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Abstract: Timely and efficacious antibiotic treatment depends on precise and quick in silico antimicrobial-
resistance predictions. Limited treatment choices due to antimicrobial resistance (AMR) highlight
the necessity to optimize the available diagnostics. AMR can be explicitly anticipated on the basis
of genome sequence. In this study, we used transcriptomes of 410 multidrug-resistant isolates of
Pseudomonas aeruginosa. We trained 10 machine learning (ML) classifiers on the basis of data on gene
expression (GEXP) information and generated predictive models for meropenem, ciprofloxacin, and
ceftazidime drugs. Among all the used ML models, four models showed high F1-score, accuracy,
precision, and specificity compared with the other models. However, RandomForestClassifier showed
a moderate F1-score (0.6), precision (0.61), and specificity (0.625) for ciprofloxacin. In the case of
ceftazidime, RidgeClassifier performed well and showed F1-score (0.652), precision (0.654), and
specificity (0.652) values. For meropenem, KNeighborsClassifier exhibited moderate F1-score (0.629),
precision (0.629), and specificity (0.629). Among these three antibiotics, GEXP data on meropenem and
ceftazidime improved diagnostic performance. The findings will pave the way for the establishment
of a resistance profiling tool that can predict AMR on the basis of transcriptomic markers.

Keywords: machine learning; antimicrobial resistance; Pseudomonas aeruginosa; transcriptomics

1. Introduction

Increased resistance in pathogens toward antimicrobials is a major threat to public
health and development. Increasing resistance hinders the usage of traditional antimicro-
bials and leads to higher rates of ineffective and unsuccessful empiric antibiotic therapy [1].
If not effectively cured, diseases give rise to suffering, indisposition, and finally loss of life,
and impose a huge economic burden on society and healthcare systems. The rapid spread
and rise in AMR is usually driven by different factors which include misuse, overreliance,
and overuse of antibiotics in agriculture and clinical settings [2]. Regardless of growing
medical need, the antibiotic pipeline has slowed to a trickle over the last 20 years. Dis-
turbingly, there are merely a few antimicrobial agents in the development phase to treat
infections caused by multidrug-resistant pathogens [1].

Pseudomonas aeruginosa (P. aeruginosa) is Gram-negative, encapsulated, aerobic, rod-
shaped pathogen, and is an opportunistic organism. It causes different acute and chronic
persistent infections such as urinary tract infections, dermatitis, respiratory system infections,
soft-tissue infections, and bacteremia [3]. It also causes a range of systemic infections, mostly in
cancer patients, victims of severe burns, and in AIDS patients who are immunosuppressed [3].
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To treat different bacterial infections empirically, physicians prescribe standard antimi-
crobials for treatment. Hence, it is very critical and important to investigate the resistance
profile of antimicrobials before the treatment of bacterial infections. In terms of clinical
perspective, rapid diagnostics are very important for the improvement of patient care
because diagnostic tests are an important component in healthcare practice. Additionally,
for antimicrobial susceptibility testing, we still rely on culture-based techniques, however,
these conventional microbiology diagnostics are slow and labor intensive. In conventional
microbiology methods, microbial growth, isolation, taxonomic identification, and antibiotic
MIC tests take a lot of effort and time (i.e., more than 24 h for MRSA and months for
tuberculosis) [4]. With these problems, physicians are left uncertain about the best drugs
to prescribe to infections [5]. Moreover, this time interval also contributes to the rise and
further spread of antimicrobial resistance.

