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Abstract: Multidrug-resistant (MDR) foodborne pathogens have created a great challenge to the sup-
ply and consumption of safe & healthy animal-source foods. The study was conducted to identify the
common foodborne pathogens from animal-source foods & by-products with their antimicrobial drug
susceptibility and resistance gene profile. The common foodborne pathogens Escherichia coli (E. coli),
Salmonella, Streptococcus, Staphylococcus, and Campylobacter species were identified in livestock and
poultry food products. The prevalence of foodborne pathogens was found higher in poultry food &
by-product compared with livestock (p < 0.05). The antimicrobial drug susceptibility results revealed
decreased susceptibility to penicillin, ampicillin, amoxicillin, levofloxacin, ciprofloxacin, tetracy-
cline, neomycin, streptomycin, and sulfamethoxazole-trimethoprim whilst gentamicin was found
comparatively more sensitive. Regardless of sources, the overall MDR pattern of E. coli, Salmonella,
Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively. The
genotypic resistance showed a prevalence of blaTEM, blaSHV, blaCMY, tetA, tetB, sul1, aadA1, aac(3)-IV,
and ereA resistance genes. The phenotype and genotype resistance patterns of isolated pathogens
from livestock and poultry had harmony and good concordance, and sul1 & tetA resistance genes
had a higher prevalence. Good agricultural practices along with proper biosecurity may reduce
the rampant use of antimicrobial drugs. In addition, proper handling, processing, storage, and
transportation of foods may decline the spread of MDR foodborne pathogens in the food chain.

Keywords: AMR; MDR bacteria; foodborne bacteria; animal origin food; Bangladesh

1. Introduction

Foodborne illness is a key public health concern worldwide which occurs due to the
ingestion of contaminated food products, mostly animal and poultry-derived food [1–3].
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The prime cause of foodborne infections is the presence of bacteria in foods which will
grow under favorable conditions and produce toxins in food [4]. Currently, foodborne
illness caused by bacterial contamination is one of the foremost threats distressing public
health [5]. Staphylococcus aureus, Salmonella paratyphoid, Campylobacter, Listeria monocytogenes
(L. monocytogenes), and Escherichia coli (E. coli) are the most important zoonotic bacterial
pathogens that cause foodborne illness worldwide, and deaths due to consumption of
contaminated animal products [6]. In terms of biological threats, bacterial agents are the
utmost severe concern regarding the issues of the supply of pathogen-free animal-derived
foods to consumers [7,8]. Animal-derived food products, most commonly red meat, white
meat including dairy products, and eggs are the important vehicles through which people
may be exposed to foodborne pathogens, especially bacteria [9]. In addition, the poultry
vendors at wet markets had poor knowledge of food safety, foodborne pathogens, and
zoonoses in Bangladesh is also a key factor for transmitting foodborne pathogens [10].

Animal-source foods especially milk, meat, eggs, and their diversified products may
become exposed with pathogenic bacteria during harvesting, slaughtering, processing,
and marketing [11,12]. Environmental factors such as the nature of pathogens, their hosts
(human or animal), host immunity, environmental temperature, etc. have evolved food-
derived bacterial pathogens, making the population more susceptible to infection [13]. With
rapidly changing human consumption habits, global food markets, and climate change, the
fight against bacterial foodborne illness faces new challenges [14]. In this regard, foodborne
bacterial infections may be prohibited and controlled by the proper cooking, preparation,
and storage of food. In addition, multi-sectoral action is urgently needed to address
AMR and to achieve the Sustainable Development Goals (SDGs) [15]. The World Health
Organization (WHO) lists AMR as one of the top ten public health threats in the world. The
unnecessary use of antibiotics in humans and agriculture has resulted in the widespread
growth of antibiotic-resistant strains, and their outbreak in the environment has caused
serious health hazards [16–18]. The Centers for Disease Control and Prevention (CDC)
states that more than 2.8 million people in the United States develop serious infections
with antibiotic-resistant bacteria each year, and at least 35,000 die each year from the direct
effects of these resistant pathogens [19]. It is evidenced that AMR foodborne pathogens
including E. coli, Campylobacter, Listeria, and Salmonella are closely linked with chicken meat,
beef, and pork [20,21], as well as retail meat [22,23].

