >64 >64 blaNDM-1

2, blaOXA-48,
blaCMY-6, blaSHV-106, blaTEM-1

CHN24069 Department of
Hematology Blood 307 >64 64 64 >64 >64 blaNDM-1

2, blaOXA-48,
blaCMY-6, blaCTX-M-15,
blaSHV-106, blaTEM-1, blaOXA-1

1 ATM: aztreonam, IPM: imipenem, MEM: meropenem, ETP: ertapenem, CAZ: ceftazidime; 2 The blaNDM-1 gene
was truncated.
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Table 2. Antimicrobial susceptibility of conjugates and the gene cloning isolates.

Isolates
MIC (mg/L) 1

ATM IPM MEM ETP CAZ

Conjugation
EC600 0.125 0.25 <0.03 <0.03 0.5
E24039J-pOXA-48 0.25 2 1 16 0.25
E24001J-pNDM-1 >64 1 0.25 2 >64
E24025J-pNDM-1 >64 1 0.25 4 >64
E24039J-pNDM-1 >64 1 0.25 8 >64

Gene cloning
DH5α <0.03 0.25 <0.03 <0.03 0.125
DH5α-pCR2.1K 0.0625 0.25 <0.03 <0.03 0.25
DH5α-pCR2.1K::NDM-1 0.0625 32 64 64 >64
DH5α-pCR2.1K::NDM-1(T) 2 0.125 0.25 <0.03 <0.03 0.5
DH5α-pCR2.1K::CMY-6 >64 1 0.25 2 >64
DH5α-pCR2.1K::OXA-48 0.25 2 0.5 16 0.5
DH5α-pCR2.1K::NDM-1(T) 2::CMY-6 >64 0.5 0.25 2 >64
DH5α-pCR2.1K::NDM-1(T) 2::OXA-48 0.25 2 1 8 0.5

1 ATM: aztreonam, IPM: imipenem, MEM: meropenem, ETP: ertapenem, CAZ: ceftazidime; 2 NDM-1(T) contained
the IS10 sequence at position 25 and residues of NDM-1.

Then, we investigated the carbapenem resistance mechanism of transconjugants har-
bouring pNDM-1. We introduced blaCMY-6 to determine whether CMY-6 could elevate
the MIC of ertapenem. The results showed that blaCMY-6 could elevate the MIC of er-
tapenem more than 64-fold in Escherichia coli DH5α, as well as 4–8-fold for imipenem and
meropenem (Table 2).

3. Discussion

In this study, we identified five ST307 CRKP isolates harbouring blaCMY-6, blaOXA-48,
and a truncated blaNDM-1. ST307, first reported in 2008, is now considered an emerging
high-risk antimicrobial-resistant (AMR) clone [10] and is endemic in Italy, Colombia, the
United States (Texas), and South Africa [7]. Previous research showed that ST307 strains
contained gyrA and parC mutations, which aided in their global distribution [7].

ST307 is associated with various carbapenem resistance determinants, including KPC-
2 and -3 [11], OXA-48 and -181 [12,13], NDM-1 [14], and VIM-1 [15]. The plasmid replicon
types of pNDM-1 and pOXA-48 in this study were IncA/C2 and IncL/M, respectively. It
has been revealed that IncL/M-type plasmids prefer to be associated with blaOXA-48 rather
than any other additional ARGs [16], which was consistent with the results of this study.
Moreover, blaNDM-1 has been observed on diverse plasmid types, such as the narrow-host
incompatibility group IncF and the wide-host incompatibility groups IncA/C, IncL/M,
IncH, and IncN [17].

