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Abstract

:

Imipenem is the most efficient antibiotic against Acinetobacter baumannii infection, but new research has shown that the organism has also developed resistance to this agent. A. baumannii isolates from a total of 110 clinical samples were identified by multiplex PCR. The antibacterial activity of Syzygium aromaticum multiple extracts was assessed following the GC-Mass spectra analysis. The molecular docking study was performed to investigate the binding mode of interactions of guanosine (Ethanolic extract compound) against Penicillin- binding proteins 1 and 3 of A. baumannii. Ten isolates of A. baumannii were confirmed to carry recA and iutA genes. Isolates were multidrug-resistant containing blaTEM and BlaSHV. The concentrations (0.04 to 0.125 mg mL−1) of S. aromaticum ethanolic extract were very promising against A. baumannii isolates. Even though imipenem (0.02 mg mL−1) individually showed a great bactericidal efficacy against all isolates, the in-silico study of guanosine, apioline, eugenol, and elemicin showed acceptable fitting to the binding site of the A. baumannii PBP1 and/or PBP3 with highest binding energy for guanosine between −7.1 and −8.1 kcal/mol respectively. Moreover, it formed π-stacked interactions with the residue ARG76 at 4.14 and 5.6, Å respectively. These findings might support the in vitro study and show a substantial increase in binding affinity and enhanced physicochemical characteristics compared to imipenem.
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1. Introduction


One of the principal global health hazards is recognized by the Multi-Drug Resistant (MDR) gram-negative bacterial diseases which contribute worldwide to nosocomial infections [1]. In Egypt, antimicrobial resistance monitoring could be used as a prerequisite to avoid nosocomial infections [2]. Acinetobacter baumannii is a gram-negative aerobic coccobacillus, common in hospital settings, particularly in intensive care (ICU). Septicemia, pneumonia, endocarditis, meningitis, and dermatitis are among the bacterial nosocomial infections they cause [3]. A. baumannii is generally antibiotic-resistant because of decreased permeability, efflux pumping systems, inactivation of enzymes, and the formation of biofilm [4,5]. Thus, they are often β-lactams, aminoglycosides, and quinolones resistant [6]. Several virulence factors such as colicin V production (cvaC), curli fibers (csg), siderophores such as aerobactin (iutA), and cytotoxic necrotizing factor (cnf) are responsible for the pathogenicity of A. baumannii [7]. β-lactam antibiotics such as cephalosporins, carbapenems, and penicillins represent approximately 60% of the used antibiotics [8]. A. baumannii resistance is mainly due to Extended-Spectrum Beta-Lactamases (ESBLs); which could disrupt various β-lactam antimicrobial agents as penicillins and their derivatives [9]. ESBLs are encoded by specific genes such as; blaTEM (encoded for penicillins-resistance), blaSHV (sulfhydryl variable), and blaCTX (encoded for cephalosporins-resistance) [10,11,12]. Many researchers have identified the causes of this resistance to pathogens. One of the mechanisms relating to beta-lactam bacterial resistance is the reduction of binding affinity between penicillin-binding proteins (PBP) and beta-lactam antibiotics [13,14]. The earliest in vitro experimentations have demonstrated that imipenem and/or sulbactam binds to penicillin-binding proteins (PBPs) on Acinetobacter spp. accordingly, it has been proposed that bacteria are killed by this mechanism. [15,16]. Detection of latent virulence genes and/or antibiotic resistance genes in clinical isolates of A. baumannii has several epidemiologically important findings that allow the research to track the spread of this bacterium’s infectious diseases [17]. To combat multi-drug resistant gram-negative bacteria and their biofilm, natural phytocompounds that mimic enzymes are necessary. [18,19]. The discovery of new products used for the treatment of severe diseases was reported in herbal medicines as a valuable source [20]. Many plant species like Syzygium aromaticum have different pharmacological and antibacterial actions because of their constituents, such as glycosides, hormones, tannins, alkaloids, and saponins [21,22]. Cloves (Syzygium aromaticum, syn. Eugenia aromaticum, or Eugenia caryophyllata) are the aromatic desiccated buds [23]. It belongs to the genus Eugenia (family Myrtaceae). Clove is known universally. It is used mostly in food, medicinal products, perfume, and cosmetics. [24]. There is also a compelling requirement to identify novel pharmacological targets and to understand the function of possible therapies in the treatment of MDR A. baumannii infections. In the present study, the prevalence, antibiogram, PCR detection of virulence, and antibiotics resistant genes of A. baumannii isolated from different clinical samples were investigated. Subsequently, the phytochemical investigations of Syzygium aromaticum different extracts were carried out using gas chromatography-mass spectrometer technique (GC-MS) (Thermo scientific™ Technologies Australia, Trace™ 1310 Series). The antibacterial activity of the extracts or imipenem was tested in vitro against A. baumannii isolates. Docking studies were conducted to determine and compare the interactions of both Syzygium aromaticum compounds and the antibiotic imipenem inside the bacterial outer membrane enzymes’ active sites.




2. Results


2.1. Patients and Clinical Characteristics


A total of 110 patients with clinical evidence of nosocomial infection (respiratory diseases, elevated liver and/or kidney functions, etc.) were enrolled in the study (Table 1). Of them, 63 (56.88) were females and 47 (43.12%) were males. The majority (50.9%—38 female; 18 male) of participants were found in the age group between 30 and 60 years. Thirty patients (7 female; 23 male) with a percentage of approximately (27.3%) of the study participants were above 60 years old, while 21.8% (18 female; 6 male) were below 30 years old. Table 1 depicts the clinical characteristics of the study participants.