Extensive use of antibiotics in livestock and poultry production systems is known
to contribute to the development of AMR [24]. To date, there is a growing concern about
the potential for AMR to be transmitted through the food chain. AMR food pathogens
in food-producing animals may infect humans through consumption of contaminated
food or water as well as direct contact with animals [25]. In addition, bacteria in foods
that are AMR may be more persistent in food processing environments. In this regard,
monitoring antimicrobial resistance in the food chain is important for understanding the
spread of resistance and making relevant risk assessment data. Previous studies showed
the occurrences of foodborne pathogens in poultry meat collected from different sources
and selected areas of Bangladesh [26–28]. However, no comprehensive research work
was carried out on the determination of the antimicrobial drug susceptibility profile of
common foodborne pathogens recovered from both livestock and poultry food products
and by-products throughout the country. Therefore, considering the paramount impor-
tance of antimicrobial resistance globally, the present study was undertaken to isolate
and identify foodborne pathogens along with the characterization of their antimicrobial
drug susceptibility patterns with resistance genes in animal-derived food & by-product in
Bangladesh. The study would help in addressing containment and intervention strategies
of MDR foodborne pathogens in the food chain.
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2. Results
2.1. Prevalence of AMR Pathogens in Animal-Derived Food Products

E. coli, Salmonella, and Staphylococcus species were isolated from both livestock and
poultry food product & by-product samples throughout the country. In addition, Streptococ-
cus species were isolated from only livestock-source food product & by-product samples.
Furthermore, Campylobacter species was only isolated from poultry food products of the
Chattogram Veterinary and Animal Sciences University (CVASU) component, i.e., from
the Chittagong division. The overall prevalence of E. coli, Salmonella, Staphylococcus, and
Streptococcus in livestock-source food products and by-products were found to be 38.47%
(554/1440), 8.26% (119/1440), 14.67% (211/1440), and 4.79% (69/1440), respectively (details
of prevalence pattern are presented in Table 1). Similarly, the overall prevalence of E. coli,
Salmonella, Staphylococcus, and Campylobacter in poultry food products & by-products were
51.59% (454/880), 17.61% (155/880), 21.93% (193/880), and 4.43% (39/880), respectively
(Table 2). Regardless of sources, the overall multidrug-resistant pattern of E. coli, Salmonella,
Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively.
The prevalence of E. coli was found higher in poultry food products & by-products com-
pared with livestock (51.59% vs. 38.47%; p < 0.05). Similarly, a higher statistical association
was found between the prevalence of Salmonella in livestock and poultry food products
(17.61% vs. 8.26%; p < 0.05). In addition, an association was also found between the preva-
lence of Staphylococcus in livestock and poultry samples (21.93% vs. 14.67%; p < 0.05). On
the other hand, Campylobacter was found in poultry food products & by-products collected
from only the Chittagong division and the overall percentage was 4.43% (39/880).

Table 1. Prevalence of AMR pathogens in livestock-source food products and by-products.

Organisms Positive Samples
(Total Samples) Prevalence (%) Confidence Interval

(95% Cl)

E. coli 554 (1440) 38.47 35.99–41.01

Salmonella 119 (1440) 8.26 6.95–9.80

Staphylococcus 211 (1440) 14.65 12.92–16.57

Streptococcus 69 (1440) 4.79 3.80–6.02

Table 2. Prevalence of AMR pathogen in poultry source food products and by-products.

Organisms Positive Samples
(Total Samples) Prevalence (%) Confidence Interval

(95% Cl)

