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Abstract: The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has led to the loss of life and has affected the life quality, economy, and
lifestyle. The SARS-CoV-2 main protease (Mpro), which hydrolyzes the polyprotein, is an interesting
antiviral target to inhibit the spreading mechanism of COVID-19. Through predictive digestion, the
peptidomes of the four major proteins in rice bran, albumin, glutelin, globulin, and prolamin, with
three protease enzymes (pepsin, trypsin, and chymotrypsin), the putative hydrolyzed peptidome
was established and used as the input dataset. Then, the prediction of the antiviral peptides (AVPs)
was performed by online bioinformatics tools, i.e., AVPpred, Meta-iAVP, AMPfun, and ENNAVIA
programs. The amino acid composition and cytotoxicity of candidate AVPs were analyzed by COPid
and ToxinPred, respectively. The ten top-ranked antiviral peptides were selected and docked to the
SARS-CoV-2 main protease using GalaxyPepDock. Only the top docking scored candidate (AVP4)
was further analyzed by molecular dynamics simulation for one nanosecond. According to the
bioinformatic analysis results, the candidate SARS-CoV-2 main protease inhibitory peptides were
7–33 amino acid residues and formed hydrogen bonds at Thr22–24, Glu154, and Thr178 in domain
2 with short bonding distances. In addition, these top-ten candidate bioactive peptides contain
hydrophilic amino acid residues and have a positive net charge. We hope that this study will provide
a potential starting point for peptide-based therapeutic agents against COVID-19.

Keywords: antiviral peptide; bioinformatics; rice bran; SARS-CoV-2 main protease; molecular
docking; molecular dynamics

1. Introduction

The COVID-19 pandemic leads to a high mortality rate, affects the work system, food
system, and economy, and causes changes in human lifestyles [1]. Moreover, infection with
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) provokes a mutation
of COVID-19 or Coronavirus Disease 2019 [1,2]. The virus passes through the body into
the respiratory tract, where angiotensin-converting enzyme 2 (ACE2), which is present
on the cell surface, binds to the viral spike protein and enables the virus to enter the cell.
Since ACE2 can capture the virus on it spike protein, the virus can enter the host cell. The
main protease (Mpro) of SARS-CoV-2 plays a pivotal role in mediating the replication and
transcription of viral genes. Mpro hydrolyzes the polyprotein at at least eleven conserved
sites and begins by cleaving the pp1a and pp1b of Mpro. For this reason, finding Mpro
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inhibitors can help reduce the spread of COVID-19. As a result, proteases are attractive
antiviral targets [1]. One of the consequences of the COVID-19 epidemic is the shortage of
resources and materials for drug research and development. Natural extracts represent an
attractive option due to the ready availability of materials.

Since plant seeds naturally accumulate proteins for long-term storage, they are suitable
for the production of stable and large amounts of antimicrobial peptides. In particular, rice
seed and rice bran are considered good protein sources [3]. In rice (Oryza sativa), 60–80% of
all storage proteins are glutelins, 20–30% are prolamines, and about 5% are globulins [4–6].
Interestingly, there are several reports on the broad biological activities of proteins and
peptides derived from rice bran, i.e., anti-cancer, anti-inflammatory, anti-diabetic, therapy
for chronic diseases, and anti-COVID-19 effects [7–12].

Bioinformatics is the application of tools of computation and analysis to capture,
interpret, and evaluate data in molecular biology. A great benefit of using bioinformatics
is that it can save time and resources. Moreover, it provides a base for creating three-
dimensional models of complex molecules [13]. Furthermore, it is safer in terms of cost and
time to use bioinformatics in research than in the laboratory. Recently, docking studies of
some rice bran peptides with the integrin αIIbβ3 and ACE 2 receptors demonstrated that
the rice peptide has potential against SARS-CoV-2 infection [12]. However, the antiviral
peptide screening of the putative hydrolyzed rice bran peptidome and molecular docking
of the SARS-CoV-2 main protease have not been studied.

Therefore, this study aimed to develop a bioinformatic workflow for the virtual
screening of antiviral peptides and use in silico protein–peptide docking studies to select
the inhibitory peptide for the SARS-CoV-2 main protease.

2. Results and Discussion
2.1. Rice Bran Putative Antiviral Peptide Screening using a Computational Method

All of the peptide sequences from this putative peptidome of rice bran (Oryza sativa)
are shown in the supplementary file (Table S1) as the predicted cut results of specific
protease enzyme and original protein sources. The peptides were predicted to be antiviral
peptides (AVPs) if the cut-off criteria at the support vector machine (SVM) probability
exceeded 50 in AVPpred (either in Model 3: Composition or Model 4: Physicochemical
properties) and the probability was greater than 0.5 in Meta-iAVP and AMPfun (only
antiviral activity). As a result, AVPpred predicted 28 AVPs; Meta-iAVP predicted 73 AVPs;
AMPfun predicted 244 AVPs; and there are 71 AVPs in common from at least two prediction
servers from 292 input peptide sequences (Figure 1). In terms of the peptides’ properties
(Figure 1), the majority of putative AVPs were 5–14 amino acids long (76%), hydrophilic
(63%), and cationic (56%) (Figure 2).

Focusing on the length distribution of candidate AVPs and upon further analysis of
the peptide length determining antiviral activity, it was observed that 58 (76%) and 14 (19%)
were 5–14 and 15–24 amino acids in length, respectively. In general, AVPs are usually short
(8–40 amino acids in length) and consist of cationic amino acid residues [14–19]. The most
optimal peptide length for AMPs, especially AVPs, is 10–40 amino acid residues and hence,
it is of great value to optimize the AVP length [20,21].