The Incidence of A. baumannii Isolates among Examined Clinical Samples


The prevalence of the isolated bacteria in the clinical samples is illustrated in Figure 1. Among the 110 clinical specimens, the highest percentage of A. baumannii was 66.04% followed by 18.87% and 15.09% was recorded for sputum, wound, and urine samples respectively (Figure 1). The total bacterial count in urine culture showed that 70% (21/30) of female patients had a range of 104 to 105 CFU/mL compared to 65% (13/20) of male patients. While 5% of female and 2% of male patients had CFU values ≥ 106.





2.2. Antimicrobial Susceptibility Testing


A total of 10 (9.09%) of A. baumannii isolates were recovered from sputum samples (n = 7; 70%), urine (n = 2; 20%) and pus (n = 1; 10%). The rate of resistant isolates to a panel of antibiotics with different potency was illustrated as MIC values (µg mL−1) in a heat- map as shown in Figure 2. All isolates (n = 10; 100%) displayed a high resistance pattern to Ticarcillin, Ticarcillin/Clavulanic Acid, Piperacillin, Piperacillin/Tazobactam, Cefotaxime, Cefepime, Ciprofloxacin, and Amikacin. Around (80%) are resistant to Gentamicin and Tobramycin; and (70%) are resistant to imipenem and meropenem. An intermediate resistant levels with (60 and 40%) to Trimethoprim/Sulfamethoxazole and Minocycline respectively. Interestingly, sensitivity levels within Colistin and Minocycline were observed. According to the Vitek-2 compact system test, three out of 10 A. baumannii isolates (codes A4, A7, and A9) were found to share the same phenotype and antibiotic pattern profile. Hence, these isolates were skipped. The rest of the isolates that showed different phenotypes and antibiotic patterns such as (A1, A2, A3, A5, A6, and A8) were considered for further experiments.



Detection of Virulence and Antibiotic-Resistant Genes


The multiplex PCR screening for virulence and antibiotic-resistant genes showed that 100% of A. baumannii were carrying the recA and iutA virulence genes (Table 2; Figure 3). On the other hand, the antibiotic-resistant genes, blaTEM was present in all A. baumannii isolates. BlaSHV was present with a percentage of approximately 83% since the isolate (A8) missed that gene (Table 2; Figure 3).





2.3. Gas Chromatography-Mass Spectrometry (GC/MS) Analysis


Plant content analysis and extraction play an important role in the progress, restoration, and quality management of herbal formulations. As a result, one of the primary goals of this analysis was to identify the bioactive compounds found in the S. aromaticum extracts to assess their role in improving the antibacterial activity against A. baumannii isolates. Eighteen signal peaks related to separate components were obtained by gas chromatography-mass spectrometry (GC/MS) in the aqueous extract of S. aromaticum (Table 3). The main constituents were α-pinene (18.82%); Beta-caryophyllene (15.12%); oleic acid (14.52%); camphor (11.75%); globuolol (11.35%); Loganetin (8.51%); Apioline (5.45%) and Hexadecanoic acid (4.59%). The ethanol extract possesses 12 signal peaks for compounds such as oleic acid (27.22%); Guanosine (8.91%); indole (6.83%) and 1-Eicosene (6.3%). Finally, the highest percentage content in the ethyl acetate extract gives Linoleic acid (36.16%); Citral (13.48%), and Hexadecanoic acid (11.95%). Other active compounds with their peak number, concentration (peak area %), and retention time (RT) are presented in Table 3.




2.4. In Vitro Assay for the Antibacterial Activity of S. aromaticum Extracts


Antibacterial activity of S. aromaticum different extracts and Imipenem against A. baumannii isolates was analyzed by minimal inhibitory concentrations (MIC) by determining the bacterial viability using a colorimetric INT-formazan assay. As a result, we determined the minimal bactericidal concentrations (MBC) which confirmed the killing of A. baumannii isolates over time (24 h). The individual use of S. aromaticum aqueous and/or ethyl acetate extracts against A. baumannii isolates (A1, A2, A3, A5, A6, and A8) exhibited MBC values varying from 0.17 to 0.25 mg mL−1, respectively (Figure 4A,C). Within isolates A1 and A6, ethanol extracts revealed MBC with significant values (0.04 to 0.125 mg mL−1) respectively when compared to Imipenem. (Figure 4B). It is worth mentioning that Imipenem showed a great bactericidal efficacy against all isolates with a concentration of 0.02 mg mL−1 are adequate to kill all the tested A. baumannii isolates (Figure 4).




2.5. Molecular Docking Studies of Standard Antibiotic and Herbal Ligands


From the obtained data in Table 4, the antibiotic (Imipenem) suited the binding sites of (PBP1 and PBP3) well, with binding energies ranging from −6.8 to −6.5 kcal/mol respectively (Figure 5). Moreover, the molecular docking simulations were performed for Guanosine, Apioline, Eugenol, and Elemicin against the target proteins (PBP1 and 3) to support the in vitro study via their mode of interactions (Figure 6 and Figure 7). The screened compound (guanosine) displayed respectable fitting to the same binding sites of the targets and having binding energies of −7.1 to −8.1 kcal/mol, respectively. The compound docked to the target protein PBP1 through HB interactions with the residues GLN285 and TYR415 at 2.98 and 2.03 Å, respectively. In addition, it formed two types of interactions such as HB and π- stacking with the target protein PBP3. The guanosine exhibited HBs with the residues ARG71, ARG76 and TYR192 at the distances of 2.97, 2.84, 2.93, and 2.25 Å, respectively. Moreover, it formed π-stacked interactions with the residue ARG76 at 4.14 and 5.6 Å, respectively (Figure 5).