E. coli 454 (880) 51.59 48.29–54.88

Salmonella 155 (880) 17.61 15.24–20.27

Staphylococcus 193 (880) 21.93 19.32–24.78

Campylobacter 39 (880) 4.43 3.26–6

2.2. Phenotypic Resistance Pattern

The AST (Antimicrobial Sensitivity Testing) pattern of E. coli showed the highest resis-
tance to penicillin (P) (96.19%) followed by ampicillin (AMP) (90.71%), amoxicillin (AMX)
(86.87%), oxytetracycline (O) (78.32%), cloxacillin (COX) (70.37%), and sulfamethoxazole-
trimethoprim (COT) (70.01%). Among the antimicrobials, gentamicin (GEN) (66.46%) was
found to be the most susceptible. The detailed AST pattern of E. coli is presented in Figure 1.
The AST result of Salmonella showed the highest resistance to penicillin (96.15%), fol-
lowed by ampicillin (AMP) (91.48%), oxytetracycline (O) (82.2%), amoxicillin (73.1%), and
cloxacillin (67.85%) whilst the highest susceptibility was recorded to gentamicin (82.91%),
followed by ceftriaxone (CTR) (58.88%). The detailed AST pattern of Salmonella is presented
in Figure 1. On the other hand, the AST pattern of Staphylococcus showed the highest resis-
tance to cloxacillin (87.345), followed by amoxicillin (85.39%), penicillin (85.29%), ampicillin
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(76.28%), streptomycin (S) (79.47%), and oxytetracycline (67.74%) whereas the highest sus-
ceptibility was found in gentamicin (66.32%), followed by ciprofloxacin (CIP) (49.46%) and
ceftriaxone (49.36%). The detailed AST pattern of Staphylococcus is presented in Figure 1.
Moreover, the AST pattern of Streptococcus indicated greater resistance to penicillin, fol-
lowed by cloxacillin (86.27%), oxytetracycline (84.5%), streptomycin (78.87%), amoxicillin
(73.23%), and sulfamethoxazole-trimethoprim (69.01%) whilst greater susceptibility was
observed to ciprofloxacin (70.43%) and gentamicin (42.26%). The detailed AST pattern of
Streptococcus is shown in Figure 1.
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Figure 1. Phenotypic resistance pattern to various antimicrobial agents, AST pattern of (A) E. coli,
(B) Salmonella, (C) Staphylococcus, and (D) Streptococcus recovered from livestock food products
& by-products.

The AST result of E. coli showed higher resistance to erythromycin (97.74%), fol-
lowed by enrofloxacin (EX) (91.63%), oxytetracycline (87.42%), ciprofloxacin (86.46%),
sulfamethoxazole-trimethoprim (84.54%), and tetracycline (TE) (75.82%); however, the
highest sensitivity was found to gentamicin (49.21%). The detailed AST pattern of E. coli
is shown in Figure 2. The AST result of Salmonella showed higher resistance to ampi-
cillin (93.97%), followed by oxytetracycline (89.04%), tetracycline (87.5%), doxycycline
(DO) (85.71%), enrofloxacin (75.86%), erythromycin (E) (72.41%), ciprofloxacin (70%), and
sulfamethoxazole-trimethoprim (63.63%); however, the highest sensitivity was found to
gentamicin (71.43%) and levofloxacin (LE) (52.81%). The detailed AST pattern of Salmonella
is outlined in Figure 2. Consecutively, the AST pattern of Staphylococcus predicted higher
resistance to ampicillin (93.88%), followed by tetracycline (83.61%), erythromycin (81.05%),
neomycin (N) (67.91%), sulfamethoxazole-trimethoprim (63.63%), oxytetracycline (57.97%),
enrofloxacin (57.97%), and doxycycline (55.56%); however, the highest sensitivity was
found to gentamicin (49.02%) and levofloxacin (45.75%). The detailed AST pattern of
Staphylococcus is presented in Figure 2. Furthermore, the AST pattern of Campylobacter
species anticipated higher resistance to erythromycin (100%), followed by ciprofloxacin
(85%), sulfamethoxazole-trimethoprim (85%), ampicillin (62.5%), and levofloxacin (60%),
whilst higher sensitivity was found to doxycycline (72.5%), oxytetracycline (50%), gentam-
icin (50%), and neomycin (50%). The AST pattern of Campylobacter species is presented in
Figure 2.
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2.3. Genotypic Resistance Pattern of the Isolates Recovered from Both Livestock and Poultry Food
Products & By-Products

The genotypic resistance pattern of the isolates showed resistance to ESBL (blaTEM,
blaSHV, and blaCMY), tetracycline (tetA and tetB), sulfonamide (sul1), streptomycin (aadA1),
gentamicin (aac(3)-IV), and erythromycin (ereA). Similar genotypic trends, with some devi-
ation, were found among the isolated foodborne pathogens of different species. Regardless
of sources, all foodborne pathogens possessed antibiotic-resistant genes (blaTEM, blaSHV,
blaCMY, tetA, tetB, aadA1, aac (3)-IV, and ereA) with different percentages.

