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Abstract: The widespread presence of multidrug-resistant pathogenic microorganisms challenges
the development of novel chemotype antimicrobials, insensitive to microbial tools of resistance. To
date, various monoterpenoids have been shown as potential antimicrobials. Among many classes
of molecules with antimicrobial activity, terpenes and terpenoids are an attractive basis for the
design of antimicrobials because of their low toxicity and availability for various modifications.
In this work, we report on the synthesis of sulfenimines from chiral trifluoromethylated and non-
fluorinated pinane-type thiols. Final compounds were obtained with yields of up to 81%. Among the
13 sulfenimines obtained, 3 compounds were able to repress the growth of both bacteria (S. aureus,
both MSSA and MRSA; P. aeruginosa) and fungi (C. albicans) with an MIC of 8–32 µg/mL. Although
compounds exhibited relatively high cytotoxicity (the therapeutic index of 3), their chemotype
can be used as a starter point for the development of disinfectants and antiseptics for targeting
multidrug-resistant pathogens.

Keywords: monoterpenoids; pinane; CF3-containing hydroxythiol; sulfenimines; antibacterial;
antifungal activity

1. Introduction

The widespread presence of multidrug-resistant bacteria and fungi challenges the
development of antimicrobials of a novel chemotype, as they are insensitive to microbial
tools of resistance. The acquisition of genes encoding efflux systems and enzymes that
hydrolyze antimicrobials and increase biofilm formation, as well as changes in target
molecules and cell wall structure, reduces the effectiveness of conventional antibiotics [1].

Among various classes of molecules able to repress the growth of pathogenic bac-
teria and fungi, monoterpene derivatives have a wide spectrum of antimicrobial activ-
ity [2–4]. Thus, the repression of the growth of both various bacteria and fungi has been
reported [5–10]. The combination of terpenes with conventional antimicrobials increases
the activity of the latter [11,12]. Furthermore, the fusion in one molecule of a biologically
active terpene fragment and sulfur-containing functional groups, which are part of many
substances with bactericidal and fungicidal activity, leads to an increase in the efficiency of
the resulting thioterpenoids [2,5,13,14]. The mechanism of these synergistic effects can be a
consequence of targeting the membrane itself or membrane-related proteins with terpenes.
Thus, the binding site for cyclic hydrocarbons, including terpene ones [15], has been re-
ported to be located in the cell membrane of pathogenic microorganisms. The limonene, α-
and β-pinenes, and γ-terpinene are able to inhibit respiration and other energy-dependent
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processes localized in cell membranes of some fungi and bacteria [3,16–19]. Addition-
ally, some derivatives of terpenes were shown to interact with membranes of eukaryotic
cells [20,21].

Carane sulfenimines, sulfinimines, and N-substituted fluorine-containing sulfinamides,
as well as pinane thiosulfonates obtained on the basis of monoterpene thiols, showed se-
lective antimicrobial activity against yeasts Candida albicans and Cryptococcus neoformans,
as well as the bacteria Staphylococcus aureus and Acinetobacter baumannii [22,23]. The intro-
duction of a sulfenimine fragment in the structure of cephalosporin sulfoxides enhanced
their inhibitory activity against cephalosporinase C. The activity was significantly affected
by substituents in the sulfenimine moiety [24]. Substituted salicylic and nitrobenzyli-
dene imines have been shown to be subjected as new chemotypes of antimicrobial drug
candidates [25–29].

Nowadays, a third of the newly synthesized antimicrobials carry fluorine atoms [30],
since the introduction of fluorine-containing groups enhances the membrane permeability
and increases the resistance to biodegradation relative to their nonfluorinated analogs [31].
These modifications can lead to significant changes in interaction mechanisms of target with
the drug and consequent shifts in biological activity of the latter, compared to hydrocarbon
analogs [32,33]. Previously, CF3-containing pinane-type monoterpene hydroxythiols for
further functionalization were synthesized [34].

In this work, based on 10-hydroxyisopinocampheyl thiol 1 [35], of which its CF3-
containing analogs (10S)-2 and (10R)-3 were obtained earlier by our group [34], and ni-
trobenzaldehydes or substituted salicylic aldehydes, a series of sulfenimines were syn-
thesized, and their antibacterial and antifungal activities, cytotoxicity, and mutagenicity
were evaluated.

2. Results and Discussion
2.1. Synthesis of Sulfenimines from Pinane Hydroxythiols

Thiols 1–3 were treated with N-chlorosuccinimide (NCS) in liquid ammonia according
to a known procedure [23,36–38] to form unstable sulfenamides 4–6, which entered into a
condensation reaction in situ with 3,5-diiodosalicylic aldehyde (a), 4-nitrobenzaldehyde
(b), 3-nitrobenzaldehyde (c), 2-nitrobenzaldehyde (d), 5-nitrosalicylic aldehyde (e) and
5-bromosalicylic aldehyde (f) to provide the corresponding sulfenimines 7a–f, 8a–f and
9a in 16–81% yields without isolation of sulfenamide intermediates (Scheme 1). Since the
CF3-containing thiol (10R)-3 is synthetically less accessible than the thiol (10S)-2 [34], only
sulfenimine 9a with the 3,5-diiodosalicylic moiety was synthesized on its basis.
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The structures and composition of sulfenimines have been proven by NMR and IR
spectroscopy, and by elemental and X-ray diffraction analysis. The IR spectra of sulfen-
imines 7a–f, 8a–f and 9a contain absorption bands characteristic of the C=N bond in the
region of 1614–1574 cm−1. The 1H and 13C NMR spectra contain signals from both terpene
and aromatic fragments. In the 1H NMR spectra of 7a–f, 8a–f and 9a, in comparison with
the starting thiols 1–3, the proton signals of the SH groups disappear, whereas proton
signals of the C1′H=N group can be observed in the region of 8.34–8.95 ppm. In the 13C
NMR spectra, there are signals characteristic of the C1′=N group in the downfield region
(152.0–159.9 ppm). The 13C NMR spectra of CF3-containing sulfenimines 8a–f and 9a
contain quartets of the C11F3 group in the range of 124.9–125.8 ppm (JF = 283.0–284.2 Hz),
as well as quartets of the C10 atom in the region of 71.1–72.6 ppm (JF = 28.8–29.2 Hz); in
contrast, in sulfenimines 7a–f, the signals of the C10 atom are in the region of 65.9–66.4 ppm.