The extracted phyto-compounds (Apioline, Eugenol, and Elemicin) were successfully docked to PBP1 with the binding energies −5.6, −5.4 and −5.3 Å, respectively (Table 4, Figure 6). Apioline docked with the target through π-sigma interaction with the residue TYR707 at 3.60 Å. While, Eugenol docked through π-cation interaction with ARG298 at 4.70 Å. Finally, Elemicin formed two π-cation interactions with the residue ARG236 at 5.48 and 4.12 Å, respectively. For the second enzyme PBP3, the molecules exhibited binding affinities to the active site pockets with docking scores −6.0, −5.8, and −5.2 Å, respectively. They showed π-stacking, similar to π-sigma and π-cation interactions with the residues TYR450 and Lys339 (Table 4, Figure 7).





3. Discussion


The risk of antibiotic-resistant nosocomial infections becomes life-threatening in the intensive care unit and other areas of hospital care [25]. Multi-drug resistant bacteria such as A. baumannii and P. aeruginosa cause many of these infections [6]. The current study showed the proportion of nosocomial infections due to the gram-negative bacilli A. baumannii isolated from clinical samples as urine (15.09%); wound (18.87%); and sputum (66.04%) among the patients (Figure 1). These bacteria are a common cause of urinary tract infections (UTIs) that upset the kidney, leading to pyelonephritis, as well as the bladder, resulting in cystitis [26]. UTI symptoms included elevated kidney function and high levels of A. baumannii in the patients’ sputum (66.04%) (Table 1). This result is conceivable since UTI symptoms are not a reliable indication of illness. The presence of bacteria must be confirmed by urine culture in order to diagnose UTI [27]. The urine culture in our results indicated the presence of bacteriuria in 70% of female patients and 65% of male patients. The percentage of A. baumannii in our study was in agreement with the results obtained by Al-Agamy et al. [10] the highest prevalence of A. baumannii isolates was in respiratory samples followed by wound samples and urine (Figure 1). Our findings are in agreement with the results obtained by Abdulzahra et al. [28]. The antibiotic susceptibility test for A. baumannii isolates indicated that all isolates (n = 10; 100%) were multi-drug resistant to Ticarcillin, Ticarcillin/Clavulanic Acid, Piperacillin, Piperacillin/Tazobactam, Cefotaxime, Cefepime, Ciprofloxacin, and Amikacin, while 70–80% are extensively drug-resistant. Resistance decreased to 40% with Minocycline and all isolates were sensitive to Colistin (Figure 2). Our findings are in covenant with earlier results concerning the MDR isolates [29]. Some of the most significant virulence genes of A. baumannii are colicin V production, curi fibers (csg), siderophores, such as aerobactin (iutA), and cytotoxic necrotizing factors (cnf) [30,31]. Virulence genes such as recA and iutA were present in all isolates of A. baumannii (Table 2; Figure 3). The same findings were confirmed earlier for 18.75% of A. baumannii isolates from the hospital environment were carrying iutA genes [32]. Antibiotic-resistant genes blaTEM and blaSHV were the most common in A. baumannii as (100%) and (83%) respectively (Table 2; Figure 3). This finding is consistent with the results reported by Beriş et al. [11,33], where the prevalence of blaTEM and blaSHV was 55.7% and 7.7%, respectively. The highest percentage of blaTEM (100%) and absence of blaCTX in all isolates are in concert with the findings reported by Al-Agamy et al. [10]. The current study confirmed the promising efficacy of all Syzygium aromaticum extracts against all A. baumannii isolates with the lowest MBC values varied from 0.04 to 0.125 mg mL−1 that recorded for the ethanolic one (Figure 4). This could be due to the presence of some active phytochemicals such as guanosine, α- Pinene, Beta-caryophyllene; oleic acid; camphor, globulol, and loganetin that were detected in the GC-MS analysis (Table 3). α-pinenes were detected earlier as the main component in S. aromaticum aqueous extract [34]. The bactericidal activities of α-pinenes against both gram-negative and positive bacteria were reported earlier by Mercier et al. [35]. α-pinenes kill bacteria by damaging membrane structure and function [36]. A membrane’s expansion and fluidity were enhanced as a result of its lipophilic nature. Beta-caryophyllene is the most common antibacterial constituent in essential oils of the Syzygium genus, it is detected in S. aromaticum, S. cumini, S. polyanthum and S. samarangense [37]. The mechanism of action was discussed recently as Beta-caryophyllene alters the bacterial membrane permeability and causes non-selective pore formation that kills the bacterial cells [38]. Oleic acid in Syzgium aromaticum could inhibit bacterial growth by inhibiting the bacterial fatty acid synthesis [39]. The antibacterial activity of camphor present in lavender essential oil was reported by De Azeredo et al. [40]. Another important phyto-component such as globulol was discussed for their antifungal and antibacterial activity [41]. Limonene has previously been reported in an aqueous extract of Syzygium aromaticum by Jimoh et al. [42]. Finally, guanosine has been reported as a potent antibacterial activity both in vitro and in vivo [43]. Moreover, in silico molecular docking and modeling techniques [44,45] were performed in the current study for the ethanolic extracted compound (guanosine) for better understanding their mode of action through the interaction with the active site pockets of PBP1 and PBP3, and to identify new inhibitors as antibacterial agents. The result showed that the target compounds exhibited binding energy higher than standard drug imipenem (−7.1 and −8.1 Å, respectively) against the target proteins (Table 4; Figure 5, Figure 6 and Figure 7). The SAR (structure activity relationship) analysis showed that the antibacterial activity of guanosine can be modulated by the presence of pyrimidine and indole moieties, and hydroxyl and amino groups (Figure 5). Therefore, guanosine may be considered a good inhibitor for PBP1 and PBP3 proteins. In recent times, computational modeling and molecular-dynamic simulations have shown that phytoligands, such as Apioline, Eugenol, and Elemicin, have good binding potential with minimum binding energy and that they are stabilized by an interaction between antibacterial imipenem (carbapenam) of the present three generations, with their common objectives in A. baumannii [14]. Virtual screening findings and drug-like tests have shown that phyto-compounds are a hit molecule due to a much greater binding affinity (−9.4 kcal/mol) compared with imipenem in their target PBP1 of A. baumannii [13]. Displayed guanosine as a relevant screened molecule that has binding energies of −7.1 to −8.1 kcal/mol at the binding site for PBP1 and PBP3 proteins, respectively. Form the tabulated data in Table 4; we can conclude that guanosine has the best docking score and intermolecular interactions as compared with the other selected compounds (Apioline, Eugenol, and Elemicin). As a result, it might be a promising pharmacological option for combating A. baumannii. Given the increasing importance of pyrimidine compounds, particularly in recent years, which have several applications in various fields, most notably in medicine as antibacterial agents [46]. In addition, pyrimidines are nitrogen heterocyclic aromatic compounds with great interest as they constitute an important class of natural products. The substituted pyrimidines such as Brodiprim, Iclaprim, Trimethoprim, and Pyrimethamine are biologically important compounds and act as effective antibacterial drugs [47]. Therefore, Guanosine with pyrimidine ring and other phyto-compounds such as Apioline, Eugenol, and Elemicin was selected as drug candidate against PBP1 and PBP3 proteins.