The prevalence of antibiotic-resistant genes sul1, tetA, tetB, aac(3)-IV, ereA, blaSHV,
blaCMY, aadA1, and blaTEM was found to be 19.7%, 18.1%, 12.1%, 6.3%, 4.9%, 4.1%, 3.3%,
1.7%, and 0.5%, respectively in the E. coil isolates. The prevalence of antibiotic-resistant
genes sul1, tetA, tetB, aadA1, aac(3)-IV, ereA, blaTEM, blaCMY, and blaSHV was found to be
21.5%, 17.5%, 7%, 3.5%, 3.5%, 3%, 3%, 1.5%, and 0.5%, respectively in the Streptococcus
isolates. The prevalence of antibiotic-resistant genes sul1, tetA, tetB, blaTEM, ereA, aadA1,
aac(3)-IV, blaCMY, and blaSHV was found to be 39%, 34%, 8.5%, 6.5%, 5.5%, 4.5%, 3.5%, 2.5%,
and 1.5%, respectively in the Salmonella isolates. The prevalence of antibiotic-resistant genes
sul1, tetA, mecA, tetB, blaSHV, blaTEM, ereA, aadA1, aac(3)-IV, and blaCMY was found to be 30%,
29.5%, 20%, 5.5%, 4.5%, 3.5%, 3%, 2.5%, 2.5%, and 1.5%, respectively in the Staphylococcus
isolates. The sul1 and tetA gene was found in higher percentages among the foodborne
pathogens compared with other genotypic resistance genes regardless of the sources of
collection of pathogens and the type of pathogens (Figure 3).
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There was a similar trend in the phenotypic resistance patterns of foodborne pathogens.
The phenotypic resistance was found to be comparatively higher in the foodborne pathogens
isolated from poultry than livestock-source foods and by-products (p < 0.05). The phe-
notypic and genotypic resistance profiles of various isolates of foodborne pathogens
were shown to have a narrower range of variation and variability. The phenotypic and
genotypic resistance results indicated that multidrug-resistant and ESBL-producing food-
borne pathogens were prevailing in the livestock- and poultry-source food products &
by-products in Bangladesh.

3. Discussion

Antimicrobials are frequently used to treat infectious diseases in both humans and
animals [29]. Recently, the overuse and misuse of antibiotics in livestock have become
a great concern for public health authorities. Contrarily, because withdrawal periods
before harvesting or marketing livestock products have been ignored, antibiotic residues
are now another rising concern to public health [30]. The main consequence of antibiotic
residues in animal-derived foods is the enhancement of the development of antimicrobial
resistance. The presence of antibiotic-resistant foodborne pathogens in food may lead to
gastrointestinal disorders in human beings [31]. On the other hand, antibiotic-resistant
pathogens may transfer the gene to other microorganisms through vertical and horizontal
transmission [29,32] resulting in the spread of AMR pathogens. Several previous studies
have shown the emergence of multi-resistant bacterial pathogens from a wide variety of
sources in the food chain, increasing the need for proper use of antibiotics in both the
veterinary and human health sectors [33–35]. MDR pathogens may cause difficult-to-treat
illnesses, increased mortality, and financial burden. Furthermore, infections caused by
MDR pathogens are considered a major global public health crisis by the World Health
Organization, as the discovery of effective antibiotics has not kept pace with the increase
in bacterial antibiotic resistance [36]. The demand for high-value animal products such
as milk, meat, and eggs has increased due to economic solvency, rapid urbanization,
and changing food habits of nations [37]. Foodborne pathogens can enter into the food
cycle during production, processing, and marketing. Humans can get antibiotic-resistant
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bacterial infections in many ways, including ingestion of contaminated food or contact
with colonized or diseased animals, body fluids, excretions, or secretions [38]. In addition,
the pathogens can cause illness due to the consumption of undercooked food and produce
illnesses either by their presence or by-production of toxins, or both.