The structure and configuration of single-crystal 8b were confirmed by X-ray diffrac-
tion analysis (Figure 1). This compound crystallizes in the chiral space group P21 of the
monoclinic system. There are two independent molecules (A and B) of 8b in the asymmetric
unit cell. They have the same molecular structure. The root-mean-square deviation of the
nonhydrogen atomic positions of the A and B molecules is 0.213 Å. The greatest difference
is the slight rotation of the SNCHR group. The dihedral angle between the corresponding
planes when the molecules are superimposed is 11.28◦. All atoms of the NO2 group, as well
as the S(1), N(1) and C(12) atoms, lie in the plane of the C(13)–C(18) phenyl ring. The N-O
distances in the NO2 group are largely aligned. This is typical for NO2 groups in similar
compounds [23,39]. In general, the main geometric characteristics for compound 8b are in
good agreement with previously published related compounds [23,39].
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Figure 1. Molecular structure of two independent molecules (A,B) of compound 8b with thermal
ellipsoids drawn at the 30% probability level.

Compound 8b has an intramolecular hydrogen bond O(1)-H(1) . . . N(1). The data set
does not allow us to refine the position of the hydrogen atom without constraints. However,
the distance between the oxygen and nitrogen atoms (2.830(5) and 2.852(5) Å in molecules
A and B, respectively) indicates the implementation of the H...N interaction [40].

The resulting sulfenimines 7a–f, 8a–f and 9a were further subjected to an antibacterial
and antifungal activity test, and an assessment of mutagenicity and cytotoxicity.

2.2. Antimicrobial Activity

The activity of terpenes has been shown to vary against microorganisms with vari-
ous cell wall structures [2–4,15,16,20]. Therefore, the antimicrobial activity of the newly
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synthesized sulfenimine derivatives was assessed against Gram-positive bacteria (Staphylo-
coccus aureus ATCC 29213 (MSSA) and a clinical isolate of Staphylococcus aureus resistant to
methicillin (MRSA)), Gram-negative bacterium P. aeruginosa ATCC 27853, and a fluconazole-
sensitive clinical isolate of Candida albicans 703. These microorganisms cause diseases of the
skin, various mucosa and the respiratory tract and are characterized by a high frequency of
occurrence of resistant isolates.

As could be seen from Table 1, compounds 7a, 8a, 7c and 8e repressed the growth of
all test microorganisms, although the activity was moderate and MIC values were generally
significantly higher than those of reference antimicrobials. Notably, trifluoromethylated
sulfenimines with salicylic moiety 9a and 8f were active only against methicillin-resistant
S. aureus and C. albicans; while 9a was even superior in activity to fluconazole.

Table 1. Antibacterial and antifungal activities, and cytotoxicity and mutagenicity of sulfenimines.

Compound

MIC, µg/mL
IC50

EBL, µg/mL

Mutagenicity
in the Ames

Test
S. aureus ATCC
29213 (MSSA)

S. aureus
Clinical Isolate

(MRSA)

P. aeruginosa
ATCC 27853

C. albicans 703
Clinical Isolate

7a 8 8 8 64 21 ± 2.7 NF *
8a 16 16 32 32 23 ± 3.8 NF
9a 256 8 1024 8 14 ± 3.5 NF
7b 64 >1024 >1024 64 20 ± 2.8 NF
8b >1024 >1024 >1024 >1024 ND ND
7c 32 32 32 32 45 ± 10.1 NF
8c 512 >1024 512 >1024 ND ND
7d 32 32 >1024 512 18 ± 4.5 TA 102
8d >1024 >1024 >1024 1024 ND ND
7e 32 64 32 >1024 14 ± 4.6 NF
8e 16 32 32 16 35 ± 9.1 NF
7f 32 32 1024 64 9 ± 1.9 TA 102
8f 256 64 1024 16 14 ± 3.1 NF

Amikacin 4 4 4 ND ND ND
Ampicillin 0.5 >1024 >1024 ND ND ND

Ciprofloxacin 2 4 4 ND ND ND
Fluconazole ND * ND ND 16 ND ND

Benzalkonium
chloride 1 1 4 0.5 1 ± 0.3 ND

* ND—not determined; NF—not found.

Furthermore, 7d, 7f and, partially, 7b were active only on S. aureus and C. albicans;
7d and 7f in the Ames test showed mutagenicity on the Salmonella typhimurium TA102
strain, causing point mutations and reversions [41]. Sulfenimines containing the CF3 group
did not show mutagenicity in this test. Compound 7e was active only on bacteria. In
general, a decrease in antibacterial properties upon the introduction of a CF3 group in the
terpene fragment of sulfenimines could be observed. Moreover, sulfenimines with a CF3
group in the terpene moiety and a salicylaldehyde moiety, 8a, 9a, 8c and 8f, exhibit greater
antifungal activity (MIC 8–32), in contrast to the nonfluorinated analogues 7a, 7e and 7f
(MIC ≥ 64). Compounds 8b, 8c and 8d were inactive against all test strains, suggesting
that the presence of nitrobenzylidene substituents abrogates their antimicrobial activity;
neither cytotoxicity nor mutagenicity was tested.

In general, the synthesized sulfenimines exhibited high cytotoxicity on the embryonic
bovine lung (EBL) cells: CC50 values were the least toxic, whereas active sulfenimines 7c
and 8e exceeded only the corresponding MIC by 2–3-fold. This fact makes sulfenimines
suitable only as antiseptics, which is similar to benzalkonium chloride due to a similar
therapeutic index (CC50/MIC).
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3. Conclusions

Thus, new monoterpene sulfenimines based on monoterpene pinane thiols, including
those containing a CF3 group, have been synthesized for the first time. The described
sulfenimines, generally, have moderate antibacterial and antifungal activity and high
cytotoxicity in vitro, which limits their direct application. By contrast, the revealed effects
of monoterpene and aromatic moieties on the antimicrobial activity of sulfenimines allows
for further modeling of compounds with given selectivity for pathogenic microorganisms.