Pseudomonas aeruginosa is clinically significant bacteria with inherent resistance to
several antimicrobials [3]. This inherent multidrug resistance arises from the synergy be-
tween less outer membrane permeability and particular antibiotic efflux pumps [6]. In
carbapenems, resistance is usually facilitated by OprD loss, and because of this damage,
P. aeruginosa exhibits resistance to imipenems. However, it confers a lesser degree of
resistance in the case of meropenems [7]. In addition, the efflux systems that are involved
to mediate the resistance to chloramphenicol, quinolone, and many other antimicrobials
are also involved in carbapenem resistance. Pseudomonas aeruginosa, which express the
MexEFOprN system or overexpress the MexAB-OprM system, show carbapenem resistance
via repressing the transcription of oprD or pumping the drug out, respectively [8]. In
addition to the OprD loss or drug efflux pumps, chromosomal AmpC β-lactamase plays
an important role in carbapenem resistance in P. aeruginosa [9]. The usage of molecular
diagnostics can serve as a substitute for culture-dependent techniques and can be very
important in generating success in the fight against AMR. Identification and detection of
genetic elements of AMR assure a great understanding of resistance mechanisms and can
help in the timely reporting of susceptibility and resistance profiles of pathogens compared
with conventional culture-dependent techniques. It has been reported that AMR can be very
precisely predicted based on evidence resulting from the genome sequence [10]. However,
in P. aeruginosa, even full genomic sequence data are scarce to predict AMR in isolates of
clinical relevance [11]. This pathogen shows an intense phenotypic plasticity arbitrated
by environment-driven malleable modifications in the transcriptional information. For
instance, it acclimatizes to the presence of antimicrobials with the overexpression of the
mex genes, encoding the antibiotic extrusion machineries. Likewise, high expression of the
ampC-encoded intrinsic beta-lactamase confers AMR [11,12]. Hence, P. aeruginosa develops
an environment-independent and self-sustaining resistance phenotype. In the present
investigation, we explored whether AMR in P. aeruginosa can be reliably predicted using
not just genomic imprinting data but also by employing quantitative GEXP data. Hence,
drug-resistant clinical P. aeruginosa were used.

We employed ten predictive ML models for the prediction of resistance to three
commonly administered antibiotics for P. aeruginosa by training classifiers using quantitative
GEXP information. We found that the use of information on the GEXP profiles can predict
susceptibility and resistance in this particular bacteria with predictive values.

2. Results

We used data of 410 P. aeruginosa isolates and 10 ML models to predict the antibiotic
resistance. The data retrieved from NCBI consisted of the sequences of genomic DNA,
and by employing transcriptional profiles information on the GEXP, we used these data
as an input to ML models. The isolates were susceptible and/or resistant to ciprofloxacin,
ceftazidime, and meropenem (Figure S1). For each antibiotic, we included all respective
isolates categorized as either “resistant” or “susceptible”. For each antibiotic, the training set
comprised of 75% of the resistant and susceptible isolates, and 25% for the test set. In total,
10 machine learning classification methods were used on expression features for predicting
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resistance or susceptibility and the classifier performances were assessed. This study is a
test case for AI4Water and was used as a classification problem. AI4Water is a useful and
good tool and it employs a python-based framework for performing different tasks.

We used different classifiers to calculate the predictive value of GEXP as well as the
macro F1-score, accuracy, precision, and specificity as a general performance measure on
the basis of classifiers trained on specific data types (Figures 1, 2 and S2–S8). The F1-score is
one of the most important evaluation metrics in machine learning. In total we used ten clas-
sifier methods; CatBoostClassifier, GaussianProcessClassifier, GradientBoostingClassifier,
HistGradientBoostingClassifier, KNeighborsClassifier, LGBMClassifier, RandomForest-
Classifier, RidgeClassifier, XGBClassifier, and XGBRFClassifier (Figures 1 and 2 and Table
S1). Among all the used ML models, four models showed high F1-score, accuracy, preci-
sion, and specificity compared with the other models. However, RandomForestClassifier
showed moderate F1-score (0.6), precision (0.61), and specificity (0.625) for ciprofloxacin
compared with other studies. In the case of ceftazidime, RidgeClassifier performed well
and showed moderate F1-score (0.652), precision (0.654), and specificity (0.652) values. For
meropenem, KNeighborsClassifier exhibited high F1-score (0.629), precision (0.629), and
specificity (0.629) values (Tables 1 and S1). Moreover, the sensitivity of 0.458 and predictive
value of 0.8 to predict meropenem resistance and susceptibility based exclusively on GEXP
data were high. For ceftazidime, the sensitivity (0.659) was higher than meropenem (0.458)
on the basis of GEXP. Gene expression information considerably improved the performance
of susceptibility and resistance sensitivity.
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Figure 2. The comparison of F1-score of ten classification models used for gene expression prediction
for meropenem and ceftazidime. The blue color represents the training dataset and the green color
represents the test dataset.

Table 1. Metrics comparison of ten different ML classification models. Models were compared on the
basis of their performance to predict gene expression values of meropenem and ceftazidime on the
test datasets.