The important foodborne pathogens of animal-source foods that have been globally
identified are Salmonella, Campylobacter, E. coli, and Staphylococcus [20,22], and these trends
are apparent in the current study in a similar fashion. Per the previous reports from
home and abroad [39–45], the AST results of E. coli isolated from livestock and poultry
showed a wider range of resistance to penicillin (100%), tetracycline (72–100%), oxyte-
tracycline (78–93%), sulfamethoxazole-trimethoprim (51–88%), ampicillin (89.5–100%),
amoxicillin (92–95%), streptomycin (19–70%), erythromycin (89%), ciprofloxacin (50%),
chloramphenicol (43–50%), gentamicin (8–28%), enrofloxacin (55%), and norfloxacin (50%).
In contrast, the phenotypic resistance pattern of E. coli to various antimicrobial agents
recovered from both livestock and poultry in the present study also showed a similar trend
where the AST pattern of E. coli showed the highest resistance to penicillin, followed by
ampicillin, amoxicillin, oxytetracycline, cloxacillin, and sulfamethoxazole-trimethoprim.
Among the antibiotics, gentamicin possessed the lowest resistance percentage, which is
also comparable to the previous studies stated above. E. coli is one of the major pathogenic
microorganisms that may reach animal-derived foods and is an indication of contamination
by manure, soil, and contaminated water [46]. E. coli are commensal bacteria, and E. coli
pathotypes can cause zoonotic disease that poses a public health risk [47]. In addition,
Shiga toxin-producing E. coli is associated with the development of several life-threatening
infections in humans [48]. In this regard, our recently published data showed that the most
common class of antimicrobials used in large animal farms were Penicillin (61.79%), Oxyte-
tracycline (55.66%), Sulfa drug (55.66%), Streptomycin (54.72%), followed by Ciprofloxacin
(51.89%), Gentamicin (43.13%), and Ceftriaxone (34.91%) [30]. These data indicate that
the bacteria became more resistant to such most commonly used antimicrobials in the
study area.

Similarly, the AST result of Salmonella recovered from poultry revealed a wider range
of resistance to ciprofloxacin (70–88%), ampicillin (66–75%), tetracycline (77–84%), gen-
tamicin (33–68%), nalidixic acid (22–60%), and streptomycin (44–77%) [49]. While lower
resistance (5–8%) was observed to chloramphenicol, azithromycin, imipenem, amikacin,
and sulfamethoxazole-trimethoprim [49]. In contrast, in our present study, the AST result
of Salmonella showed the highest resistance to penicillin, followed by ampicillin, oxyte-
tracylcine, amoxicillin, and cloxacillin whilst the highest susceptibility was recorded to
gentamicin, followed by ceftriaxone. Salmonella is widespread in nature [50] and is the most
important pathogenic bacterium in both humans and animals [51]. Bacterial pathogens are
more commonly found during outbreaks of foodborne disease [52] and are accountable for
around 93.8 million foodborne illnesses and 155,000 fatalities annually worldwide [53].

According to the previous study reports, the AST result of Streptococcus in livestock
and poultry showed a wider degree of resistance to streptomycin (70–100%), amoxicillin
(30–100%), and ampicillin (60–100%) [39]. Sequentially, the AST result of Staphylococcus
revealed a broader range of resistance to penicillin (82–100%), amoxicillin (42–100%), ampi-
cillin (97%), streptomycin (70–100%), oxytetracycline (74–78%), ciprofloxacin (17–50%),
sulfamethoxazole-trimethoprim (30%), gentamicin (18%) cefixime (73.9%), cloxacillin
(82.6%), and oxacillin (56–98%) [44,54,55]. In contrast, the present study results from
the AST pattern of Streptococcus indicated a greater resistance to penicillin, followed by
cloxacillin, oxytetracycline, streptomycin, amoxicillin, and sulfamethoxazole-trimethoprim
whilst greater susceptibility was observed to ciprofloxacin and gentamicin. The data
from the present study suggested that gentamicin was found to be susceptible to isolated
common foodborne pathogens.

Staphylococcus are commensal bacteria that are normal inhabitants of the skin, nose,
and mucous membranes of healthy people and animals [56,57]. However, it is also known
as an opportunistic foodborne pathogen [58] that may cause several infectious diseases with
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different degrees of severity [56]. It causes numerous infections in humans and animals [59].
The presence of S. aureus in food products is an alarming and serious threat to public health
in terms of food safety when it releases toxins and causes illness [60]. Methicillin-resistant S.
aureus (MRSA) has emerged due to the unnecessary use of antibiotics [61,62]. The presence
of MRSA in farm animals and the potential for cross-contamination in humans have been a
great concern [63].

Campylobacter are the leading cause of foodborne diarrhea in humans worldwide [64],
which is mainly due to contamination of food of animal origin [65]. Campylobacter can
colonize in warm-blooded animals and poultry [66]. The zoonotic nature of Campylobacter
species makes it clinically and economically important worldwide [67]. It has accounted for
15% of food-related illnesses leading to hospital admissions and 6% resulting in death; about
400 million cases are reported each year due to foodborne infection [68,69]. The economic
impact of Campylobacter infections is mainly related to the treatment cost, production loss,
and pathogen control expenses [67].