A comparison of the amino acid composition of AVPs is shown in Figure 3. Compared
to the non-AVPs, the preferential amino acid residues with higher percentages were Lys,
Leu, Ile, Val, Trp, and Gln. This is consistent with what have been reported before for AVPs,
which work as antimicrobial peptides and possess cationic and amphipathic characteristics
with positive net charges [14,22,23]. In particular, this specific basic residue (Lys) is the
preferential amino acid for antiviral activity and is abundantly found as a component of
therapeutic peptides with enhanced electrostatic properties [14]. This also facilitates the
interaction and insertion of peptides into the anionic cell walls and phospholipid membranes
of microorganisms [22,24]. Therefore, Lys (not Arg or His) plays an important role in providing
cationic properties to enhance the antiviral activities of AVPs [14,25]. However, the reason
for AVPs bias toward lysine is not clear: either their potential to inhibit the viral enzymes
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or the inhibition of the viral-entering process [14,26]. On the other hand, the medium-sized
hydrophobic residues (Leu and Ile) were also found to be the most abundant residues
in the AVPs and play important role in the amphipathic characteristics of antimicrobial
peptides [14,27].
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non-AVPs.

2.2. Prediction Scores and Physicochemical Properties of the Ten Top-ranked AVPs

The selection of the ten top-ranked AVPs was based on their predictive probability
scores or SVM scores as mentioned in the previous section. The predictive scores and amino
acid sequence details of the ten top-ranked antiviral peptides predicted from the putative
rice bran peptidome by using four bioinformatics programs are shown in Table 1. Since the
secondary structure is one of the most important peptide sequence features for predicting
AVPs, each peptide secondary structure was predicted by PEP-FOLD3. These peptides
were structurally classified as two main groups; random coiled (AVP1, 2, 4, 9, and 10) and
helix-containing loops (AVP3, 5, 6, 7, and 8). Consistent with previous studies, random
coils and α-helices were reported to be the top two dominant secondary structures of AVPs
compared to the β-sheet structure [14,28].
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Table 1. Predictive probability scores or SVM scores from antiviral peptide prediction tools.

Peptide ID Secondary
Structures

Sequences
(from Protein/Cut by) Length

AVPpred Meta-
iAVP

AMP
Fun

ENNAVIA

M3* M4* A* B* C* D*

AVP1
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Peptide 

ID 

Secondary 

Structures 

Sequences 

(from Protein/Cut by) 
Length 

AVPpred 
Meta-

iAVP 

AMP 

fun 
ENNAVIA 

M3* M4*   A* B* C* D* 

AVP1 
 

SWCRCSALNHMVGGIY 

(albumin/pepsin) 
16 55.56 72.37 0.51 0.39 0.47 1.00 0.79 1.00 

AVP2 
 

HQASSLLRGIKNY 

(globulin/pepsin) 
13 54.82 24.41 0.98 0.49 0.97 0.74 0.57 0.23 

AVP3 
 

VVFSALLLIIVSVLAA-

TATMADHHK 

(albumin/trypsin) 

25 52.40 25.59 0.54 0.59 1.00 0.00 1.00 0.01 

AVP4 
 

QQHSIVATPFWQPAT-

FQLINNQVMQQQCCQQ

LR 

(prolamin/trypsin) 

33 37.06 64.03 0.06 0.65 0.68 0.00 0.99 0.16 

AVP5 
 

IIFVFALLAIVACNASAR 

(prolamin/pepsin/trypsin) 
18 56.12 33.78 0.99 0.43 1.00 0.00 0.75 0.00 

AVP6 
 

PILSLVQMSAVKVNLY 

(glutelin/pepsin) 
16 46.62 55.77 0.32 0.53 0.10 0.00 0.80 0.32 

SWCRCSALNHMVGGIY
(albumin/pepsin) 16 55.56 72.37 0.51 0.39 0.47 1.00 0.79 1.00

AVP2

Antibiotics 2022, 11, x FOR PEER REVIEW 5 of 16 
 

2.2. Prediction Scores and Physicochemical Properties of the Ten Top-ranked AVPs 

The selection of the ten top-ranked AVPs was based on their predictive probability 

scores or SVM scores as mentioned in the previous section. The predictive scores and 

amino acid sequence details of the ten top-ranked antiviral peptides predicted from the 

putative rice bran peptidome by using four bioinformatics programs are shown in Table 

1. Since the secondary structure is one of the most important peptide sequence features 

for predicting AVPs, each peptide secondary structure was predicted by PEP-FOLD3. 

These peptides were structurally classified as two main groups; random coiled (AVP1, 2, 

4, 9, and 10) and helix-containing loops (AVP3, 5, 6, 7, and 8). Consistent with previous 

studies, random coils and α-helices were reported to be the top two dominant secondary 

structures of AVPs compared to the β-sheet structure [14,28].  

All of the predictive scores that were greater than the cut-off criteria (the support 

vector machine (SVM) probability exceeded 50 in AVPpred and the probability was 

higher than 0.5 in Meta-iAVP and AMPfun) were highlighted in red. Even though there 

are four SVM-based models available in the AVPpred program based on the peptide se-

quence features, only the amino acid compositions (Model 3) and physiochemical prop-

erty (Model 4) models can provide predictive scores. Since the antiviral peptide motifs 

(Model 1) and sequence alignment (Model 2) could give only two classifications (AVPs 

and Non-AVPs), we only took the predictive SVM scores from Model 3 (M3) and Model 

4 (M4) for this particular AVP candidate ranking. In the ENNAVIA program, there are 

two main sets of the neural network prediction models. The first two models were used 

for antiviral property classification (ENNAVIA-A and B, based on the antiviral vs. non-

antiviral datasets and antiviral vs. random datasets, respectively) while the other two 

models were used for anti-coronavirus property prediction (ENNAVIA-C and D, based 

on the anti-coronavirus vs. non-antiviral datasets and anti-coronavirus vs. random da-

tasets, respectively) [29].  

The calculated scores of the physicochemical properties of all of the selected AVP 

candidates (AVP1 to AVP10) obtained from the ToxinPred web server are shown in Table 

2. The largest peptide was AVP4 with a molecular weight of 3916.01 g/mole while AVP10 

was the smallest peptide with a molecular weight of 792.01 g/mole. All top-ranked puta-

tive AVPs were classified as amphipathic characteristics with steric hindrance and 

sidebulk scores higher than 0.5.  

Table 1. Predictive probability scores or SVM scores from antiviral peptide prediction tools. 