4. Materials and Methods


4.1. Sampling Collection, Isolation, and Processing


One hundred and ten specimens; urine (n = 50), sputum (n = 40), and wound swabs (n = 20) were randomly collected under complete aseptic conditions from different hospitals and clinics in Qena province, Egypt (from January to December 2018). In total, 5 mL of clean-catch urine from patients suspected of urinary tract infection (UTI) is obtained in a sterile container. Urine samples were inoculated on MacConkey agar and/or Blood agar (Merck, Germany) at 37 °C for 24 h and observed for bacterial growth. Blood agar colonies were counted using a colony counter and checked for significant bacteriuria. The culture that grew ≥105 CFU/mL, was measured as significant bacteriuria. For heterogeneous colonies, sub-culturing of individual distinct colonies was performed to ensure pure cultures. The sterile cotton swabs dipped into normal saline with the Levine method were obtained aseptically from two wound samples of each participant [48]. Sputum samples were taken from patients over a self-induced cough into sterile cups and sent for culture. Samples were primarily identified using typical laboratory approaches including growth on MacConkey agar and/or Blood agar (Merck, Germany) and Gram staining. Plates were incubated at 37 °C and examined for detectable bacterial growth after 48 h of incubation. The isolated bacteria were further identified using the automated system Vitek-2 (bioMérieux, France).




4.2. Phenotypic Identification of the Isolates by Vitek-2 Systems


The bacterial isolates were identified with the Automated Identification Biomerieux Vitek-2 System via morphological, classical biochemical studies. In total, the 41 tests included 18 sugar assimilation and fermentation; 2 decarboxylase tests, and 3 different tests on the 64 ID-GNB plastic well (for urease, utilization of malonate, and tryptophane deaminase). With a vacuum card, the organism’s 0.50 McFarland suspension is inoculated, made from a blood agar plate of 18–20 h (BioMe’rieux), and is automatically screened and inserted manually inside the Vitek-2 reader. The fluorescence of the inoculator is measured every 15 min [49]. All isolates identified as Acinetobacter baumannii were used for further characterization.




4.3. Antimicrobial Susceptibility Testing


For all recovered isolates, antibiograms were calculated according to the disc diffusion method mentioned earlier and compared with the standard chart (CLSI, 2017) [50]. MIC was detected by Vitek-2 compact system (bioMérieux, France), the susceptibility of Acinetobacter baumannii isolates was tested for 15 antibiotics (Bioanalyse ®). The used antibiotics were Amikacin, Tobramycin, Gentamicin, Ticarcillin, Ticarcillin/Clavulanic Acid, Piperacillin, Piperacillin/Tazobactam, Cefotaxime, Cefepime, Imipenem, Meropenem, Ciprofloxacin, Levofloxacin, Trimethoprim/Sulfamethoxazole and Minocycline. Multidrug resistance was defined as resistance to three or more antibiotics of the different classes [51]. A. baumannii isolates with the same phenotype and antibiotic pattern profile were excluded, only different isolates were considered for further experiments.




4.4. Recognition of Virulence and Antibiotic-Resistant Genes of A. baumannii Isolates


Molecular representation of the recovered A. baumannii was approved by multiplex PCR. The detection of eight encoding genes of virulence and antibiotic resistance was performed by using 16 primers. Set extraction of DNA was carried according to QIAamp DNA mini kit instructions. Genes encoding different virulence factors recA and iutA. For antibiotic resistance genes blaTEM, and blaSHV were analyzed by multiplex PCR.