The ESBL-producing foodborne pathogens were previously identified by researchers
from a variety of sources of livestock and poultry [70–72]. More recent studies have shown
that ESBLs-producing bacteria frequently colonized in poultry [73–75] and cattle [76,77].
On the other hand, tetracycline-resistant genes are commonly encoded by plasmids & trans-
posons and are transmitted by conjugation. However, in some isolates, the corresponding
gene is also found on the chromosome [78,79]. Mechanisms of resistance to tetracycline
by the acquisition of the tet gene primarily include efflux pumping, ribosome protection,
and enzymatic inactivation. The resistance of gram-negative bacteria to sulfonamides is
associated with the presence of the sul gene, which encodes dihydropteroate synthase in a
manner that the drug cannot inhibit. The sul gene has already been identified in Enterobac-
teriaceae, especially in the genera Escherichia and Salmonella [80]. In this regard, the present
study finding showed that the sul1 and tetA genes were found in higher percentages among
the foodborne pathogens compared with other resistance genes regardless of the sources of
isolation of the pathogen and the type of pathogens.

To the best of our knowledge, for the first time, this study was conducted throughout
the country and found that multidrug-resistant and ESBL-producing foodborne pathogens
were prevailing in the livestock- and poultry-source food products & by-products in
Bangladesh. However, the present study has some limitations. In this study, we did
not collect the environmental samples which may be contaminated by the livestock- and
poultry-source food products and by-products. In addition, the sampling area was limited
in each division. Further detailed studies with larger samples size from each district of
Bangladesh are needed. Details of further phenotypic & genotypic analysis in a wider range
with 16S rRNA sequence profiling of these isolates would help the scientists in this field to
combat AMR as well as to stop the spreading of MDR foodborne pathogens to humans.

4. Materials and Methods
4.1. Study Area

The study was conducted in thirty-three districts under the eight administrative
divisions of Bangladesh. The seven components (educational institutes) of the project
covered each division with at least four districts while the component (educational in-
stitute) Patuakhali Science and Technology University covered two divisions with nine
districts. The seven components (educational institutes) of the project are the Bangladesh
Agricultural University (BAU), Bangladesh Livestock Research Institute (BLRI), Rajshahi
University (RU), Patuakhali Science and Technology University (PSTU), Chattogram Veteri-
nary and Animal Sciences University (CVASU), Sylhet Agricultural University (SAU), and
Haji Danesh Science and Technology University (HSTU). Figure 4 shows the study divi-
sions followed by districts area covered by the seven components (educational institutes).
The study protocol was authorized by the Animal Welfare and Experimentation Ethics
Committee of the Bangladesh Agricultural University, Mymensingh, (approval number:
AWEEC/BAU/2018(17)).
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4.2. Sampling Design

A total of 2320 samples were collected across the country, of which 880 were taken from
poultry and 1440 from large & small ruminants in thirty-three districts of eight divisions of
Bangladesh by the seven components of the project. Poultry source samples were broiler
meat (n = 160), layer meat (n = 160), egg (n = 240), broiler feces (n = 160), and layer feces
(n = 160). All poultry sources samples were directly collected from layer and broiler farms.
On the other hand, large & small ruminant samples were cattle meat (n = 160), sheep or
goat meat (n = 160), buffalo meat (n = 80), cattle raw milk (n = 200), sheep or goat raw milk
(n = 200), buffalo raw milk (n = 120), cattle feces (n = 200), sheep or goat feces (n = 200),
and buffalo feces (n = 80). Different types of meat samples were collected for local raw
meat markets; however, raw milk and feces from different animals were collected from
farms. All the samples were collected in aseptic condition using sterile instruments and
carefully transferred into sterile Eppendorf tubes (for raw milk) or zipper bags (for solid
samples) from animal and poultry farms. Immediately after collection, samples were kept
in a transport box for maintaining a 4 ◦C temperature. The samples were then transported
to the bacteriological laboratory of the Department of Microbiology and Hygiene, Faculty
of Veterinary Science, BAU, Mymensingh for microbiological analysis. According to our
previous study [30], the Raosoft sample volume calculation method was used to determine
the sample size with a 5% margin of error and 95% confidence level.