Peptide 

ID 

Secondary 

Structures 

Sequences 

(from Protein/Cut by) 
Length 

AVPpred 
Meta-

iAVP 

AMP 

fun 
ENNAVIA 

M3* M4*   A* B* C* D* 

AVP1 
 

SWCRCSALNHMVGGIY 

(albumin/pepsin) 
16 55.56 72.37 0.51 0.39 0.47 1.00 0.79 1.00 

AVP2 
 

HQASSLLRGIKNY 

(globulin/pepsin) 
13 54.82 24.41 0.98 0.49 0.97 0.74 0.57 0.23 

AVP3 
 

VVFSALLLIIVSVLAA-

TATMADHHK 

(albumin/trypsin) 

25 52.40 25.59 0.54 0.59 1.00 0.00 1.00 0.01 

AVP4 
 

QQHSIVATPFWQPAT-

FQLINNQVMQQQCCQQ

LR 

(prolamin/trypsin) 

33 37.06 64.03 0.06 0.65 0.68 0.00 0.99 0.16 

AVP5 
 

IIFVFALLAIVACNASAR 

(prolamin/pepsin/trypsin) 
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candidates (AVP1 to AVP10) obtained from the ToxinPred web server are shown in Table 

2. The largest peptide was AVP4 with a molecular weight of 3916.01 g/mole while AVP10 

was the smallest peptide with a molecular weight of 792.01 g/mole. All top-ranked puta-

tive AVPs were classified as amphipathic characteristics with steric hindrance and 

sidebulk scores higher than 0.5.  
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Peptide 

ID 

Secondary 

Structures 

Sequences 

(from Protein/Cut by) 
Length 

AVPpred 
Meta-

iAVP 

AMP 

fun 
ENNAVIA 

M3* M4*   A* B* C* D* 

AVP1 
 

SWCRCSALNHMVGGIY 

(albumin/pepsin) 
16 55.56 72.37 0.51 0.39 0.47 1.00 0.79 1.00 

AVP2 
 

HQASSLLRGIKNY 

(globulin/pepsin) 
13 54.82 24.41 0.98 0.49 0.97 0.74 0.57 0.23 

AVP3 
 

VVFSALLLIIVSVLAA-

TATMADHHK 

(albumin/trypsin) 

25 52.40 25.59 0.54 0.59 1.00 0.00 1.00 0.01 

AVP4 
 

QQHSIVATPFWQPAT-

FQLINNQVMQQQCCQQ

LR 

(prolamin/trypsin) 

33 37.06 64.03 0.06 0.65 0.68 0.00 0.99 0.16 

AVP5 
 

IIFVFALLAIVACNASAR 

(prolamin/pepsin/trypsin) 
18 56.12 33.78 0.99 0.43 1.00 0.00 0.75 0.00 

AVP6 
 

PILSLVQMSAVKVNLY 

(glutelin/pepsin) 
16 46.62 55.77 0.32 0.53 0.10 0.00 0.80 0.32 

QQHSIVATPFWQPATFQLINNQVMQQQCCQQLR
(prolamin/trypsin) 33 37.06 64.03 0.06 0.65 0.68 0.00 0.99 0.16

AVP5
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16 46.62 55.77 0.32 0.53 0.10 0.00 0.80 0.32 PILSLVQMSAVKVNLY

(glutelin/pepsin) 16 46.62 55.77 0.32 0.53 0.10 0.00 0.80 0.32

AVP7
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AVP7 
 

GGHGPHWPLPPF 

(globulin/pepsin) 
12 42.04 25.90 1.00 0.51 0.74 0.91 0.00 0.08 

AVP8 
 

VIALPAGVAHWCY 

(glutelin/pepsin) 
13 41.67 62.94 0.54 0.46 0.50 0.31 0.35 0.28 

AVP9 
 

ATILLLLAAVLFAAAAA

ASGEDR 

(globulin/trypsin) 

23 47.39 62.95 0.74 0.43 0.96 0.00 0.40 0.00 

AVP10 
 

QQVGVVY 

(prolamin/chymotrypsin) 
7 50.46 43.09 0.99 0.66 0.05 0.20 0.20 0.45 

Note: For the AVPpred program; M3* = composition of the SVM-based models (Model 3), M4* = 

physiochemical property SVM-based models (Model 4). For the ENNAVIA program, the neural 

network models based on the antiviral vs. non-antiviral datasets (A*), antiviral vs. random datasets 

(B*), anti-coronavirus vs. non-antiviral datasets (C*), and anti-coronavirus vs. random datasets (D*). 

Table 2. Calculated physicochemical property scores of the selected AVP candidates (AVP1 to 

AVP10) by ToxinPred. 

Peptide ID 
Hydro-

phobicity 

Steric hin-

drance 
Sidebulk 

Hydro-

pathicity 

Amphi-

pathicity 

Hydro-

philicity 

Net Hydro-

gen 
Charge pI Mol wt 

AVP1 -0.01 0.6 0.6 0.34 0.24 -0.71 0.69 1.5 8.38 1797.33 

AVP2 -0.22 0.58 0.58 -0.62 0.68 -0.13 1.08 2.5 10.01 1486.89 

AVP3 0.17 0.56 0.56 1.52 0.26 -0.73 0.36 1 7.26 2621.56 

AVP4 -0.15 0.61 0.61 -0.45 0.5 -0.56 1 1.5 8.4 3916.01 

AVP5 0.23 0.62 0.62 2.1 0.14 -0.94 0.39 1 8.6 1892.59 

AVP6 0.09 0.62 0.62 1.05 0.31 -0.74 0.56 1 8.94 1775.43 

AVP7 0.08 0.43 0.43 -0.69 0.24 -0.72 0.25 1 7.26 1298.65 

AVP8 0.25 0.54 0.54 1.32 0.11 -1.18 0.23 0.5 7.06 1399.86 

AVP9 0.15 0.58 0.58 1.45 0.16 -0.45 0.35 -1 4.38 2228.94 

AVP10 0.06 0.69 0.69 0.56 0.36 -0.91 0.71 0 5.88 792.01 

2.3. Protein–peptide Docking Simulations 

Bioinformatics prediction of the SARS-CoV-2 main protease inhibitory peptides is 

challenging due to lack of the computational predictors available. The molecular docking 

of these ten top-ranked AVPs to the crystal structure of the SARS-CoV-2 main protease 

demonstrated that AVP1 to AVP10 binds near the active site of the SARS-CoV-2 main 

protease structure (Figure 4). Based on the visualization of the protein–peptide docking 

simulation results, all hydrogen bonds observed from the molecular docking of ten pep-

tides (AVP1 to AVP10) to the crystal structure of the SARS-CoV-2 main protease are listed 

in Table 3. In general, the proper hydrogen bond acceptor–donor pair is within the correct 

distance (2.7 to 3.3 Å) [30], and most hydrogen bonds between peptide molecules and 

protein macromolecules are relatively strong, starting with a 3 Å bond length [31]. Ac-

cording to our molecular docking results, the distance of the hydrogen bonds between 

selected AVPs and the SARS-CoV-2 main protease structure ranged from 1.8 to 3.8 Å. In 

particular, hydrogen bonds with donor–acceptor distances of 2.2–2.5 Å are considered to 

be “strong, mostly covalent” while those of 2.5–3.2 Å and 3.2–4.0 Å are considered to be 