4.5. DNA Amplification for the Selected Virulence and Antibiotic Resistance Genes of Isolates


As previously stated, DNA extraction was carried out under QIAamp DNA mini-kit instructions (QIAGEN, Germany, GmbH) [52]. Concisely, 200 μL of the sample suspension was inoculated with 10 μL of proteinase K and 200 μL of lysis buffer at 56 °C for 10 min. The lysate was added to 200 μL of 100% ethanol following incubation. The sample was washed and centrifuged according to the recommendations of the manufacturer. Nucleic acid was eluted with 100 μL of elution buffer provided in the kit. PCR amplification was performed using oligonucleotide primer (METABION, Germany) that were utilized in a 25 μL reaction containing 12.5 μL of EMERALDAMP Max PCR Master Mix (TAKARA, Japan), 1 μL of each primer of 20 pmol concentration, 5.5 μL of dist. water and 6 μL of DNA template. Applied thermal cyclers have been used to react in the biosystem. Table 5 summarizes all amplicon sizes and cycling conditions. The products of PCR were separated by electrophoresis on 1.5% agarose gel (APPLICHEM, Germany, GmbH) in 1xTBE buffer at room temperature using gradients of 5 V/cm. For gel analysis, 15 μL of the products were loaded in each gel slot. Gelpilot 100 bp and 100 bp plus ladders (QIAGEN, Germany, GmbH) and GeneRuler 100 bp ladder (FERMENTAS, THERMO) was used as a marker for electrophoresis to determine the fragment sizes. The gel was photographed by a gel documentation system (ALPHA INNOTECH, BIOMETRA) and the data were analyzed through computer software (AUTOMATIC IMAGE CAPTURE, USA).




4.6. Plant Material and Extraction


Syzygium aromaticum (clove) was purchased from a local market in Qena city, Egypt. Dry seeds were washed with sterile water and further dried, ground into a fine powder using a tissue grinder (IKA®® A10, Germany). Plant species have been visually imaged for documentation under the Department of Botany and Microbiology, Science Faculty, South Valley University, Qena, Egypt, for further taxonomic identification purposes. Three solvents were used for the extract of bioactive components from Syzygium aromaticum, as follows: 10 g of plant powder was soaked separately in 100 mLof hot distilled water, ethanol, and/or ethyl acetate for 7 days with continuous stirring (150 rpm) at room temperature by using a bigger bill shaker, USA. The obtained extracts were filtered through a Buchner funnel with Whatman No.1 filter paper and evaporated by a rotary evaporator (BUCHI R-114, Switzerland) under reduced pressure to dryness at 45 °C. All extract residue were dissolved in dimethyl sulfoxide (DMSO) except the aqueous extract, which dissolved in sterile distilled water at a concentration of 100 mg/mL [56]. All extracts were sterilized using a syringe filter equipped with a 45 μm membrane filter, then kept at −4 °C.




4.7. Determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) by INT Reduction Assay


The determination of MIC and MBC were assayed as described earlier [57]. The freshly prepared culture of A. baumannii isolates was adjusted to OD595 of 0.01. 100 μL of each isolate culture was put into sterilized 96-well plates. Then, 20 μL of the original S. aromaticum extracts (100 mg mL−1) was added (serial dilutions of 10−1–10−10 were used, eight replicates were made for each dilution into complete raw of the 96-well plate). Imipenem (10 mg mL−1) and un-inoculated media were tested as the positive and negative control, respectively. After 24 h incubation at 37 °C, MIC was determined by the addition of 40μL of p-iodonitrotetrazolium violet chloride (INT) (0.2 mg/mL, Sigma-Aldrich) to the plates and re-incubated at 37 °C for 30 min. The lowest concentration which banned color change is the MIC [58,59]. The MBC was determined by transferring 50 mL from each well of overnight MIC plates (and/or higher) to sterile (TSA) fresh plates. Viable colonies were counted after 24 h at 37 °C. The limit of detection for this assay was 101 CFU/mL.




4.8. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis


S. aromaticum different extracts were subjected to gas chromatography-mass spectrometer technique (GC-MS) (Thermo scientific™ technologies, Trace™ 1310) with capillary column TG-5 (30 m × 250 μm × 0.25 μm) system were used. The mass detector used in split mode and helium gas with a flow rate of 1.5 mL/min was used as a carrier. The injector was operated at 230 °C and the oven temperature for the initial setup was 60 °C for 2 min ramp 10/min to 300 °C for 8 min. Mass spectra were taken at 70 eV, total GC running time was 35 min.




4.9. Molecular Docking Studies of Standard Antibiotic and Herbal Ligands


The objective of this work is to create a new, sensitive, and possible imipenem ligand derivative against the target A. baumannii penicillin-binding protein 1 and/or 3 (PBP1–PBP3). It begins by studying the crystal structure of imipenem treated PBP1 and PBP3, finding the active site of the protein (pocket) and examining interactivities with imipenem. A further step is to create novel ligand molecules from S. aromaticum derived bioactive compounds, including guanosine based on the imipenem structure complex with PBP1/3; the calculations will then be completed to calculate the free binding energy and physical-chemical characteristics of every molecule. To identify the causes of shifting powers, a binding interaction between the chosen analogs and the receiver may also be analyzed. The 3D structures of A. baumannii PBP1 and PBP3 were downloaded from the protein data bank [60]. The PDB files were energy minimized and optimized by the removal of water molecules and atomic clashes to get a stable confirmation. A receptor grid was then generated at the centroid of the active site cavity to perform the screening approach [61,62]. The ligand molecule was sketched using Chem Draw Ultra 0.7, then converted to SDF format using Open Babel software [63]. The docking study was carried out using the PyRx-virtual screening tool [64].