4. Materials and Methods
4.1. General Information

IR spectra were registered on a Shimadzu IR Prestige 21 infrared Fourier spectrometer
in a thin layer or in KBr pellets. 1H NMR and 13C NMR spectra were recorded on a Bruker
Avance 300 spectrometer (300 and 75 MHz) in CDCl3 using the signal of the indicated
solvent as an internal standard (See Supplementary Materials). 13C NMR spectra were
registered in the J-modulation mode. The complete assignment of 1H and 13C signals was
performed using 2D homo- (1H–1H COSY, 1H–1H NOESY) and heteronuclear (1H–13C
HSQC, 1H–13C HMBC) experiments. 19F NMR spectra were recorded on a Bruker Avance
300 spectrometer (282 MHz) and on a Spinsolve 60 HF Ultra spectrometer (58 MHz) in
CDCl3 using the signal of CF3COOH as an external standard. For easier interpretation
of the NMR spectra, the carbon atoms of structures 7a–f, 8a–f and 9a were numbered, in
some cases, contrary to the recommendations of IUPAC. Elemental analysis was carried
out on an EA 1110 CHNS-O automatic analyzer. Melting points were determined on a
Sanyo Gallenkamp MPD350BM3.5 instrument and were not corrected. Optical rotation
was measured on an automated digital polarimeter, the Optical Activity PolAAr 3001
(UK). Sorbfil plates were used for thin-layer chromatography; the visualizing agent was a
solution of phosphoromolybdic acid in ethanol. Alfa Aesar silica gel (0.06–0.2 mm) was
used for column chromatography. The commercially available N-chlorosuccinimide, 98%
(Alfa Aesar); 3,5-diiodosalicylaldehyde, 98+% (Alfa Aesar); 4-nitrobenzaldehyde, 99% (Alfa
Aesar); 3-nitrobenzaldehyde, 99% (Alfa Aesar); 2-nitrobenzaldehyde, 98+% (Alfa Aesar);
5-nitrosalicylaldehyde, 98% (Alfa Aesar); and 5-bromosalicylaldehyde, 98% (Alfa Aesar)
were used without additional purification.

The diffraction data for compound 8b were collected on an Oxford Xcalibur Eos
diffractometer (Mo-Kα radiation,ω-scan technique, λ = 0.71073 Å). The intensity data were
integrated by the CrysAlisPro [42] program. The SCALE3 ABSPACK algorithm [42] was
used to perform absorption corrections. The structure was solved by dual methods [43] and
was refined on F2

hkl using the SHELXTL package [44]. All nonhydrogen atoms were refined
anisotropically. All H atoms, with the exception of hydrogens of the hydroxyl groups, were
placed in calculated positions and were refined using a riding model (Uiso(H) = 1.5Ueq(C)
for CH3 groups and Uiso(H) = 1.2Ueq(C) for other groups). The H(1A) and H(1B) atoms
in 8b were located on the differential Fourier map and were refined isotropically with
AFIX 147. The PhNO2 fragment in molecule B was disordered over two positions. To
refine the disordered atoms, the AFIX 66, SAME, SADI, FLAT and ISOR instructions
were used. CCDC 2193190 contains the supplementary crystallographic data. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
https://www.ccdc.cam.ac.uk/structures (accessed on 3 November 2022).

((1S,2R,3S,5R)-3-Mercapto-6,6-dimethylbicyclo[3.1.1]heptan-2-yl)methanol (1) [35], (S)-
2,2,2-trifluoro-1-((1S,2R,3S,5R)-3-mercapto-6,6-dimethylbicyclo[3.1.1]heptan-2-yl)ethan-1-ol
(2) and (R)-2,2,2-trifluoro-1-((1S,2R,3S,5R)-3-mercapto-6,6-dimethylbicyclo[3.1.1]heptan-2-
yl)ethan-1-ol (3) [34] were synthesized according to known procedures.

4.2. General Procedure for the Synthesis of Sulfenimines

The procedure is based on methods for the synthesis of sulfenimines [23,36–38].
In a U-shaped tube, while cooling to−70 ◦C in an acetone bath, 7–10 mL of liquid NH3

(dry) was condensed. While maintaining the bath temperature, NCS (143 mg, 1.069 mmol)

https://www.ccdc.cam.ac.uk/structures
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was carefully added. The mixture was stirred for 5 min, then thiol 1 (0.823 mmol, either 2 or
3) dissolved in 2 mL of CH2Cl2 was introduced into the tube with a syringe. The reaction
mixture was stirred for one hour, gradually increasing the temperature to −30 ◦C until
unstable sulfenamide 2 was formed. After complete conversion of the thiol (monitored by
TLC), the corresponding aldehyde (2.1 mmol, a–f) was added to the reaction mixture. As
ammonia evaporated, CH2Cl2 was added. After complete evaporation of ammonia, the
reaction mixture was heated to room temperature. After 12 h, the reaction mixture was
filtered off on a Schott filter under reduced pressure. The organic phase was treated with
a NaCl solution and extracted with CH2Cl2 (3 × 20 mL). The combined organic phases
were dried over Na2SO4. The solvent was then distilled off under reduced pressure. The
resulting mixture was separated by silica gel column chromatography using the same
eluent systems as for TLC.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-3,5-diiodobenzylidene)-2-(hydroxymethyl)-6,6-
dimethylbicyclo[3.1.1]heptane-3-sulfenamide (7a). Yield: 55.5%; yellow-orange powder;
m.p.: 64.1 ◦C; [α]25