“moderate, mostly electrostatic” and “weak, electrostatic”, respectively [32]. A compari-

son of the interaction of the SARS-CoV-2 main protease structure indicated that all se-

lected AVPs showed similar binding positions to the SARS-CoV-2 main protease structure 

(Figure 4). All ten selected AVPs could interact with the amino acid residues near the ac-

tive site of the SARS-CoV-2 main protease by hydrogen bonding (Figure 5 and Table 3). 

The top-ranked AVP candidate (AVP1) with the highest predictive anti-coronavirus ac-

tivity score formed five hydrogen bonds (with Gln180, Thr178, Glu154, Cys42, and 

GGHGPHWPLPPF
(globulin/pepsin) 12 42.04 25.90 1.00 0.51 0.74 0.91 0.00 0.08

AVP8
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son of the interaction of the SARS-CoV-2 main protease structure indicated that all se-

lected AVPs showed similar binding positions to the SARS-CoV-2 main protease structure 

(Figure 4). All ten selected AVPs could interact with the amino acid residues near the ac-

tive site of the SARS-CoV-2 main protease by hydrogen bonding (Figure 5 and Table 3). 

The top-ranked AVP candidate (AVP1) with the highest predictive anti-coronavirus ac-
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VIALPAGVAHWCY
(glutelin/pepsin) 13 41.67 62.94 0.54 0.46 0.50 0.31 0.35 0.28

AVP9
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Bioinformatics prediction of the SARS-CoV-2 main protease inhibitory peptides is 

challenging due to lack of the computational predictors available. The molecular docking 

of these ten top-ranked AVPs to the crystal structure of the SARS-CoV-2 main protease 

demonstrated that AVP1 to AVP10 binds near the active site of the SARS-CoV-2 main 

protease structure (Figure 4). Based on the visualization of the protein–peptide docking 
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selected AVPs and the SARS-CoV-2 main protease structure ranged from 1.8 to 3.8 Å. In 
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son of the interaction of the SARS-CoV-2 main protease structure indicated that all se-

lected AVPs showed similar binding positions to the SARS-CoV-2 main protease structure 

(Figure 4). All ten selected AVPs could interact with the amino acid residues near the ac-

tive site of the SARS-CoV-2 main protease by hydrogen bonding (Figure 5 and Table 3). 

The top-ranked AVP candidate (AVP1) with the highest predictive anti-coronavirus ac-
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ATILLLLAAVLFAAAAAASGEDR
(globulin/trypsin) 23 47.39 62.95 0.74 0.43 0.96 0.00 0.40 0.00

AVP10
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All of the predictive scores that were greater than the cut-off criteria (the support
vector machine (SVM) probability exceeded 50 in AVPpred and the probability was higher
than 0.5 in Meta-iAVP and AMPfun) were highlighted in red. Even though there are four
SVM-based models available in the AVPpred program based on the peptide sequence
features, only the amino acid compositions (Model 3) and physiochemical property (Model
4) models can provide predictive scores. Since the antiviral peptide motifs (Model 1) and
sequence alignment (Model 2) could give only two classifications (AVPs and Non-AVPs),
we only took the predictive SVM scores from Model 3 (M3) and Model 4 (M4) for this
particular AVP candidate ranking. In the ENNAVIA program, there are two main sets of the
neural network prediction models. The first two models were used for antiviral property
classification (ENNAVIA-A and B, based on the antiviral vs. non-antiviral datasets and
antiviral vs. random datasets, respectively) while the other two models were used for
anti-coronavirus property prediction (ENNAVIA-C and D, based on the anti-coronavirus
vs. non-antiviral datasets and anti-coronavirus vs. random datasets, respectively) [29].

The calculated scores of the physicochemical properties of all of the selected AVP
candidates (AVP1 to AVP10) obtained from the ToxinPred web server are shown in Table 2.
The largest peptide was AVP4 with a molecular weight of 3916.01 g/mole while AVP10 was
the smallest peptide with a molecular weight of 792.01 g/mole. All top-ranked putative
AVPs were classified as amphipathic characteristics with steric hindrance and sidebulk
scores higher than 0.5.

Table 2. Calculated physicochemical property scores of the selected AVP candidates (AVP1 to AVP10)
by ToxinPred.

Peptide
ID Hydrophobicity Steric

Hindrance Sidebulk Hydropathicity Amphipathicity Hydrophilicity Net Hy-
drogen Charge pI Mol wt

AVP1 −0.01 0.6 0.6 0.34 0.24 −0.71 0.69 1.5 8.38 1797.33
AVP2 −0.22 0.58 0.58 −0.62 0.68 −0.13 1.08 2.5 10.01 1486.89
AVP3 0.17 0.56 0.56 1.52 0.26 −0.73 0.36 1 7.26 2621.56
AVP4 −0.15 0.61 0.61 −0.45 0.5 −0.56 1 1.5 8.4 3916.01
AVP5 0.23 0.62 0.62 2.1 0.14 −0.94 0.39 1 8.6 1892.59
AVP6 0.09 0.62 0.62 1.05 0.31 −0.74 0.56 1 8.94 1775.43
AVP7 0.08 0.43 0.43 −0.69 0.24 −0.72 0.25 1 7.26 1298.65
AVP8 0.25 0.54 0.54 1.32 0.11 −1.18 0.23 0.5 7.06 1399.86
AVP9 0.15 0.58 0.58 1.45 0.16 −0.45 0.35 −1 4.38 2228.94