4.10. Statistical Data Analysis


Data were analyzed using the Mann–Whitney U test or a Kruskal–Wallis test followed by post hoc Dunn’s multiple comparisons. Differences were considered significant at p values of ≤0.05. For all statistical analyses, GraphPad Prism version 8 was used.





5. Conclusions


A. baumannii represents vital problems because of the high percentage of antibiotics resistance, their encoding gene for virulence, and antibiotics resistance. Although ethanol extract of Syzygium aromaticum was promising for the in vitro study against A. baumannii, improving the potency of beta-lactam antibiotics can be an overwhelming pre-condition for antibiotic resistance; it is thus vital that new analogues of A. baumannii PBP1 and/or PBP3 imipenem are developed, with a substantially higher relative binding energy free. The results show how imipenem analogues may be designed using a phyto-compound such as guanosine, apioline, eugenol, and elemicin against the target proteins (A. baumannii PBP1 and/or PBP3) in the in-silico drug design. This stimulating analogue exhibits increased physico-chemical characteristics, as well as greater binding affinity. Therefore, guanosine and other biologically active compounds extracted from S. aromaticum are eco-friendly and might be employed as an alternative antimicrobial agent against A. baumannii isolates.
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Figure 1. The incidence of Acinetobacter baumannii isolates among examined clinical samples. 
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Figure 2. The heat-map illustrates the antibiograms for all the recovered A. baumannii isolates (A1: A10) by ViteK-2 systems. The intensity of colors indicates the numerical value of the MIC (µg/mL). TIC; Ticarcillin: TIM; Ticarcillin/Clavulanic Acid: PIP; Piperacillin; PTZ; Piperacillin/Tazobactam: CTX; Cefotaxime: PM; Cefepime; IPM; Imipenem: MEM; Meropenam: AK; Amikacin: CN; Gentamicin; TOB; Tobramycin: CIP; Ciprofloxacin: Min; Minocycline: CT; Colistin: SXT; Trimethoprim/Sulfamethxazole. Interpretations breakpoint of antibiotic susceptibility is based on CLSI criteria. 
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Figure 3. 1.5% agarose gel electrophoresis of multiplex PCR of virulence and antibiotic resistant genes for the A. baumannii isolates. (A): recA (425 bp) gene for identification A. baumannii. Lane L: Gel pilot 100 bp plus ladder (cat.no. 239045) supplied from QIAGEN (USA) as molecular size DNA marker Lane Pos: Positive control for recA gene confirmed by reference laboratory for quality control. Lane Neg: Negative control. A1 for urine isolates; A5 for wound isolates, A2, A3, A6, A8 for respiratory isolates. (B): iutA (300 bp) virulence gene. (C,D): blaTEM (516 bp) and blaSHV (392 bp) antibiotic resistance genes, respectively. 
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Figure 4. The differences of MIC and MBC values of Imipenem and S. aromaticum different extracts against A. baumannii isolates. Shown are the medians from at least three independent measurements for MIC (blue) and MBC (yellow). S. aromaticum different extracts (100 mg mL−1) (A): aqueous extract; (B): ethanolic extract; and (C): ethyl acetate extract. Imi: Imipenem (10 mg mL−1). The error bars indicate the interquartile range. Significant differences between the data sets are marked by asterisks (p < 0.05; Kruskal–Wallis test and post hoc Dunn’s multiple comparisons). A1: A8 are the A. baumannii isolates codes. A1: isolates from urine sample; A5: from wound samples; A2, A3, A6, and A8 for respiratory sample. 
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Figure 5. Molecular interactions of Imipenem with penicillin-binding protein 1 and 3 (PBP1 and PBP3) in Acinetobacter baumannii. Shown are the 2D binding modes upon docking. HBs are represented in blue and green dotted line colors. 
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Figure 6. Molecular interactions of Guanosine, Apioline, Eugenol, and Elemicin with penicillin-binding protein 1 (PBP1) in Acinetobacter baumannii. Shown are the 3D (left) and 2D (right) binding modes upon docking. HBs are represented in blue and green dotted line colors while π- interactions are shown in yellow. 
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Figure 7. Molecular interactions of Guanosine, Apioline, Eugenol, and Elemicin with penicillin-binding protein 3 (PBP3) in Acinetobacter baumannii. Shown are the 3D (left) and 2D (right) binding modes upon docking. HBs are represented in blue and green dotted line colors while π- interactions are shown in yellow and orange line colors. 
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Table 1. Data and patient characters for the examined clinical samples.
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Female

	
Male

	
Patient Character




	
56.88%

	
No = 63

	
43.12%

	
No = 47






	
28.5

	
18

	
12.77

	
6

	
below (30)

	
Age (year)




	
60.3

	
38

	
38.30

	
18

	
between (30–60)




	
11.2

	
7

	
48.93

	
23

	
above (60)




	
Prevalence of underlying disease




	
20.63

	
9

	
6.38

	
3

	
Respiratory disease.




	
16.1

	
7

	
10.63

	
5

	
Diabetes mellitus.