Name of Model Meropenem Ceftazidime

F1-Score Accuracy Specificity F1-Score Accuracy Specificity

CatBoostClassifier 0.4220 0.730 0.5 0.594 0.595 0.598
GaussianProcessClassifier 0.212 0.269 0.5 0.343 0.523 0.5
GradientBoostingClassifier 0.4220 0.730 0.5 0.322 0.476 0.5
HistGradientBoostingClassifier 0.589 0.707 0.576 0.570 0.571 0.5704
KNeighborsClassifier 0.629 0.709 0.629 0.618 0.619 0.618
LGBMClassifier 0.491 0.651 0.4987 0.583 0.583 0.584
RandomForestClassifier 0.422 0.730 0.5 0.602 0.607 0.603
RidgeClassifier 0.629 0.565 0.575 0.652 0.654 0.652
XGBClassifier 0.527 0.617 0.528 0.551 0.559 0.554
XGBRFClassifier 0.519 0.606 0.520 0.475 0.476 0.476

We evaluated the prediction performance by confusion matrixes (CM). CM is used to
narrate the performance and accuracy of a classification model on test data for which the
true values are known. There are total of four standards in the CM (true negatives, false
negatives, true positives, and false positives,) and can be used to compute numerous other
metrics. The true negative (76.00) and true positive (84.00) scores for ciprofloxacin were
high in the case of the RandomForestClassifier and the prediction was high (Figures 3, S2
and S4). For ceftazidime, true the negative (87.00) and true positive (88.00) were higher
with overall high prediction accuracy (Figure 3).

The receiver operating characteristic (ROC) curve is another way to evaluate the
performance of the model. In the ROC curve, the trade-off between the false-positive
rate (equivalent to 1 minus specificity) and the true-positive rate (recall or sensitivity)
is graphically displayed. We also used binary classifiers to evaluate with performance
measures such as specificity, sensitivity, and performance as shown in the ROC plots. The
true positive rate in the case of meropenem can be considered as a good classifier for a
performance evaluation as shown in Figure 3. The nearer the curve is to the upper left
place, the better the model is overall. The area under the curve summarizes how good a
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test is regardless of the threshold but does not define an operating model. Therefore, we
must select the threshold to actually put the tool into practice.
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The precision–recall curve shows the trade-off between precision (positive predictive
value) and recall (sensitivity). It is also called a precision–recall (PR) curve. In the PR curve,
the threshold defines a specific point on the PR curve, but it does not change the curve itself.
The area under the curve is dependent on prediction because precision is dependent on
prediction. In the case of three antibiotics, it showed good AP values as shown in Figure 4
for meropenem (Figures 4 and S9–S11).
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3. Discussion

Rapid diagnostics is very important in the fight against drug-resistant infections. As
earlier, timely, and further comprehensive knowledge on antimicrobial resistance profile
of pathogens has the ability to alter antibiotic prescribing conduct and improve patient
outcomes. Because the treatment of various bacterial infections is carried out empirically,
physicians recommend a standard antibiotic to patients. Hence, there is a growing aware-
ness to obtain the results faster and this has introduced an investigation of molecular
diagnostics substitutes to already available conventional microbiology methods (culture-
based). Rapid diagnostics are very important to enhance patient care. Nevertheless, for
the effective application of fast and dependable molecular tools, it is very important to
recognize the entirety of the molecular determinants of resistance. In case of failure to
identify resistance, it might elicit administration of suboptimal or ineffective antibiotic
treatment and this constitutes a substantial risk, particularly in terminally ill people, and
has dire consequences for patients. Overuse can also be a result to resistance and the un-
necessary use of broad-spectrum antibiotics can be the consequence of resistance [1]. This
puts patients at higher risks with severe side effects and drives hospital costs., and it can
also substantially contribute to the development of drug resistance by applying undesired
selective pressures [13,14]. We report that ML methods using transcriptomic and genomic
features can offer extraordinary antimicrobial resistance assignment proficiencies for this
particular bacteria. We observed that the performance of prediction was greatly dependent
on the antibiotic.

We observed in the case of ciprofloxacin that sensitivity to predict resistance and
susceptibility from GEXP data was high. Gene expression data can play an important
role in the construction of a diagnostic system to test the resistance profile of bacteria. The
idea can be of value if the information on GEXP is added as a fail-safe strategy [15]. To
acquire maximum mean prediction accuracy, regression models were also used on the same
samples; nevertheless, the mean accuracy and performance of classification models was
more reliable than regression models [1,16,17].

Although this was a test case for AI4Water, our results on GEXP for three antibi-
otics were similar to the results reported by Khaledi et al. [18]. However, in the case of
meropenem and ceftazidime, their sensitivity was high compared with these results. Hence,
in the future, we and other researchers can work on improvements.