AVP10 0.06 0.69 0.69 0.56 0.36 −0.91 0.71 0 5.88 792.01

2.3. Protein–peptide Docking Simulations

Bioinformatics prediction of the SARS-CoV-2 main protease inhibitory peptides is
challenging due to lack of the computational predictors available. The molecular docking
of these ten top-ranked AVPs to the crystal structure of the SARS-CoV-2 main protease
demonstrated that AVP1 to AVP10 binds near the active site of the SARS-CoV-2 main
protease structure (Figure 4). Based on the visualization of the protein–peptide docking
simulation results, all hydrogen bonds observed from the molecular docking of ten peptides
(AVP1 to AVP10) to the crystal structure of the SARS-CoV-2 main protease are listed in
Table 3. In general, the proper hydrogen bond acceptor–donor pair is within the correct
distance (2.7 to 3.3 Å) [30], and most hydrogen bonds between peptide molecules and pro-
tein macromolecules are relatively strong, starting with a 3 Å bond length [31]. According
to our molecular docking results, the distance of the hydrogen bonds between selected
AVPs and the SARS-CoV-2 main protease structure ranged from 1.8 to 3.8 Å. In particular,
hydrogen bonds with donor–acceptor distances of 2.2–2.5 Å are considered to be “strong,
mostly covalent” while those of 2.5–3.2 Å and 3.2–4.0 Å are considered to be “moderate,
mostly electrostatic” and “weak, electrostatic”, respectively [32]. A comparison of the
interaction of the SARS-CoV-2 main protease structure indicated that all selected AVPs
showed similar binding positions to the SARS-CoV-2 main protease structure (Figure 4).
All ten selected AVPs could interact with the amino acid residues near the active site of the
SARS-CoV-2 main protease by hydrogen bonding (Figure 5 and Table 3). The top-ranked
AVP candidate (AVP1) with the highest predictive anti-coronavirus activity score formed
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five hydrogen bonds (with Gln180, Thr178, Glu154, Cys42, and Gly131). Notably, the
largest AVP candidate (AVP4) interacted with 19 residues by forming 24 hydrogen bonds
near the active site area, mainly the Gln22 and Arg33 residues (Figure 5 and Table 3).
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Table 3. List of hydrogen bonds observed from the molecular docking of ten peptides (AVP1 to
AVP10) to the crystal structure of the SARS-CoV-2 main protease in the apo state (PDB ID: 7C2Q).

Peptides Peptide
Residues

Protease
Residues

Distance
(Å) Peptides Peptide

Residues
Protease
Residues

Distance
(Å)

AVP1 Arg4 Gln180 2.485 AVP4 Arg33 Thr19 2.285
Ser6 Thr178 2.124 (continue) Arg33 Thr24 2.335
Ala7 Glu154 1.971 Arg33 Gln61 2.041
His10 Cys42 2.978 Arg33 Thr19 2.018
Val12 Gly131 2.124 AVP5 Ile1 Ala181 2.404

AVP2 Ser4 Gln180 1.976 Asn14 Thr24 2.085
Leu6 Glu154 1.912 AVP6 Pro1 Gln177 1.917
Arg8 His151 2.036 Ile2 Glu154 2.013
Arg8 His160 2.047 Val6 Asn111 2.428
Ile10 Thr24 2.078 Gln7 Thr24 1.902
Tyr13 His39 2.778 Ala10 Thr24 2.463

AVP3 Ala5 Thr178 2.410 Lys12 Gly21 2.137
Leu6 Glu154 1.875 Lys12 Asn57 1.939
Ser12 Asn111 2.330 Tyr16 Asn55 2.536
Ala15 Thr24 2.045 Tyr16 Val69 1.995
Thr19 Thr22 2.017 AVP7 Phe12 Gly131 2.526

AVP4 Ser4 Val286 2.047 Phe12 Cys133 1.924
Thr8 Pro156 2.031 Phe12 His152 2.091
Trp11 Ser274 2.279 AVP8 Val1 Asp209 1.898
Gln12 Asp209 2.021 Val1 Thr157 1.975
Pro13 Arg123 2.196 Cys12 Thr23 3.071
Thr15 Ala182 2.471 AVP9 Ala1 Arp209 2.000
Thr15 Gly183 1.938 Ala1 Thr157 1.861
Asn20 Gln180 2.430 Thr2 Gly271 2.093
Gln22 Gln180 2.057 Thr2 Arp185 1.972
Gln22 Gln177 2.493 Val10 Glu154 1.894
Gln22 Thr178 2.523 Ala13 Thr24 2.390
Gln22 Asp175 2.064 Ser19 Asn111 2.178
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Table 3. Cont.

Peptides Peptide
Residues

Protease
Residues

Distance
(Å) Peptides Peptide

Residues
Protease
Residues

Distance
(Å)

Val23 Glu154 1.935 Glu21 Thr24 2.242
Gln25 Ser132 2.372 Arp22 Gln61 2.349
Gln25 Glu154 2.035 Arg23 Gln17 2.163
Gln26 Cys42 2.026 Arg23 Asn64 2.379
Cys28 Glu154 3.828 AVP10 Gln1 Ala179 2.554
Gln30 Thr24 1.993 Val5 Glu154 1.868
Gln31 Thr22 2.426 Tyr7 Ser132 2.501
Gln31 Thr23 2.093 Tyr7 Glu154 2.111
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Figure 5. Molecular docking of the ten top-ranked AVPs (AVP1 (A), AVP2 (B), AVP3 (C), AVP4 (D),
AVP5 (E), AVP6 (F), AVP7 (G), AVP8 (H), AVP9 (I), and AVP10 (J)) to the crystal structure of the
SARS-CoV-2 main protease in the apo state (PDB ID: 7C2Q). The structure of the SARS-CoV-2 main
protease is shaded in gold, and the peptide sequences are colored as labeled above. The hydrogen
bonds are shown as red lines.
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The docking positions of all selected AVPs closer to the active site of the SARS-
CoV-2 main protease structure were very similar to the binding pocket of the known
main protease inhibitory marine polyketides [33] and antiviral drugs [34]. The inhibitory
peptides tended to form hydrogen bonds with the Thr22–24, Glu154, and Thr178 residues of
the SARS-CoV-2 main protease. These hydrogen bonds were found in very short distances
(1.8–2.5 Å) and are considered to be “strong, mostly covalent” interactions, indicating a
high binding affinity.