Previous research indicated that the blaCTX-M-15 gene was present among 99% of ST307
isolates [18] and primarily located on the chromosome with two to three copies. However,
blaCTX-M-15 was located on the IncF(II)K plasmid in this study and was absent in three of
five isolates. The sequence comparison indicated that an additional ~46 kb MDR segment
existed in CHN24001 and CHN24069, in which blaCTX-M-15, aac(3)-IIe, catB, blaOXA-1, aac(6′)-
Ib-cr6, tet(A), qnrB1, and dfrA14 were dispersed between multiple IS26, ISEcp1, and other
insertion sequences (Figure S3). Based on the results for the truncated blaNDM-1 and the
differences in pOXA-48 and pCTX-M-15 among these isolates, the insertion elements were
associated with genomic instability in ST307, especially IS1SD, IS10, and IS26.

In this study, blaNDM-1 was disrupted by IS10, which belongs to the IS4 family. Accord-
ing to Vila et al., the native signal peptide was associated with NDM-1 anchored to the outer
membrane, which influenced the concentration of soluble NDM-1 in the periplasm [19],
and IS inserted into the signal peptide of blaNDM-1 abolished the carbapenemase function of
NDM-1, which was consistent with our results. The mechanism underlying carbapenem re-
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sistance in K. pneumoniae generally involves the production of carbapenemase; additionally,
the production of AmpC and ESBL along with the loss or decreased expression of outer
membrane proteins play an important role [20]. CMY is a class C β-lactamase, and blaCMY-6
is rare in K. pneumoniae. A previous study has shown that carbapenem resistance in E. coli
can arise via high-level expression of CMY-4 [21], and another study showed that CMY-2
could make E. coli resistant to meropenem [22]. To the best of our knowledge, we are the
first to report that blaCMY-6 can elevate the MIC of carbapenems.

4. Materials and Methods
4.1. Collection of Isolates and Bacterial Identification

The five CRKP isolates examined in this study were selected from a national observa-
tional, multicentre study in China, which included 28 hospitals around mainland China.
This multicentre study was approved by the local ethics committees of Sir Run Run Shaw
Hospital (20170301-3). The species of isolates were identified by matrix-assisted laser
desorption ionisation–time of flight (MALDI-TOF) mass spectrometry systems (Skyray
Instrument, Kunshan, China).

4.2. Antimicrobial Resistance Testing

The ASTs of imipenem, meropenem, ertapenem, ceftazidime, and aztreonam for all
the isolates were performed following the standard protocol for the microbroth dilution
method. E. coli ATCC 25,922 was used as the quality control, and the breakpoint was
interpreted according to CLSI guidelines [23].

4.3. PFGE, S1-PFGE, and Southern Blotting

PFGE and S1-PFGE were performed using the contour-clamped homogeneous electric
field (CHEF) mapper (Rio-Rad, Hercules, CA, USA) as previously described [24]. Briefly, the
DNA was digested by XbaI for PFGE and digested by S1 nuclease for S1-PFGE. Salmonella
enterica H9812 DNA digested by XbaI was used as a marker. Digoxigenin-labelled blaNDM-1
and blaOXA-48 probes (Roche Diagnostics, Basel, Switzerland) were used for Southern
blotting, and the probe primers are listed in Table S1.

4.4. Whole-Genome Sequencing and Subsequent Analysis

The genomic DNA of all the isolates was extracted by a QIAamp DNA Mini Kit
(QIAGEN, Hilden, Germany) and subjected to whole-genome sequencing on the Illumina
HiSeq xTen platform (Illumina, San Diego, CA, USA) with a 150 bp paired-end strategy,
as previously described [25]. Isolates CHN24001 and CHN24025 were further subjected
to long-read sequencing by a MinION sequencer device (Nanopore Technologies, Oxford,
UK) with a 1D flow cell. The short reads were de novo assembled by Shovill (https:
//github.com/tseemann/shovill (accessed on 12 June 2022)), and the long reads were
assembled by Raven (https://github.com/lbcb-sci/raven (accessed on 22 July 2022)) and
further polished by Polypolish using paired-end short reads [26].