D +56.6 (c 1.71, CHCl3); Rf 0.43 (petr. ether:EtOAc, 2:1). 1H NMR (300 MHz,
CDCl3, δ, ppm, J/Hz): 1.04 (3H, s, CH3-8), 1.14 (1H, d, J = 9.8, H-7α), 1.27 (3H, s, CH3-9),
2.04–2.11 (2H, m, H-5, C-10-OH), 2.18–2.29 (3H, m, H-1, H-4α, H-2), 2.50 (1H, dtd, J = 9.5,
6.6, 2.2, H-7β), 2.60–2.72 (1H, m, H-4β), 3.64 (1H, dt, J = 9.5, 6.6, H-3), 3.69–3.84 (2H, m,
H-10), 7.43 (1H, d, J = 2.0, H-7′), 7.99 (1H, d, J = 2.0, H-5′), 8.35 (1H, s, H-1′), 12.45 (1H, br.s,
C-3′-OH). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.5 (C-8), 27.5 (C-9), 32.4 (C-7), 35.5 (C-4),
38.8 (C-6), 41.7 (C-5), 42.5 (C-3), 42.7 (C-1), 49.7 (C-2), 66.0 (C-10), 80.7 (C-6′), 86.5 (C-4′),
121.7 (C-2′), 138.7 (C-7′), 147.7 (C-5′), 157.6 (C-3′), 158.8 (C-1′). IR spectrum (KBr, ν, cm−1):
3404 (Ar-OH), 3383 (OH), 1574 (C=N). Elemental analysis calcd. (%) for C17H21I2NO2S: C
36.64, H 3.80, N 2.51; found: C 37.03, H 4.17, N 2.64.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-3,5-diiodobenzylidene)-6,6-dimethyl-2-((S)-2,2,2-
trifluoro-1-hydroxyethyl)bicyclo[3.1.1]heptane-3-sulfenamide (8a). Yield: 69%; yellow
powder; m.p.: 98.5 ◦C; [α]25

D +0.2 (c 0.85, CHCl3); Rf 0.53 (CHCl3). 1H NMR (300 MHz,
CDCl3, δ, ppm, J/Hz): 1.06 (3H, s, CH3-8), 1.25 (1H, d, J = 9.5, H-7α), 1.27 (3H, s, CH3-9),
2.05–2.11 (1H, m, H-5), 2.20–2.21 (1H, m, H-1), 2.29–2.38 (2H, m, H-2, H-4α), 2.40–2.50 (1H,
m, H-7β), 2.59–2.79 (2H, m, H-4β, C-10-OH), 4.05–4-21 (2H, H-3, H-10), 7.44 (1H, d, J = 2.0,
H-7′), 8.00 (1H, d, J = 2.0, H-5′), 8.34 (1H, s, H-1′), 12.20 (1H, br.s, C-3′-OH). 13C NMR
(75 MHz, CDCl3, δ, ppm): 23.1 (C-8), 26.9 (C-9), 30.4 (C-7), 35.1 (C-4), 38.1 (C-6), 40.7 (C-5),
40.8 (C-3), 42.4 (C-1), 46.4 (C-2), 72.6 (q, JF = 29.2, C-10), 80.7 (C-6′), 86.6 (C-4′), 121.6 (C-2′),
124.9 (q, JF = 283.0, C-11), 138.8 (C-7′), 147.9 (C-5′), 157.4 (C-3′), 158.4 (C-1′). 19F NMR
(282 MHz, CDCl3, δ, ppm): −76.20 (3F, s, CF3-11). IR spectrum (KBr, ν, cm−1): 3460 (OH),
1576 (C=N), 1273, 1151, 1123 (CF3). Elemental analysis calcd. (%) for C18H20F3I2NO2S: C
34.58, H 3.22, N 2.24; found: C 34.95, H 3.60, N 2.08.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-3,5-diiodobenzylidene)-6,6-dimethyl-2-((R)-2,2,2-
trifluoro-1-hydroxyethyl)bicyclo[3.1.1]heptane-3-sulfenamide (9a). Yield: 16%; light-yellow
gummy oil; [α]26

D +30.8 (c 0.4, CHCl3); Rf 0.37 (CHCl3). 1H NMR (300 MHz, CDCl3, δ, ppm,
J/Hz): 1.13 (3H, s, CH3-8), 1.14 (1H, d, J = 9.5, H-7α), 1.30 (3H, s, CH3-9), 2.05–2.13 (1H, m,
H-5), 2.18 (1H, br.s, C-10-OH), 2.36–2.47 (3H, m, H-1, H-2, H-4α), 2.56–2.74 (2H, m, H-2,
H-7β, H-4β), 3.87 (1H, td, J = 9.2, 6.6, H-3), 4.19–4-29 (1H, m, H-10), 7.45 (1H, d, J = 1.5, H-7′),
8.02 (1H, d, J = 1.5, H-5′), 8.40 (1H, s, H-1′), 12.32 (1H, br.s, C-3′-OH). 13C NMR (75 MHz,
CDCl3, δ, ppm): 24.3 (C-8), 27.9 (C-9), 33.8 (C-7), 35.6 (C-4), 38.4 (C-6), 41.7 (C-5), 42.0 (C-1),
43.4 (C-3), 46.3 (C-2), 71.2 (q, JF = 29.9, C-10), 80.7 (C-6′), 88.5 (C-4′), 121.6 (C-2′), 125.1 (q,
JF = 283.1, C-11), 138.9 (C-7′), 148.0 (C-5′), 157.6 (C-3′), 159.4 (C-1′). 19F NMR (58 MHz,
CDCl3, δ, ppm): −74.43 (3F, d, J = 7.4, CF3-11). IR spectrum (KBr, ν, cm−1): 3466 (OH),
1576 (C=N), 1128, 1552, 1123 (CF3). Elemental analysis calcd. (%) for C18H20F3I2NO2S: C
34.58, H 3.22, N 2.24; found: C 34.58, H 3.14, N 2.63.