According to the binding affinity and binding energy analysis by the PROGIDY and
PIMA web servers (Table 4), AVP4 showed the strongest binding to the binding groove of
the SARS-CoV-2 main protease enzyme with a molecular docking score of −363.04 kJ/mol
and a binding affinity (∆G) of −14.5 (kcal/mol). This high docking score was better than
the docking scores of SARS-CoV-2 Mpro for several drugs, i.e., noscapine, chloroquine, rib-
avirin, and favipiravir (−292.42, −269.71, −214.17, and −153.91 kJ/mol, respectively) [34].
The Mpro–AVP4 interface interactions involved in affinity and binding energy distribution
were obtained by high van der Waals energy, −325.48 kcal/mol (hydrophobic interactions)
and hydrogen bond energy −37.56 kcal/mol, which are considered to be the most signif-
icant calculations to assess the binding stability. Based on the molecular docking results
of this study, it was proven that the selected AVPs have potential as candidates for the
SARS-CoV-2 main protease inhibitor in controlling the COVID-19 disease.

Table 4. Calculated binding affinity (∆G), dissociation constant (Kd), and binding energy scores from
the molecular docking of ten peptides (AVP1 to AVP10) to the SARS-CoV-2 main protease based on
the PROGIDY and PIMA web servers. Molecular docking scores, H-bonds, electrostatic energy, and
van der Waals energy (H-bond Ener., Elec. Ener., and VDW. Ener.) are presented in kJ/mol.

Protein-Peptide
Complex

∆G
(kcal/mol)

Kd (M)
at 25.0 ◦C

H-Bond Ener.
(kJ/mol)

Elec. Ener.
(kJ/mol)

VDW. Ener.
(kJ/mol)

Molecular
Docking Score

(kJ/mol)

Mpro–AVP1 −11.2 5.8E−09 −23.62 4.48 −206.06 −225.20
Mpro–AVP2 −10.5 1.9E−08 −31.67 2.43 −196.55 −225.79
Mpro–AVP3 −11.0 9.3E−09 −27.37 0.00 −153.91 −181.28
Mpro–AVP4 −14.5 2.2E−11 −37.56 0.00 −325.48 −363.04
Mpro–AVP5 −9.9 5.7E−08 −3.19 0.00 −160.49 −163.68
Mpro–AVP6 −11.0 9.1E−09 −42.27 4.91 −187.82 −225.19
Mpro–AVP7 −8.2 9.3E−07 −23.68 0.00 −133.58 −157.26
Mpro–AVP8 −10.0 4.5E−08 −6.39 −13.14 −107.89 −127.42
Mpro–AVP9 −12.6 5.9E−10 −23.33 0.00 −219.64 −242.97

Mpro–AVP10 −9.4 1.3E−07 −25.32 0.00 −109.52 −134.84

2.4. Simulation of the Molecular Dynamics of the Mpro–AVP4 Complex

Based on the highest ranked binding affinity and docking scores, the AVP4 binding to
the Mpro enzyme was assessed by molecular dynamics simulation for one nanosecond to
examine the conformational stability and fluctuation analysis of the complex. To determine
the structural activity of the macromolecule, the radious of gyration (Rg) of resulting
trajectories was calculated. The Rg level varied according to the folding state of the protein–
peptide complex and fluctuated between 17.7 and 18.0 Å, and minimal fluctuations showed
the stability of the Mpro macromolecule while binding to AVP4 (Figure 6A). After that,
the fraction of the native contacts Q of trajectories was analyzed to define the transition
states for protein folding (conformational changes) with free energy. The result depicted
that the native contacts were favored by the coarse-grained theoretical models. Q values
were determined to be above 96% and depicted the conformational dynamics of the Mpro
enzyme along with the energetics of bound ligands (AVP4) (Figure 6B). Moreover, the
hydrogen bonds were analyzed to reveal the dynamic equilibration of the complex system
with a high number of hydrogen bonds and demonstrated the stable binding of AVP4
with the target Mpro enzyme (Figure 6C). These analyses demonstrated the prolonged
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and robust binding of AVP4 with target Mpro of coronavirus and the involvement of the
potential binding energies with the correlation of the MD calculations and the stability of
the Mpro enzyme−AVP4 complex.

Antibiotics 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

Figure 6. Molecular dynamics simulation of the Mpro–AVP4 complex; radius of teg gyrus plot (A), 

fraction of native contact analysis (B), and statistics of the hydrogen bonds (C). 

2.5. In Silico Toxicity Analysis of the Selected AVPs 

Toxic side effects are usually considered to ensure high specificity and low cross-

reactivity when designing effective, safe, and theoretically infallible therapeutic mole-

cules. In particular, the computational screening of non-toxic peptide approaches is re-

quired to improve the selectivity of therapeutic peptides with less cost and time [35]. The 

online bioinformatic tool, ToxinPred, was used to predict and estimate the toxicity of the 

putative AVPs to the host cell. There are eight predictive models available for peptide 

toxicity analysis; SVM (Swiss-Prot) based, SVM (Swiss-Prot) + Motif based, SVM 

(TrEMBL) based, SVM (TrEMBL) + Motif based, Monopeptide (Swiss-Prot), Monopeptide 

(TrEMBL), Di-peptide (Swiss-Prot), and Dipeptide (TrEMBL). In order to comprehen-

sively profile the potential toxic side effects to the host cells, all eight models were used 

for this particular analysis. All of the predictive scores can be observed in Table 5. The 

negative scores indicate non-toxic classified results while the positive scores indicate the 

possible toxicity of the analyzed peptides (highlighted in red). Three selected AVPs 

(AVP1, 7, and 8) were predicted to be potentially toxic in some predictive models (only 

from the Quantitative Matrix (QM) method). The rest of the candidates (AVP2 – 6, 9, and 

Figure 6. Molecular dynamics simulation of the Mpro–AVP4 complex; radius of teg gyrus plot (A),
fraction of native contact analysis (B), and statistics of the hydrogen bonds (C).