	
27.0

	
17

	
21.3

	
10

	
Diabetic and hypertension




	
15.87

	
10

	
10.63

	
5

	
Diabetic and respiratory disease




	
11.11

	
7

	
17.02

	
8

	
Diabetic (respiratory disease and hypertension)




	
9.51

	
6

	
10.63

	
5

	
Patients with elevated liver function test.




	
11.1

	
7

	
19.16

	
9

	
Patients with elevated kidney function test.




	
0.0

	
0

	
4.26

	
2

	
Catheter presence
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Table 2. Virulence and antibiotic resistant genes for the Acinetobacter baumannii isolates.






Table 2. Virulence and antibiotic resistant genes for the Acinetobacter baumannii isolates.





	
Types of Samples

(Isolate No.)

	
Virulence Genes

	
Antibiotic Resistance Genes




	
recA

	
iutA

	
blaTEM

	
BlaSHV






	
Urine (A1)

	
1

	
1

	
1

	
1




	
Wound (A5)

	
1

	
1

	
1

	
1




	
Sputum (A2,A3,A6, A8 *)

	
4

	
4

	
4

	
3




	
Total

	
6

	
6

	
6

	
5








A1: isolates from urine sample; A5: from wound samples; A2, A3, A6 and A8 for respiratory sample. * A8 isolate missed BlaSHV.
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Table 3. GC-MS for bioactive chemical components of different extracts from S. aromaticum *.
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Aqueous Extracts




	
No.

	
RT (min)

	
Compound Name

	
M. Formula

	
M.wt

	
Area (%)






	
1

	
7.38

	
Limonene

	
C10H16

	
136

	
1.56




	
2

	
8.61

	
α-Pinene

	
C10H16

	
136

	
18.82




	
3

	
11.26

	
(2E)-3,7-dimethylocta-2,6-dienal

	
C10H16O

	
152

	
0.86




	
4

	
13.18

	
Camphor

	
C10H16O

	
152

	
11.75




	
5

	
14.33

	
Cyclododecene

	
C12H22

	
166

	
0.76




	
6

	
14.80

	
2,4 Decadienal

	
C10H16O

	
152

	
1.05




	
7

	
18.06

	
α -Chamigrene

	
C15H24

	
204

	
0.52




	
8

	
18.21

	
à-Guaiene

	
C15H24

	
204

	
0.59




	
9

	
18.57

	
Beta-caryophyllene

	
C15H24

	
204

	
15.12




	
10

	
19.32

	
Ethyl benzoylacetate

	
C11H12O3

	
192

	
1.05




	
11

	
19.52

	
Globulol

	
C15H26O

	
222

	
11.35




	
12

	
22.76

	
Apioline

	
C12H14O4

	
222

	
5.45




	
13

	
29.05

	
Hexadecanoic acid

	
C16H32O2

	
256

	
4.59




	
14

	
29.78

	
Loganetin

	
C11H16O5

	
228

	
8.51




	
15

	
30.75

	
Isobergapten

	
C12H8O4

	
216

	
1.09




	
16

	
32.66

	
Oleic acid

	
C18H34O2

	
282

	
14.52




	
17

	
32.86

	
Isochiapin B

	
C20H26N2O2

	
326

	
0.62




	
18

	
42.01

	
Lucenin

	
C27H30O16

	
610

	
0.56




	
Ethanolic extract

	