(1S,2R,3S,5R)-2-(Hydroxymethyl)-6,6-dimethyl-N-((E)-4-nitrobenzylidene)bicyclo-[3.1.1]
heptane-3-sulfenamide (7b). Yield: 81%; yellowish oil; [α]26

D −82.0 (c = 0.6, CHCl3); Rf = 0.22
(petr. ether:EtOAc, 3:1). 1H, 13C NMR and IR spectral data correspond to those given in
Ref. [37].
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(1S,2R,3S,5R)-6,6-Dimethyl-N-((E)-4-nitrobenzylidene)-2-((S)-2,2,2-trifluoro-1-hydroxyethyl)
bicyclo[3.1.1]heptane-3-sulfenamide (8b). Yield: 75%; light-yellow crystal; m.p.: 48.8 ◦C;
[α]25

D−1.5 (c 1.41, CHCl3); Rf 0.28 (petr. ether:EtOAc, 5:1). 1H NMR (300 MHz, CDCl3, δ,
ppm, J/Hz): 1.09 (3H, s, CH3-8), 1.28 (3H, s, CH3-9), 1.28 (1H, d, J = 10.3, H-7α), 1.60–1.68
(1H, m, H-4α), 2.05–2.11 (1H, m, H-5), 2.28–2.35 (1H, m, H-1), 2.37–2.46 (1H, m, H-7β),
2.49–2.59 (1H, m, H-4β), 2.94 (1H, dt, J = 10.3, 3.3, H-2), 3.94–4.07 (1H, m, H-10), 4.37 (1H, dt,
J = 10.8, 4.5, H-3), 5.58 (1H, br.d, J = 8.8, C-10-OH), 7.72 (2H, d, J = 8.8, H-3′, H-7′), 8.29 (2H,
d, J = 8.8, H-4′, H-6′), 8.54 (1H, s, H-1′). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.0 (C-8), 26.9
(C-9), 29.7 (C-7), 29.9 (C-4), 38.1 (C-6), 38.7 (C-3), 40.1 (C-5), 43.3 (C-1), 51.5 (C-2), 71.1 (q,
JF = 28.8, C-10), 124.4 (C-4′, C-6′), 125.8 (q, JF = 283.1, C-11), 127.8 (C-3′, C-7′), 140.1 (C-2′),
148.7 (C-5′), 155.3 (C-1′). 19F NMR (282 MHz, CDCl3, δ, ppm): −76.37 (3F, s, CF3-11). IR
spectrum (KBr, ν, cm−1): 3238 (OH), 1601 (C=N), 1522, 1344 (NO2), 1267, 1169, 1125 (CF3).
Elemental analysis calcd. (%) for C18H21F3N2O3S: C 53.72, H 5.26, N 6.96; found: C 53.33,
H 5.21, N 7.04. A single crystal of 8b was grown from the hexane-Et2O system. A colorless
prismatic crystal of the monoclinic system had a size of 0.77×0.39×0.13 mm, space group
P21, a = 16.6479(3), b = 7.08470(10), c = 17.9640(4) Å, β = 111.720(2)◦, V = 1968.34(7) Å3,
Z = 4, µ = 0.212 mm−1, dcalc = 1.358 g/cm3 and F(000) = 840. A dataset of 42,548 reflections
was collected at scattering angles of 2.101◦ < θ < 25.027◦, of which 6946 were independent
(Rint = 0.0357), including 5644 reflections with I > 2σ(I). The final refinement parameters
were R1 = 0.0548, wR2 = 0.1118 (all data), R1 = 0.0406 and wR2 = 0.1006 [I > 2σ(I)], with
GooF = 0.945. ∆ρe = 0.266/−0.171 e Å–3; Flack parameter = −0.03(2).

(1S,2R,3S,5R)-2-(Hydroxymethyl)-6,6-dimethyl-N-((E)-3-nitrobenzylidene)bicyclo-[3.1.1]
heptane-3-sulfenamide (7c). Yield: 53%; light-yellow oil; [α]25

D −40.4 (c 2.18, CHCl3); Rf 0.30
(PhH:EtOAc, 10:1). 1H NMR (300 MHz, CDCl3, δ, ppm, J/Hz): 1.04 (3H, s, CH3-8), 1.26
(3H, s, CH3-9), 1.27 (1H, d, J = 10.3, H-7α), 1.89 (1H, ddd, J = 14.1, 5.7, 2.9, H-4α), 2.02–2.15
(1H, m, H-5, H-1), 2.39–2.60 (1H, m, H-7β, H-4β), 2.67 (1H, dtd, J = 8.7, 5.9, 2.2, H-2), 3.37
(1H, br.s, C-10-OH), 3.64 (1H, dd, J = 10.3, 5.9, H-10α), 3.81–3.87 (2H, m, H-3, H-10), 7.58
(1H, t, J = 8.1, H-6′), 7.96 (1H, d, J = 8.1, H-7′), 8.22 (1H, d, J = 8.1, H-5′), 8.38 (1H, s, H-3′),
8.54 (1H, s, H-1′). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.5 (C-8), 27.3 (C-9), 31.5 (C-7),
32.4 (C-4), 38.6 (C-6), 41.2 (C-5), 42.8 (C-3), 44.1 (C-1), 53.1 (C-2), 66.4 (C-10), 122.1 (C-3′),
124.4 (C-5′), 129.9 (C-6′), 131.9 (C-7′), 137.4 (C-2′), 148.7 (C-4′), 154.0 (C-1′). IR spectrum
(KBr, ν, cm−1): 3402 (OH), 1614 (C=N), 1530, 1350 (NO2). Elemental analysis calcd. (%) for
C17H22N2O3S: C 61.05, H 6.63, N 8.38; found: C 61.38, H 6.37, N 7.91.