Among the 10 used ML models, some of them had lower accuracy predictions. The
machine learning modeling requires adequate input data to train the ML models to form a
training dataset and a “testing dataset” to assess the performance of the model [1]. Among
the three antibiotics, the resistant background of bacteria was different for each drug;
therefore, after randomly splitting the limited data into a training dataset or testing dataset,
different ML models did not have enough to learn from the training dataset which led to a
relative lower accuracy while predicting the testing set of the model.

In conclusion, we demonstrate that using the transcriptomic features such as GEXP
values is important for prediction and improving performance. Hence, susceptibility and
resistance sensitivity are strongly dependent on the antibiotics. Moreover, analysis of the
GEXP marker list revealed that the resistance phenotype in P. aeruginosa is complicated
and not simple and that modifications in GEXP can change the resistance phenotype
very significantly.

The limitation of this study includes small sample size for bioinformatics and ML
modeling analysis. In spite of high accuracy and good prediction of ML models, some
improvement can be expected if larger sample sizes were used in this study.

4. Materials and Methods
4.1. Data Processing

In total, 410 clinical isolates of P. aeruginosa were used in this study. The data were col-
lected from the National Center for Biotechnology Information (NCBI). All clinical isolates
were tested for antibiotics susceptibility toward common antipseudomonas meropenem,
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ciprofloxacin, and ceftazidime. To analyze the sequences of isolates, we used SPAdes,
v.3.0.1, to assemble the trimmed reads by using a particular parameter called as the careful
parameter. We annotated genomes using Prokka, particularly the metagenome mode for
gene calling. This method was used because genes present on resistance cassettes were
frequently missed by the genome gene calling method. Moreover, Roary was used to cluster
the gene sequences into gene families.

4.2. Problem Description

In this study, we used observed gene expression data as the target value. The ML
models were trained to predict the resistance profiles. Therefore, we solved a classification
problem where the target of the ML model was to predict the gene expression values for
three antibiotics.

4.3. Comparison between Machine Learning Models

In this study, ten ML models were used to check and compare the prediction accuracies
of different models. We set the random seed parameter to 313 in order to maintain re-liability
in the splitting of the dataset for comparative analysis of the results. Numerous ML models
exist which can be used for solving a classification task. We tested the performance of ten
models to predict the exact GEXP values for three antibiotics.

4.4. Train Test Split

We split the data into a 75% training set and a 25% test set. The splitting was conducted
randomly to avoid any bias. The models were trained on the training set, while its accuracy
was measured on the validation set. The aim of this process is to assess the ability of the
ML algorithm to generalize to new data and select hyperparameters. After selecting the
best hyperparameters for the model, we evaluated its performance on the test set. The test
data were not seen by the model during training. In this way, the generalization ability of
the model on the unseen data was assessed.

4.5. Hyperparameter Optimization

The performance of the ML algorithm is greatly affected by the choice of hyperparam-
eters used to build it. Several algorithms exist for optimization of hyperparameters of ML
algorithms. These include, grid search, random search, and Bayesian optimization algo-
rithm. We optimized the performance of models using Bayesian optimization algorithm.
The most important set of parameters for each ML model were chosen and optimized.

4.6. Performance Metrics

We used F1-score, accuracy, precision, and specificity as performance metrics. We al-so
recorded the bias in the prediction of the models. Since the optimization problem was
solved as a minima problem, we used (1-F1 score) as the objective function to be minimized.
The positive value of bias indicates that the predicted value is higher than the true value
while the negative bias shows that the predicted value is lower than true value.

4.7. Python Libraries

The hyperparameters were optimized using scikit-optimize library which imple-
mented the Bayesian optimization algorithm. The machine learning pipeline—from data
preprocessing to building and training of models, prediction of gene expression values, and
analysis of results—was performed using AI4Water, which is a python-based framework
for performing the aforementioned tasks [13].

4.8. Code Availability

The code to reproduce the results presented in this article is available at GitHub repository
(link: https://github.com/Asadmalic/antibiotic_prediction) (accessed on 10 November 2022).