4.3. Conventional Culture Method

E. coli, Salmonella, Streptococcus, and Staphylococcus were targeted for the isolation
from livestock whilst E. coli, Salmonella, Staphylococcus, and Campylobacter were targeted
for the isolation from poultry sources following the standard procedure as applied ear-
lier [44,45,55,81–85]. Briefly, 0.5 g of each sample was inoculated in nutrient broth and
incubated at 37 ◦C for 12 h for the initial growth of Escherichia coli, Salmonella, and Staphy-
lococcus aureus. The cultures from nutrient broth were streaked on Eosin methylene blue
(EMB) agar (Hi media, Maharashtra, India), Salmonella-Shigella (SS) agar (Hi media, Maha-
rashtra, India), and Mannitol salt agar (MSA) (Hi media, India) plates using platinum loop
for the isolation of E. coli, Salmonella, and S. aureus, respectively. Milk samples (200 µL) were
also inoculated in Kenner Fecal (KF) Streptococcal broth (Hi media, India) for the initial
growth of Streptococcus, then streaked on KF Streptococcal agar media for the isolation of
Streptococcus. Then all the culture plates were incubated at 37 ◦C for 24 h. For the isolation
of Campylobacter, all samples were directly inoculated on selective campylobacter base
agar (Oxoid Ltd., Hampshire RG24 8PW, UK) containing antibiotics (Amphotericin B has
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been added to suppress the growth of yeast and fungal contaminants that may occur at
37 ◦C, and improved selectivity was achieved by adding cefoperazone) and 5–7% sheep
blood [86]. The plates were incubated in an anaerobic jar (Oxoid™ AnaeroJar™ 2.5 L)
under microaerophilic conditions with a CO2 sachet (Thermo Scientific TM Oxoid Anaero
Gen 2.5 L sachet) (10% CO2, 95% humidity) at 42 ◦C for three days. After 72 h, single
characteristic (small, round, creamy-gray, or whitish) colonies from each plate were selected
and inoculated in tryptic soy broth (Oxoid Ltd., Hampshire RG24 8PW, UK) and incubated
at 37 ◦C for three days under microaerophilic conditions. The single colonies of suspected
bacteria were again inoculated in selective broth and streaked on selective agar media to
obtain a pure culture.

4.4. Molecular Detection

Whole genomic DNA was extracted from each pure culture by a conventional boiling
method [49,85]. Following the boiling method, the DNA was measured using spectropho-
tometers. PCR was performed for confirmatory detection of each isolate using specific
primers (Table 3) and the PCR condition for each bacterial species was used following the
standard operating procedure described by different authors (Table 3).

Table 3. List of primers used for bacterial species identification.