The multilocus sequence type (MLST) and ARGs were identified by mlst (https:
//github.com/tseemann/mlst (accessed on 12 August 2022)) and ABRicate (https://github.
com/tseemann/abricate (accessed on 12 August 2022)), based on the NCBI AMRFinder-
Plus database [27], respectively. The plasmid comparison was performed by Easyfig [28]
and Proksee (https://proksee.ca (accessed on 15 August 2022)) and annotated by Ba-
cAnt and Prokka [29,30]. cgMLST was performed by Ridom seqsphere (version 6.0.0,
Ridom GmbH, Münster, Germany), as previously described [31]. The randomly selected
92 isolates from different continents along with the 5 isolates in this study were imported
for phylogenetic relationship analysis based on their single-nucleotide polymorphisms
(SNPs) using Snippy [25]. The genome of C234 was used as a reference (accession number:
SAMN15868954) [9], and the tree was illustrated by iTol (https://itol.embl.de (accessed on
22 August 2022)). The isolates selected from the public database are listed in Table S2.

https://github.com/tseemann/shovill
https://github.com/tseemann/shovill
https://github.com/lbcb-sci/raven
https://github.com/tseemann/mlst
https://github.com/tseemann/mlst
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
https://proksee.ca
https://itol.embl.de
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4.5. Conjugation Experiments

Briefly, the rifampin-resistant E. coli strain EC600 served as the recipient cell, and the K.
pneumoniae isolates served as donors. Rifampin (300 mg/L) and ertapenem (0.5 mg/L) were
simultaneously used for transconjugant selection. The conjugative isolates were confirmed
by MALDI-TOF and S1-PFGE. The ARGs of blaNDM-1 and blaOXA-48 were confirmed by
PCR (Table S1).

4.6. Plasmid Construction

Gibson assembly was used for plasmid construction (Vazyme, Nanjing, China), and
the primers are listed in Table S1. Since we aimed to study the β-lactamase, we first knocked
out the ampicillin resistance gene on the plasmid pCR2.1 to form plasmid pCR2.1K. Then,
blaNDM-1, truncated blaNDM-1, blaOXA-48, and blaCMY-6 were introduced into the plasmid
pCR2.1K between the NotI/ApaI or KpnI/BamHI restriction enzyme sites.

4.7. Nucleotide Sequence Accession Numbers

The whole-genome sequencing (WGS) raw reads of K. pneumoniae isolates, derived
by both Illumina and nanopore sequencing, were deposited under the project in the NCBI
database (accession number: PRJNA875629).

5. Conclusions

In summary, the high-risk clone type ST307 CRKP was found in China, and these
isolates all harboured blaCMY-6, blaOXA-48, and truncated blaNDM-1, which should be given
additional attention. blaCMY-6 and blaNDM-1 were located on the IncA/C2-type plasmid,
and blaOXA-48 was located on the IncL/M-type plasmid. NDM-1 was truncated by IS10 at
the signal peptide, which induced carbapenemase inactivity, and gene cloning of blaCMY-6
showed that it could induce carbapenem resistance.
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//www.mdpi.com/article/10.3390/antibiotics11111616/s1, Figure S1: (A) The PFGE pattern of
CHN24001, CHN24003, CHN24025, CHN24039, and CHN24069. (B) Minimum spanning tree of
CHN24001, CHN24003, CHN24025, CHN24039, and CHN24069 analysed by cgMLST. Figure S2:
Schematic of truncated blaNDM-1 interrupted by IS10. The direct repeat (DR) franking the insertion
was TGCTGAGCG, and the inverted repeats (IRs) of IS10 close to the DR were CTGATGAATCCCCT
and AGGGGATCTCTCAG. Figure S3: CTX-M-15-harbouring plasmid comparison among these
isolates. The red ring represents CHN24001, the yellow ring represents CHN24003, the blue ring
represents CHN24025, the brown ring represents CHN24039, and the green ring represents CHN24069.
Antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) labelled on the outer
ring. Table S1: The primers used in this study. Table S2: The ST307 isolates worldwide used in the
phylogenetic analysis.
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