	
1

	
28.33

	
Pentenenitrile

	
C5H7N

	
81

	
4.37




	
2

	
29.66

	
Ethyl oleate

	
C20H38O2

	
310

	
2.54




	
3

	
32.17

	
cis-10-Nonadecenoic acid

	
C19H36O2

	
296

	
5.37




	
4

	
35.12

	
Indole

	
C8H7N

	
117

	
6.83




	
5

	
37.21

	
Guanosine

	
C10H13N5O5

	
283

	
8.91




	
6

	
39.55

	
Oleic acid

	
C18H34O2

	
282

	
27.22




	
7

	
39.75

	
Chlorozotocin

	
C9H16ClN3O7

	
313

	
0.52




	
8

	
40.62

	
1-Eicosene

	
C20H40

	
280

	
6.30




	
9

	
46.77

	
Nonadecene

	
C19H38

	
266

	
1.20




	
10

	
48.85

	
3-Hexacosanol

	
C26H54O

	
382

	
2.21




	
11

	
51.96

	
Nonacosane

	
C29H60

	
408

	
0.36




	
12

	
53.70

	
Dodecanoic acid

	
C12H24O2

	
200

	
2.34




	
Ethyl acetate extract




	
1

	
13.23

	
Linalool

	
C10H18O

	
154

	
1.24




	
2

	
13.94

	
Carveol

	
C10H16O

	
152

	
8.08




	
3

	
14.46

	
Citral

	
C10H16O

	
152

	
13.48




	
4

	
15.07

	
Eugenol

	
C10H12O2

	
164

	
1.91




	
5

	
15.23

	
1-Hexadecene

	
C16H32

	
224

	
0.16




	
6

	
18.30

	
Phenol, 2,4-bis(1,1-dimethylethyl)-

	
C14H22O

	
206

	
0.13




	
7

	
20.62

	
Elemicin

	
C12H16O3

	
208

	
3.32




	
8

	
21.73

	
Farnesyl acetate

	
C17H28O2

	
264

	
1.44




	
9

	
22.42

	
Heptadecane

	
C17H36

	
240

	
0.28




	
10

	
23.94

	
Tetradecanoic acid

	
C14H28O2

	
228

	
0.73




	
11

	
27.11

	
Hexadecanoic acid, methyl ester

	
C17H34O2

	
270

	
0.12




	
12

	
27.71

	
Alantolactone

	
C15H20O2

	
232

	
6.36




	
13

	
28.16

	
Hexadecanoic acid

	
C16H32O2

	
256

	
11.95




	
14

	
28.56

	
Eremanthin

	
C15H18O2

	
230

	
2.76




	
15

	
30.32

	
Linoleic acid methyl ester

	
C19H34O2

	
294

	
0.73




	
16

	
30.43

	
Oleic acid methyl ester

	
C19H36O2

	
296

	
0.37




	
17

	
31.60

	
Linoleic acid

	
C18H32O2

	
280

	
36.16




	
18

	
31.71

	
Oleic Acid

	
C18H34O2

	
282

	
6.39




	
19

	
31.95

	
Octadecanoic acid

	
C18H36O2

	
284

	
3.23




	
20

	
43.71

	
Ethyl iso-allocholate

	
C26H44O5

	
436

	
0.22








*: RT: Retention time per minute; active compounds detected by GC mass; area (%): percentage of compound; M. formula: molecular formula; M.wt: molecular weight of the compound (g/mol).
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Table 4. The binding affinity (kcal/mol) of some phyto-compounds and Imipenem with PBP1 and PBP3 after molecular docking.
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PBP1 (3udx)

	
PBP3 (3ue3)




	
Binding Energy

kcal/mol

	
Docked Complex

(Amino Acid–Ligand)

	
Distance (Å)

	
Binding Energy

kcal/mol

	
Docked Complex

(Amino Acid–Ligand)

	
Distance (Å)






	
Imipenem

	
−6.8

	
H–bond

	

	
−6.5

	
H–bond

	




	

	
GLN285:NE2–Imipenem

	
2.15

	

	
SER336–Imipenem

	
1.94




	

	
ASN416–Imipenem

	
2.55

	

	
SER336–Imipenem

	
2.17




	

	
PHE417–Imipenem

	
2.96

	

	
TYR450–Imipenem

	
2.23




	

	

	

	

	
THR526–Imipenem

	
2.18




	

	

	

	

	
THR526–Imipenem

	
1.99




	

	

	

	

	
THR528–Imipenem

	
2.53




	

	

	

	

	
THR528–Imipenem

	
2.97




	
Guanosine

	
−7.1

	
H–bond

	

	
−8.1

	
H–bond

	




	

	
GLN285:NE2–Guanosine

	
2.98

	

	
ARG71:NH1–Guanosine

	
2.97




	

	
TYR415:O–Guanosine

	

	

	
ARG71:NH1–Guanosine

	
2.84




	

	

	
2.03

	

	
ARG76:N–Guanosine

	
2.93




	

	

	

	

	
TYR192:O–Guanosine

	
2.25




	

	

	

	

	
π–π interaction

	




	

	

	

	

	
ARG76:N–Guanosine

	
4.14




	

	

	

	

	
ARG76:N–Guanosine

	
5.06




	
Apioline

	
−5.6

	
π–sigma interaction

	

	
−6.0

	
π–sigma interaction

	




	

	
TYR707–Apioline

	
3.60

	

	
TYR450–Apioline

	
3.70




	
Eugenol

	
−5.4

	
π–cation interaction

	

	
−5.8

	
π–cation interaction

	




	

	
ARG298:NH2–Eugenol

	
4.70

	

	
LYS339:NZ–Eugenol

	
5.64




	
Elemicin

	
−5.3

	
π–cation interaction

	

	
−5.2

	
π–sigma interaction

	




	

	
ARG236:NH1–Elemicin

	
5.48

	

	
TYR450–Elemicin

	
3.59




	

	
ARG236:NH2–Elemicin

	
4.12

	

	

	








The 3D structures of PBP1 and PBP3 were downloaded from the protein data bank (with pdb IDs: 3udx and 3ue3, respectively).
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Table 5. Primers sequences, target genes, amplicon sizes, and cycling conditions.
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Target Gene

	
Sequence

	
Amplified Segment (bp)

	
Primary Denaturation

	
Amplification (35 Cycles)

	
References




	
Secondary Denaturation

	
Annealing

	
Extension

	
Final Extension






	
Virulence genes used for Acinetobacter baumannii isolates *




	
recA

	
CCTGAATCTTCTGGTAAAAC

GTTTCTGGGCTGCCAAACATTAC

	
425

	
94 °C/5 min

	
94 °C/30 s

	
50 °C/45 s

	
72 °C/30 s

	
72 °C/10 min

	
[53]




	
iutA

	
GGCTGGACATGGGAACTGG

CGTCGGGAACGGGTAGAATCG

	
300

	
94 °C/5 min

	
94 °C/30 s

	
63 °C/30 s

	
72 °C/45 s

	
72 °C/7 min

	
[54]




	
Antibiotics resistance genes




	
blaTEM

	
ATCAGCAATAAACCAGC

CCCCGAAGAACGTTTTC

	
516

	
94 °C/5 min

	
94 °C/30 s

	
54 °C/40 s

	
72 °C/45 s

	
72 °C/10 min

	
[55]




	
blaSHV

	
AGGATTGACTGCCTTTTTG

ATTTGCTGATTTCGCTCG

	
392

	
94 °C/5 min

	
94 °C/30 s

	
54 °C/40 s

	
72 °C/45 s

	
72 °C/10 min

	
[55]








*: The specific sequences that were amplified for each of the used primers (Metabion, Germany).
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