AMR Pathogens Primers Sequence (5′–3′) Amplicon Size (bp) Reference

Salmonella
F TCATCGCACCGTCAAAGGAACC

284 [87]
R GTGAAATTATCGCCACGTTCGGGCAA

E. coli
F CCCCCTGGACGAAGACTGAC

401 [88]
R ACCGCTGGCAACAAAGGATA

Staphylococcus
F CCTGAAACAAAGCATCCTAAAAA

155 [89]
R TAAATATACGCTAAGCCACGTCCAT

Campylobacter
F ATCTAATGGCTTAACCATTAAAC

857 [90]
R GGACGGTAACTAGTTTAGTATT

Streptococcus
F AGCGGGGGATAACTATTGGA

569 [84]
R TACGCATTTCACCGCTACAC

4.5. Determination of Phenotypic Resistance Pattern

Antimicrobial susceptibility testing was performed using the Kirby Bauer disk diffu-
sion method in adherence with the guidelines of the Clinical and Laboratory Standards
Institute [91]. Briefly, fresh colonies were suspended in saline and the turbidity of the
suspension was measured in comparison with the 0.5 McFarland standards (approximately
1.5 × 106 CFU/mL). The bacterial suspension was smeared on the surface of Mueller-
Hinton (MH) agar (Oxoid Ltd., Hampshire RG24 8PW, UK) and an antibacterial disc with a
disc dispenser was placed on it within 15 min and the plate was incubated at 37 ◦C for 24 h.
The zone of inhibition adjacent to the disks was measured and compared with the break-
points of CLSI. A number of 16 different antimicrobial disks (Hi media, India) were used for
AST of all four foodborne pathogens such as penicillin (P, 10 units), ampicillin (AMP, 10 µg),
amoxicillin (AMX, 30 µg), cloxacillin (COX, 5 µg), ceftriaxone (CTR, 30 µg), tetracycline (TE,
30 µg), doxycycline (DO, 30 µg), oxytetracycline (O, 30 µg), sulfamethoxazole-trimethoprim
(COT, 25 µg), gentamicin (GEN, 10 µg), erythromycin (E, 15 µg), ciprofloxacin (CIP, 5 µg),
streptomycin (S, 10 µg), levofloxacin (LE, 5 µg), enrofloxacin (EX, 5 µg), and neomycin
(N, 30 µg). Based on their common therapeutic usage at the field level in the study areas,
different antimicrobial disks for livestock and poultry sources bacteria were chosen [30].
The criteria developed by Magiorakos et al. [92] were used to define multidrug-resistant
(MDR) bacteria. Susceptible, intermediate, and resistant were defined according to the
new DIN EN ISO 20776-1 standard [93], which is valid worldwide. The sensitivity of a
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bacterial strain to a given antibiotic is said to be intermediate when it is inhibited in vitro
by a concentration of this drug that is associated with an uncertain therapeutic effect [94].
The Escherichia coli ATCC 25922 strain served as a validated positive control.

4.6. Determination of Genotypic Resistance Pattern

E. coli, Salmonella, Staphylococcus, Streptococcus, and Campylobacter isolates were screened
by PCR for the detection of Extended Spectrum β-Lactamases (ESBL) genes (blaTEM,
blaSHV, and blaCMY), tetracycline-resistant genes (tetA and tetB), sulfonamide-resistant gene
(sul1), streptomycin-resistant gene (aadA1), gentamicin-resistant gene (aac(3)-II), neomycin-
resistant gene (aph(3)-I), and erythromycin-resistant gene (ereA). The list of primers to detect
resistance genes is given in Table 4.

Table 4. List of primers used to detect resistant genes.

Class Target Gene Primers Sequence (5′–3′) Amplicon Size (bp) Reference

Gentamicin aac(3)-IV
F CTTCAGGATGGCAAGTTGGT

286 [95]
R TCATCTCGTTCTCCGCTCAT

Tetracycline

tetA
F GGTTCACTCGAACGACGTCA

577

[95]
R CTGTCCGACAAGTTGCATGA

tetB
F CCTCAGCTTCTCAACGCGTG

634
R GCACCTTGCTGATGACTCTT

Beta lactams blaTEM
F ATAAAATTCTTGAAGAC

1073 [96]
R TTACCAATGCTTAATCA

Beta lactams blaSHV
F TCGCCTGTGTATTATCTCCC

768 [95]
R CGCAGATAAATCACCACAATG

Beta lactams blaCMY
F TGGCCAGAACTGACAGGCAAA

462 [95]
R TTTCTCCTGAACGTGGCTGGC

Erythromycin ereA
F GCCGGTGCTCATGAACTTGAG

419 [95]
R CGACTCTATTCGATCAGAGGC

Sulfonamide sul1
F TTCGGCATTCTGAATCTCAC

822 [95]
R ATGATCTAACCCTCGGTCTC

Streptomycin aadA1
F TATCCAGCTAAGCGCGAACT

447 [95]
R ATTTGCCGACTACCTTGGTC

Methicillin-resistant mecA
F AAAATCGATGGTAAAGGTTGGC

533 [97]
R AGTTCTGGAGTACCGGATTTGC

5. Conclusions

The phenotypic and genotypic resistance profiles uncovered by the present study
indicated that MDR- and ESBL-producing foodborne pathogens were prevailing in the
livestock- and poultry-source food products & by-products in Bangladesh. MDR foodborne
pathogens are a current public health concern worldwide including in Bangladesh. Food-
borne pathogens are usually spread due to improper handling, processing, preparation,
and storage of food. The unnecessary use of antimicrobials in farm practices is the main
driver for the emergence of antimicrobial-resistant pathogens in the livestock and poultry
value chain. Good agricultural practices, good veterinary practices, good manufacturing
practices, and proper farm biosecurity are important tools to curb the development of
AMR pathogens in livestock and poultry food products. Moreover, policy intervention,
stakeholder awareness, motivation, training, advocacy, and mass media dissemination are
the imperative pathways to combat the spread of foodborne pathogens and AMR.
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