2.5. In Silico Toxicity Analysis of the Selected AVPs

Toxic side effects are usually considered to ensure high specificity and low cross-
reactivity when designing effective, safe, and theoretically infallible therapeutic molecules.
In particular, the computational screening of non-toxic peptide approaches is required to
improve the selectivity of therapeutic peptides with less cost and time [35]. The online
bioinformatic tool, ToxinPred, was used to predict and estimate the toxicity of the putative
AVPs to the host cell. There are eight predictive models available for peptide toxicity
analysis; SVM (Swiss-Prot) based, SVM (Swiss-Prot) + Motif based, SVM (TrEMBL) based,
SVM (TrEMBL) + Motif based, Monopeptide (Swiss-Prot), Monopeptide (TrEMBL), Di-
peptide (Swiss-Prot), and Dipeptide (TrEMBL). In order to comprehensively profile the
potential toxic side effects to the host cells, all eight models were used for this particular
analysis. All of the predictive scores can be observed in Table 5. The negative scores
indicate non-toxic classified results while the positive scores indicate the possible toxicity
of the analyzed peptides (highlighted in red). Three selected AVPs (AVP1, 7, and 8) were
predicted to be potentially toxic in some predictive models (only from the Quantitative
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Matrix (QM) method). The rest of the candidates (AVP2 – 6, 9, and 10) had ToxinPred scores
lower than the others, suggesting less possible toxicity to the host cells.

Table 5. Predictive SVM and QM scores from ToxinPred.

Peptide ID
SVM Method Quantitative Matrix (QM) Method

Model A* Model B* Model C* Model D* Model E* Model F* Model G* Model H*

AVP1 −0.22 −0.22 −0.28 −0.28 19.70 9.06 0.33 −0.91
AVP2 −0.94 −0.94 −1.16 −1.16 −14.50 −12.95 −3.82 −2.13
AVP3 −1.40 −1.40 −1.77 −1.77 −27.60 −46.75 −4.69 −7.79
AVP4 −1.07 −1.07 −1.14 −1.14 −1.90 −17.13 −1.64 −1.91
AVP5 −0.68 −0.68 −0.68 −0.68 −8.50 −13.44 −2.30 −2.32
AVP6 −1.31 −1.31 −2.03 −2.03 −15.70 −23.15 −0.32 −1.35
AVP7 −0.75 −0.75 −1.30 −1.30 12.50 22.19 1.28 1.85
AVP8 −0.19 −0.19 −0.61 −0.61 7.70 9.28 −1.36 0.43
AVP9 −1.69 −1.69 −1.38 −1.38 −42.50 −52.14 −9.10 −10.11

AVP10 −1.45 −1.45 −1.18 −1.18 −16.00 −7.16 −0.91 −0.47

Note: Moldel A = SVM (Swiss-Prot) based, Model B = SVM (Swiss-Prot) + Motif based, Model C = SVM (TrEMBL)
based, Model D = SVM (TrEMBL) + Motif based, Model E = Monopeptide (Swiss-Prot), Model F = Monopeptide
(TrEMBL), Model G = Dipeptide (Swiss-Prot), and Model H = Dipeptide (TrEMBL).

Based on the fact that the ToxinPred server can predict the toxicity or non-toxicity of
peptides with higher accuracy in the SVM method (93.92%) compared to the QM method
(88.00%) [36], the SVM model seems to be more reliable. Since there are some other factors
involved in the real biological systems (i.e., secondary structure, in vivo instability, the
bioactive activity at a specific pH, temperature, and tonicity, etc.), laboratory experiments
would still be required to confirm the real toxicity of all candidate peptides.

Even though the therapeutic peptides have a broad spectrum of targets and low
toxicity in general, there are also some limitations and challenges of therapeutic peptide
development to be considered for further applications [37]. For example, most of them are
limited in oral bioavailability with a short half-life and rapid clearance, and some of them
contain immunogenic sequences with some potential to cause an allergenic effect in some
patients [37,38]. To overcome these challenging problems, several optimized solutions
have been proposed by researchers. A previous study suggested that the side chain of
non-polar aromatic amino acids (Trp and Phe) can promote peptide structural stability by
restricting their conformation through hydrogen bond formation [39]. In addition, it has
been reported that non-polar aliphatic amino acids (Ala, Ile, Leu, and Val) are responsible
for the thermal stability of proteins and peptides [40]. Taking this constraint as a guideline,
we could selectively screen and/or redesign peptides to improve not only the stability
of the therapeutic peptides but also other physicochemical properties involving specific
cellular and molecular functions. Beside ToxinPred, there are also some web servers for
allergenic peptide prediction, i.e., AllerTOP [36] and AllerFP [41], to avoid possible side
effects of therapeutic peptides on the host cells [42,43].

3. Materials and Methods

According to the pipeline illustrated in Figure 1, we proposed the bioinformatic vir-
tual screening workflow with in silico validation by protein–peptide molecular docking.
The workflow begins with the predicted digestion peptidomes of the four major proteins
in rice bran; albumin, glutelin, globulin, prolamin, with three protease enzymes (pepsin,
trypsin, and chymotrypsin). The reason for this putative peptidome of rice bran hydrolyzed
by these three proteases was that there are several relevant research reports on the high
potential bioactivities of enzymes prepared rice bran protein hydrolysates using diges-
tive enzymes [44]. The functional peptides from rice bran prepared by pepsin, trypsin,
and chymotrypsin showed high efficiency and antioxidant bioactivity [45], as well as
ACE-inhibitory [46], antimicrobial [47], and tyrosinase-inhibition activity [48]. Having spe-
cific cut sites on polypeptide sequences, pepsin, trypsin, and chymotrypsin have been
beneficially used for amphipathic and/or cationic therapeutic peptide screening from food-
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derived peptides [44]. In this study, the putative hydrolyzed peptidome was established
and used as the input datasets of 292 peptides for the selection of the peptides with the ten
top-ranked predicted scores of unique AVPs (also predicted as non-toxic to the host cells).