https://github.com/Asadmalic/antibiotic_prediction
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics11111593/s1, Figure S1. Bar charts showing importance
of top 30 features out of 6000 features for the Ceftazidime, Meropenem and Ciprofloxacin. Figure S2.
Confusion matrix for the gene expression values of P. aeruginosa isolates with a threshold set at 0.5.
Rows represent the true transcriptomic values and columns represent the predictions; Figure S3.
The comparison of specificity of ten classification models used for gene expression prediction for
meropenem; Figure S4. The comparison of accuracy of ten classification models used for gene
expression prediction for meropenem; Figure S5. The comparison of specificity of ten classification
models used for gene expression prediction for ceftazidime; Figure S6. The comparison of accuracy
of ten classification models used for gene expression prediction for ceftazidime; Figure S7. The
comparison of accuracy of ten classification models used for gene expression prediction for Ciprofloxa-
cin; Figure S8. The comparison of specificity of ten classification models used for gene expression
prediction for Ciproflox-acin; Figure S9. (a). Receiver operating characteristic (ROC) curves for
Catboost Classifier in case of ciprofloxacin. AUC val-ue is also shown in the figure. (b). Receiver
operating characteristic (ROC) curves for GradientBoosting Classifier in case of ciprofloxacin. AUC
value is also shown in the figure. (c). Receiver operating characteristic (ROC) curves for HitsGra-
dientBoosting Classifier in case of ciprofloxacin. AUC value is also shown in the figure. (d) Receiver
operating charac-teristic (ROC) curves for RandomForest Classifier in case of ciprofloxacin. AUC
value is also shown in the figure; Figure S10. (a). Receiver operating characteristic (ROC) curves
for Catboost Classifier in case of Ceftazidime. AUC value is also shown in the figure. (b). Receiver
operating characteristic (ROC) curves for GradientBoosting Classifier in case of Ceftazidime. AUC
value is also shown in the figure. (c). Receiver operating characteristic (ROC) curves for HitsGradi-
entBoosting Classifier in case of Ceftazidime. AUC value is also shown in the figure. (d). Receiver
operating characteris-tic (ROC) curves for Randomforest Classifier in case of Ceftazidime. AUC value
is also shown in the figure; Figure S11 (a). Receiver operating characteristic (ROC) curves for Catboost
Classifier in case of meropenem. AUC value is also shown in the figure. (b). Receiver operating
characteristic (ROC) curves for Gradientboosting Classifier in case of meropenem. AUC value is also
shown in the figure. (c). Receiver operating characteristic (ROC) curves for HitsGradientboosting
Classifier in case of meropenem. AUC value is also shown in the figure. (d) Receiver operating
characteristic (ROC) curves for Randomforest Classifier in case of meropenem. AUC value is also
shown in the figure; Table S1. Metrics comparison of ten different ML classification models. Models
were compared on the basis of their performance to predict gene expression values of ciprofloxacin
on the test datasets.
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3. Paprocka, P.; Durnaś, B.; Mańkowska, A.; Król, G.; Wollny, T.; Bucki, R. Pseudomonas aeruginosa Infections in Cancer Patients.

Pathogens 2022, 11, 679. [CrossRef] [PubMed]
4. Giltner, C.L.; Kelesidis, T.; Hindler, J.A.; Bobenchik, A.M.; Humphries, R.M. Frequency of susceptibility testing for patients with

persistent methicillin-resistant staphylococcus aureus bacteremia. J. Clin. Microbio. 2014, 52, 357–361. [CrossRef] [PubMed]
5. Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M.M.C.; Salfinger, A.; Somoskövi, D.M.; Warshauer, M.L. Wilson

Practical guidance for clinical microbiology laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018, 31, e00038-17. [CrossRef]
[PubMed]

6. Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation
of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [CrossRef] [PubMed]

7. Pai, H.; Kim, J.; Kim, J.; Lee, J.H.; Choe, K.W.; Gotoh, N. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical
isolates. Antimicrob. Agents. Chemother. 2001, 45, 480–484. [CrossRef] [PubMed]

8. Kohler, T.; Michea-Hamzehpour, M.; Henze, U.; Gotoh, N.; Curty, L.K.; Pechere, J.C. Characterization of Mex E-MexF-OprN, a
positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 1997, 23, 345–354. [CrossRef] [PubMed]

9. Maseda, H.; Yoneyama, H.; Nakae, T. Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump
of Pseudomonas aeruginosa. Antimicrob. Agents. Chemother. 2000, 44, 658–664. [CrossRef] [PubMed]

10. Bradley, P.; Gordon, N.C.; Walker, T.M.; Dunn, L.; Heys, S.; Huang, B.; Earle, S.; Pankhurst, L.J.; Anson, L.; de Cesare, M.; et al.
Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.
Nat. Commun. 2015, 6, 10063. [CrossRef] [PubMed]

11. Lee, J.H.; Park, K.S.; Karim, A.M.; Lee, C.R.; Lee, S.H. How to minimise antibiotic resistance. Lancet Inf. Dis. 2016, 16, 17–18.
[CrossRef]