(1S,2R,3S,5R)-6,6-Dimethyl-N-((E)-3-nitrobenzylidene)-2-((S)-2,2,2-trifluoro-1-hydroxyethyl)
bicyclo[3.1.1]heptane-3-sulfenamide (8c). Yield: 24%; white powder; m.p.: 122.7 ◦C;
[α]27

D−83.3 (c 0.6, CHCl3); Rf 0.34 (petr. ether:EtOAc, 5:1). 1H NMR (300 MHz, CDCl3,
δ, ppm, J/Hz): 1.09 (3H, s, CH3-8), 1.28 (3H, s, CH3-9), 1.28 (1H, d, J = 10.3, H-7α), 1.64
(1H, dt, J = 14.3, 4.0, H-4α), 2.05–2.11 (1H, m, H-5), 2.28–2.35 (1H, m, H-1), 2.37–2.46 (1H, m,
H-7β), 2.54 (1H, ddt, J = 13.9, 11.3, 2.5, H-4β), 2.96 (1H, dt, J = 10.3, 3.3, H-2), 3.94–4.07 (1H,
m, H-10), 4.37 (1H, dt, J = 10.8, 4.5, H-3), 5.64 (1H, br.d, J = 8.1, C-10-OH), 7.63 (1H, t, J = 7.6,
H-6′), 7.97 (1H, d, J = 7.6, H-7′), 8.27 (1H, d, J = 7.6, H-5′), 8.35 (1H, s, H-3′), 8.53 (1H, s,
H-1′). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.0 (C-8), 26.9 (C-9), 29.7 (C-7), 29.9 (C-4), 38.1
(C-6), 38.5 (C-3), 40.1 (C-5), 43.2 (C-1), 51.4 (C-2), 71.1 (q, JF = 28.8, C-10), 122.8 (C-3′), 125.1
(C-5′), 125.7 (q, JF = 283.1, C-11), 130.3 (C-6′), 131.6 (C-7′), 136.6 (C-2′), 148.7 (C-4′), 155.2
(C-1′). 19F NMR (282 MHz, CDCl3, δ, ppm): −76.38 (3F, d, J = 7.0, CF3-11). IR spectrum
(KBr, ν, cm−1): 3379 (Ar-OH), 3264 (OH), 1595 (C=N), 1530, 1350 (NO2), 1271, 1169, 1121
(CF3). Elemental analysis calcd. (%) for C18H21F3N2O3S: C 53.72, H 5.26, N 6.96; found: C
53.95, H 5.28, N 7.01.

(1S,2R,3S,5R)-2-(Hydroxymethyl)-6,6-dimethyl-N-((E)-2-nitrobenzylidene)bicyclo-[3.1.1]
heptane-3-sulfenamide (7d). Yield: 81%; yellow oil; [α]25

D −34.5 (c 1.4, CHCl3); Rf 0.23
(PhH:EtOAc, 10:1). 1H NMR (300 MHz, CDCl3, δ, ppm, J/Hz): 1.03 (3H, s, CH3-8), 1.25
(3H, s, CH3-9), 1.26 (1H, d, J = 9.8, H-7α), 1.86 (1H, ddd, J = 14.3, 5.5, 2.9, H-4α), 2.02–2.12
(2H, m, H-5, H-1), 2.39–2.59 (2H, m, H-7β, H-4β), 2.68 (1H, dtd, J = 8.7, 5.9, 2.2, H-2), 3.45
(1H, br.s, C-10-OH), 3.60 (1H, dd, J = 9.5, 6.6, H-10α), 3.78–3.90 (2H, m, H-10β, H-3), 7.52
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(1H, td, J = 7.9, 1.7, H-5′), 7.66 (1H, t, J = 7.8, H-6′), 7.95 (1H, dd, J = 7.9, 1.7, H-7′), 8.00
(1H, d, J = 7.9, H-4′), 8.94 (1H, s, H-1′). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.5 (C-8),
27.2 (C-9), 31.4 (C-7), 32.0 (C-4), 38.6 (C-6), 41.2 (C-5), 42.6 (C-3), 44.2 (C-1), 53.2 (C-2), 66.4
(C-10), 124.6 (C-4′), 128.4 (C-7′), 130.3 (C-5′), 130.4 (C-2′), 133.6 (C-6′), 147.7 (C-3′), 152.0
(C-1′). IR spectrum (KBr, ν, cm−1): 3395 (OH), 1605 (C=N). Elemental analysis calcd. (%)
for C17H22N2O3S: C 61.05, H 6.63, N 8.38; found: C 61.29, H 7.04, N 8.19.

(1S,2R,3S,5R)-6,6-Dimethyl-N-((E)-2-nitrobenzylidene)-2-((S)-2,2,2-trifluoro-1-hydroxyethyl)
bicyclo[3.1.1]heptane-3-sulfenamide (8d). Yield: 52%; yellow oil; [α]25

D −58.8 (c 1.69, CHCl3);
Rf 0.35 (PhH). 1H NMR (300 MHz, CDCl3, δ, ppm, J/Hz): 1.08 (3H, s, CH3-8), 1.28 (3H,
s, CH3-9), 1.32 (1H, d, J = 10.6, H-7α), 1.60–1.68 (1H, m, H-4α), 2.05–2.11 (1H, m, H-5),
2.29–2.36 (1H, m, H-1), 2.37–2.46 (1H, m, H-7β), 2.49–2.59 (1H, m, H-4β), 2.97 (1H, dt,
J = 10.3, 3.3, H-2), 3.93–4.06 (1H, m, H-10), 4.34 (1H, dt, J = 10.3, 4.4, H-3), 5.57 (1H, br.d,
J = 8.1, C-10-OH), 7.58 (1H, t, J = 7.9, H-5′), 7.72 (1H, t, J = 7.9, H-6′), 7.85 (1H, d, J = 7.9,
H-7′), 8.06 (1H, d, J = 7.9, H-4′), 8.95 (1H, s, H-1′). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.0
(C-8), 26.8 (C-9), 29.5 (C-7), 29.9 (C-4), 38.1 (C-6), 38.7 (C-3), 40.1 (C-5), 43.2 (C-1), 51.5 (C-2),
71.1 (q, JF = 28.8, C-10), 124.8 (C-4′), 125.7 (q, JF = 283.0, C-11), 128.3 (C-7′), 130.0 (C-2′),
130.9 (C-5′), 134.0 (C-6′), 147.7 (C-3′), 153.4 (C-1′). 19F NMR (282 MHz, CDCl3, δ, ppm):
−76.12 (3F, d, J = 6.6, CF3-11). IR spectrum (KBr, ν, cm−1): 3364 (OH), 1605 (C=N), 1528,
1344 (NO2), 1269, 1169, 1123 (CF3). Elemental analysis calcd. (%) for C18H21F3N2O3S: C
53.72, H 5.26, N 6.96; found: C 53.98, H 5.31, N 6.60.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-5-nitrobenzylidene)-2-(hydroxymethyl)-6,6-dimethylbicyclo
[3.1.1]heptane-3-sulfenamide (7e). Yield: 66%; yellow powder; m.p.: 108.5 ◦C; [α]25