3.1. Preparation of the Rice Bran Putative Hydrolyzed Peptidome

Since several predictive programs (PEP-FOLD 3.5, ENNAVIA, and GalaxyPepDock)
require a proper length for their machine learning-based analyses, only those peptides that
consisted of at least 6 amino acid residues were further screened. After the removal of
short peptides (fewer than 5 amino acids), 292 rice bran peptide sequences were obtained
from the predicted cut sites of the four major proteins of rice bran (Oryza sativa: Uniprot
taxonomic ID = 4530); albumin, glutelin, globulin, prolamin (from the National Center
for Biotechnology Information: NCBI with specific accession numbers; Q01882, Q40689,
O65042, and Q40714, respectively). The in silico pepsin, trypsin, and chymotrypsin diges-
tions were performed by the cleaver R package (version: 1.34.1; [49]). There were 3 groups
of peptide length distributions, i.e., 5–14 amino acid residues (233 sequences, 80%), 15–24
amino acid residues (42 sequences, 14%), and 25–34 amino acid residues (17 sequences, 6%)
(Figure 1).

3.2. The Bioinformatic Prediction and Screening of Antiviral Peptides

The peptide sequences were arranged in FASTA format and were used as input to
predict the antiviral properties using 3 online machine learning-based prediction programs,
i.e., AVPpred (http://crdd.osdd.net/servers/avppred/submit.php, accessed on 10 January
2022) [50], Meta-iAVP (http://codes.bio/meta-iavp/, accessed on 10 January 2022) [22],
and AMPfun (http://fdblab.csie.ncu.edu.tw/AMPfun/run.htm, accessed on 10 January
2022l) [51]. Since there are several bioactivity models to choose from in AMPfun, only the
antiviral classification model was considered in this particular study. Venny 2.1.0. (https://
bioinfogp.cnb.csic.es/tools/venny, accessed on 12 January 2022) [52] was used to generate
Venn diagrams to visualize the significant positive AVP candidates that were classified
as AVPs at least by 2 programs from 3 online bioinformatic prediction tools. To obtain
the probability score of anti-coronavirus activity, all significant AVP candidates were
analyzed with the neural network peptide antiviral and anti-coronavirus activity predictor
ENNAVIA (https://research.timmons.eu/ennavia, accessed on 13 January 2022) [29]. The
average scores from 4 predictive models of ENNAVIA (2 antiviral and 2 anti-coronavirus
predictive models) together with 3 other AVP predictors were considered to rank all of
the AVP candidates. Only the ten top-ranked AVPs were selected for further molecular
docking performances regarding the SARS-CoV-2 main protease inhibition. To predict
the secondary structure of the selected peptides, PEP-FOLD3.0 (https://bioserv.rpbs.univ-
paris-diderot.fr/services/PEP-FOLD3, accessed on 15 January 2022) was used to simulate
the feasible molecular structure of the ten top-ranked antiviral peptides. Finally, all 8
predictive models based on SVM methods and the Quantitative Matrix (QM) method
in ToxinPred (https://webs.iiitd.edu.in/raghava/toxinpred/protein.php, accessed on 15
January 2022) were used to predict whether the peptides were cytotoxic to the host cells.
All calculated scores of the physicochemical properties of the selected AVP candidates were
also obtained by the ToxinPred web server in the batch submission option.

3.3. The Protein–peptide Molecular Docking Simulation

The crystal structure of the SARS-CoV-2 main protease in the apo state with PDB ID
code 7C2Q [53] was accessed from the Protein Data Bank (PDB) (http://www.rcsb.org,
accessed on 10 January 2022).

The amino acid sequences of each selected AVP candidate (AVP1 to AVP10) were
docked to the SARS-CoV-2 main protease enzyme using the GalaxyPepDock (http://
galaxy.seoklab.org/pepdock, accessed on 21 January 2022)) [53]. The docking results of the
best model and hydrogen bond finding were visualized by the UCSF Chimera program [54].
The FindHBond tool (in the menu under Tools and Structure Analysis) was used to identify

http://crdd.osdd.net/servers/avppred/submit.php
http://codes.bio/meta-iavp/
http://fdblab.csie.ncu.edu.tw/AMPfun/run.htm
https://bioinfogp.cnb.csic.es/tools/venny
https://bioinfogp.cnb.csic.es/tools/venny
https://research.timmons.eu/ennavia
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3
https://webs.iiitd.edu.in/raghava/toxinpred/protein.php
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and analyze the H-bonding patterns between each AVP candidate and SARS-CoV-2 main
protease. To investigate the protein–peptide interface interactions involved in affinity
and binding energy, PIMA [55], available at http://caps.ncbs.res.in/pima (accessed on
24 January 2022), and PRODIGY [56] (https://wenmr.science.uu.nl/prodigy, accessed on
24 January 2022) web servers were employed.

3.4. Molecular Dynamics Simulation Analysis of AVP with the Mpro Enzyme

The molecular dynamics of the Mpro–AVP docked complexes were determined using
the Ligand and Receptor Molecular Dynamics (LARMD) web server (http://chemyang.
ccnu.edu.cn/ccb/server/LARMD/, accessed on 24 January 2022) [57]. The steered molecu-
lar dynamics simulation (Str_mod) was chosen for one-nanosecond molecular dynamics
simulation in an explicit water model.

4. Conclusions

In conclusion, all 10 selected AVPs named AVP1 to AVP10 from our proposed bioinfor-
matic virtual screening workflow were quite diverse in length (7–33 amino acid residues).
These top-ten AVP candidates contain hydrophilic amino acid residues and have a posi-
tive net charge. The molecular docking performances infer that all AVP candidates had
significant hydrogen bonding with the SARS-CoV-2 main protease (PDB ID = 7C2Q) active
site at Thr22–24, Glu154, and Thr178 in domain 2 with short bonding distances. AVP4 was
the best candidate for SARS-CoV-2 Mpro inhibition with the highest affinity and binding
energy among all selected AVPs. Further in vitro and in vivo studies must be conducted to
authenticate the anti-COVID-19 potential of these AVP candidates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics11101318/s1, Table S1: Total peptide sequences of the putative peptidome of rice
bran (Oryza sativa) hydrolyzed by pepsin, trypsin, and chymotrypsin.
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