12. Srikumar, R.; Kon, T.; Gotoh, N.; Poole, K. Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM
and MexC-MexD OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob. Agents. Chemother. 1998, 42, 65–71. [CrossRef]
[PubMed]

13. Abbas, A.; Boithias, L.; Pachepsky, Y.; Kim, K.; Chun, J.A.; Cho, K.H. AI4Water v1.0: An open source python pack-age for
modeling hydrological time series using data-driven methods. Geosci. Model Dev. 2022, 15, 3021–3039. [CrossRef]

14. Bruchmann, S.; Dötsch, A.; Nouri, B.; Chaberny, I.F.; Häussler, S. Quantitative contributions of target alteration and decreased
drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob. Agents. Chemother. 2013, 57, 1361–1368.
[CrossRef] [PubMed]

15. Migliorini, L.B.; Brüggemann, H.; de Sales, R.O.; Koga, P.C.M.; de Souza, A.V.; Martino, M.D.V.; Galhardo, R.S.; Severino, P.
Mutagenesis induced by sub-lethal doses of ciprofloxacin: Genotypic and phenotypic differences between the Pseudomonas
aeruginosa strain PA14 and clinical isolates. Front. Microbiol. 2019, 10, 1553. [CrossRef] [PubMed]

16. Fan, Z.; Chen, H.; Li, M.; Pan, X.; Fu, W.; Ren, H.; Chen, R.; Bai, F.; Jin, Y.; Cheng, Z.; et al. Pseudomonas aeruginosa polynucleotide
phosphorylase contributes to ciprofloxacin resistance by regulating PrtR. Front. Microbiol. 2019, 10, 1762. [CrossRef] [PubMed]

17. Fernández, L.; Hancock, R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance.
Clin. Microbiol. Rev. 2012, 25, 661–681. [CrossRef] [PubMed]

18. Khaledi, A.; Weimann, A.; Schniederjans, M.; Asgari, A.; Kuo, T.H.; Oliver, A.; Cabot, G.; Kola, A.; Gastmeier, P.; Hogardt, M.; et al.
Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol.
Med. 2020, 12, e10264. [CrossRef] [PubMed]

http://doi.org/10.1016/j.sjbs.2022.02.047
http://www.ncbi.nlm.nih.gov/pubmed/35844400
http://doi.org/10.1179/2047773215Y.0000000030
http://www.ncbi.nlm.nih.gov/pubmed/26343252
http://doi.org/10.3390/pathogens11060679
http://www.ncbi.nlm.nih.gov/pubmed/35745533
http://doi.org/10.1128/JCM.02081-13
http://www.ncbi.nlm.nih.gov/pubmed/24153125
http://doi.org/10.1128/CMR.00038-17
http://www.ncbi.nlm.nih.gov/pubmed/29386234
http://doi.org/10.1128/CMR.00040-09
http://www.ncbi.nlm.nih.gov/pubmed/19822890
http://doi.org/10.1128/AAC.45.2.480-484.2001
http://www.ncbi.nlm.nih.gov/pubmed/11158744
http://doi.org/10.1046/j.1365-2958.1997.2281594.x
http://www.ncbi.nlm.nih.gov/pubmed/9044268
http://doi.org/10.1128/AAC.44.3.658-664.2000
http://www.ncbi.nlm.nih.gov/pubmed/10681335
http://doi.org/10.1038/ncomms10063
http://www.ncbi.nlm.nih.gov/pubmed/26686880
http://doi.org/10.1016/S1473-3099(15)00467-3
http://doi.org/10.1128/AAC.42.1.65
http://www.ncbi.nlm.nih.gov/pubmed/9449262
http://doi.org/10.5194/gmd-15-3021-2022
http://doi.org/10.1128/AAC.01581-12
http://www.ncbi.nlm.nih.gov/pubmed/23274661
http://doi.org/10.3389/fmicb.2019.01553
http://www.ncbi.nlm.nih.gov/pubmed/31354657
http://doi.org/10.3389/fmicb.2019.01762
http://www.ncbi.nlm.nih.gov/pubmed/31417536
http://doi.org/10.1128/CMR.00043-12
http://www.ncbi.nlm.nih.gov/pubmed/23034325
http://doi.org/10.15252/emmm.201910264
http://www.ncbi.nlm.nih.gov/pubmed/32048461

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Data Processing 
	Problem Description 
	Comparison between Machine Learning Models 
	Train Test Split 
	Hyperparameter Optimization 
	Performance Metrics 
	Python Libraries 
	Code Availability 

	References