D +65.4
(c 1.17, CHCl3); Rf 0.29 (PhH:EtOAc, 10:1). 1H NMR (300 MHz, CDCl3, δ, ppm, J/Hz):
1.05 (3H, s, CH3-8), 1.15 (1H, d, J = 9.5, H-7α), 1.27 (3H, s, CH3-9), 2.04–2.11 (2H, m, H-5,
C-10-OH), 2.18–2.35 (3H, m, H-1, H-4α, H-2), 2.46 (1H, dtd, J = 9.5, 6.6, 2.2 H-7β), 2.58–2.68
(1H, m, H-4β), 4.36 (1H, dt, J = 10.3, 6.6, H-3), 3.73–3.86 (2H, m, H-10), 7.01 (1H, d, J = 8.8,
H-4′), 8.13–8.18 (2H, m, H-5′, H-7′), 8.60 (1H, s, H-1′), 12.40 (1H, br.s, C-3′-OH). 13C NMR
(75 MHz, CDCl3, δ, ppm): 23.4 (C-8), 27.4 (C-9), 32.2 (C-7), 35.0 (C-4), 38.8 (C-6), 41.6 (C-5),
42.4 (C-3), 42.8 (C-1), 50.0 (C-2), 65.9 (C-10), 117.7 (C-4′), 119.4 (C-2′), 126.2 (C-7′), 126.9
(C-5′), 140.3 (C-6′), 158.8 (C-1′), 163.9 (C-3′). IR spectrum (KBr, ν, cm−1): 3553 (Ar-OH),
3537 (OH), 1593 (C=N), 1520, 1339 (NO2). Elemental analysis calcd. (%) for C17H22N2O4S:
C 58.27, H 6.33, N 7.99; found: C 57.87, H 5.85, N 7.60.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-5-nitrobenzylidene)-6,6-dimethyl-2-((S)-2,2,2-trifluoro-
1-hydroxyethyl)bicyclo[3.1.1]heptane-3-sulfenamide (8e). Yield: 41%; yellow gummy oil;
[α]25

D +38.9 (c 1.14, CHCl3); Rf 0.30 (petr. ether:EtOAc, 4:1). 1H NMR (300 MHz, CDCl3, δ,
ppm, J/Hz): 1.07 (3H, s, CH3-8), 1.27 (3H, s, CH3-9), 1.30 (1H, d, J = 9.0, H-7α), 2.05–2.13
(1H, m, H-5), 2.20–2.29 (2H, m, H-1, H-4α), 2.40–2.51 (3H, m, H-2, H-7β, C-10-OH), 2.64–2.76
(1H, m, H-4β), 4.09–4.23 (2H, m, H-3, H-10), 7.02 (1H, d, J = 8.8, H-4′), 8.14–8.19 (2H, m,
H-5′, H-7′), 8.59 (1H, s, H-1′), 12.10 (1H, br.s, C-3′-OH). 13C NMR (75 MHz, CDCl3, δ, ppm):
23.1 (C-8), 26.8 (C-9), 30.0 (C-7), 34.3 (C-4), 38.0 (C-6), 40.3 (C-5), 40.6 (C-3), 42.4 (C-1), 46.7
(C-2), 72.4 (q, JF = 29.2, C-10), 117.8 (C-4′), 119.4 (C-2′), 125.0 (q, JF = 283.1, C-11), 126.4
(C-7′), 127.0 (C-5′), 140.3 (C-6′), 158.7 (C-1′), 163.9 (C-3′). 19F NMR (282 MHz, CDCl3, δ,
ppm): −76.17 (1F, d, J = 6.5, CF3-11). IR spectrum (KBr, ν, cm−1): 3509 (OH), 1593 (C=N),
1522, 1341 (NO2), 1277, 1167, 1123 (CF3). Elemental analysis calcd. (%) for C18H21F3N2O4S:
C 51.67, H 5.06, N 6.70; found: C 51.69, H 5.27, N 6.82.

(1S,2R,3S,5R)-N-((E)-5-Bromo-2-hydroxybenzylidene)-2-(hydroxymethyl)-6,6-dimethylbicyclo
[3.1.1]heptane-3-sulfenamide (7f). Yield: 61%; light-yellow gummy oil; [α]26

D +55.9 (c 0.2,
CHCl3); Rf 0.36 (PhH:EtOAc, 5:1). 1H NMR (300 MHz, CDCl3, δ, ppm, J/Hz): 1.04 (3H, s,
CH3-8), 1.14 (1H, d, J = 9.9, H-7α), 1.27 (3H, s, CH3-9), 1.63 (1H, br.s, C-10-OH), 2.03–2.09
(1H, m, H-5), 2.18–2.34 (3H, m, H-1, H-4α, H-2), 2.44–2.53 (1H, m, H-7β), 2.56–2.66 (1H,
m, H-4β), 3.59 (1H, dt, J = 9.9, 6.6, H-3), 3.69–3.85 (2H, m, H-10), 6.84 (1H, d, J = 8.8, H-4′),
7.27 (1H, d, J = 2.2, H-7′), 7.35 (1H, dd, J = 8.8, 2.2, H-5′), 8.48 (1H, s, H-1′), 11.51 (1H, br.s,
C-3′-OH). 13C NMR (75 MHz, CDCl3, δ, ppm): 23.4 (C-8), 27.5 (C-9), 32.4 (C-7), 35.1 (C-4),
38.8 (C-6), 41.7 (C-5), 42.4 (C-1), 42.8 (C-3), 50.1 (C-2), 66.1 (C-10), 110.8 (C-6′), 118.9 (C-4′),
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121.5 (C-2′), 132.5 (C-7′), 134.3 (C-5′), 157.8 (C-3′), 159.7 (C-1′). IR spectrum (KBr, ν, cm−1):
3341 (OH), 1587 (C=N). Elemental analysis calcd. (%) for C17H22BrNO2S: C 53.13, H 5.77,
N 3.64; found: C 53.10, H 5.71, N 3.55.

(1S,2R,3S,5R)-N-((E)-2-Hydroxy-5-bromobenzylidene)-6,6-dimethyl-2-((S)-2,2,2-trifluoro-
1-hydroxyethyl)bicyclo[3.1.1]heptane-3-sulfenamide (8f). Yield: 38%; yellow oil; m.p.: 122.7 ◦C;
[α]26

D +29.0 (c 1.3, CHCl3); Rf 0.34 (PhH:CH2Cl2, 2:1). 1H NMR (300 MHz, CDCl3, δ, ppm,
J/Hz): 1.05 (3H, s, CH3-8), 1.25 (1H, d, J = 9.9, H-7α), 1.25 (3H, s, CH3-9), 2.02–2.09 (1H, m,
H-5), 2.18–2.34 (2H, m, H-1, H-4α), 2.37–2.50 (2H, m, H-7β, H-2), 2.55–2.80 (2H, m, H-4β,
C-10-OH), 4.00–4.20 (2H, m, H-3, H-10), 6.83 (1H, d, J = 8.8, H-4′), 7.27 (1H, s, H-7′), 7.34
(1H, d, J = 8.8, 2.2, H-5′), 8.45 (1H, s, H-1′), 11.25 (1H, br.s, C-3′-OH). 13C NMR (75 MHz,
CDCl3, δ, ppm): 23.0 (C-8), 26.9 (C-9), 30.3 (C-7), 34.7 (C-4), 38.1 (C-6), 40.5 (C-3), 40.8
(C-5), 42.5 (C-1), 46.6 (C-2), 72.6 (q, JF = 29.8, C-10), 110.9 (C-6′), 118.9 (C-4′), 121.4 (C-2′),
125.0 (q, JF = 284.2, C-11), 132.7 (C-7′), 134.5 (C-5′), 157.7 (C-3′), 159.9 (C-1′). 19F NMR
(58 MHz, CDCl3, δ, ppm): −74.11 (3F, d, J = 6.1, CF3-11). IR spectrum (KBr, ν, cm−1): 3455
(OH), 1589 (C=N), 1271, 1171, 1123 (CF3), 1076 (CBr). Elemental analysis calcd. (%) for
C18H21BrF3NO2S: C 47.80, H 4.68, N 3.10; found: C 47.53, H 4.31, N 3.07.

4.3. Antibacterial Activity

Minimum inhibitory concentrations (MICs) of compounds were determined by the
broth microdilution assay in 96-well plates (Eppendorf, Hamburg, Germany) according
to the EUCAST rules for antimicrobial susceptibility testing [45] in full Mueller–Hinton
broth (MH). Briefly, the bacterial suspension containing 108 CFUs/mL was subsequently
diluted to 1:300 with MH broth in microwell plates to obtain a 106 cells/mL suspension,
and then incubated at 37 ◦C for 24 h. The stock solutions of compounds to be tested were
prepared in DMSO and added to the final concentrations of compounds to be tested, which
ranged from 1 to 1048 µg/mL. The MIC was determined as the lowest concentration of an
antibiotic for which no visible bacterial growth could be observed after 24 h of incubation.
The assessment was performed five times and the typical (median) value was considered
as the MIC.

4.4. Antifungal Activity

MICs on C. albicans were determined using the broth microdilution method in 96-well
plates (Eppendorf) with MH broth, as recommended in the protocol CLSI M27-A3 [46]. C.
albicans was grown overnight and diluted with MH broth until a density of 107 cells/mL
was reached, obtaining the working solution. Then, 2-fold serial dilutions of compounds in
concentrations from 1 to 1024 µg/mL were prepared in MH broth and seeded with fungi
(1% v/v of working solution) with subsequent incubation at 37 ◦C for 24 h. The MIC was
defined as the lowest concentration of the compound at which no visible growth could
be seen. The assessment was performed five times and the typical (median) value was
considered as the MIC.

4.5. Mutagenicity and Cytotoxicity

The mutagenicity of compounds was evaluated in the Ames test with S. typhimurium
TA98, TA100 and TA102 strains, as described in [41]. The spot-test modification was applied
to avoid false-negative results due to the antibacterial activity of compounds. The tested
compound was considered to be mutagenic if the number of revertant colonies increased
more than 2 times when close to the filter paper with the compound.

The cytotoxicity of compounds was determined using the microtetrazolium test (MTT)
on BFL cells. The cells were cultured in DMEM—Dulbecco’s Modified Eagle’s Medium
(Sigma Aldrich, St. Louis, MO, USA)—that was supplemented with 10% FBS, 2 mM of
L-glutamine, 100 µg/mL of penicillin and 100 µg/mL of streptomycin. Cells were seeded
in 96-well plates with a density of 3000 cells per well and left overnight to allow for the
attachment. Next, cells were cultured at 37 ◦C and 5% CO2 in the presence of compounds
of interest at various concentrations from 1.25 to 160 µg/mL. After 24 h of cultivation, the
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cells were subjected to the MTT assay. The formazan was solubilized by DMSO and the
optical density was measured on the Tecan Infinite 200Pro at 570 nm. The concentration
required to inhibit cellular dehydrogenase activity by 50% (CC50 value) was calculated by
using the GraphPad Prism 6.0 software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/antibiotics11111548/s1. The 1H NMR, 13C NMR and IR spectra of novel compounds.
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