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Abstract: Staphylococcus aureus frequently causes community- and hospital-acquired infections.
S. aureus attachment followed by biofilm formation on tissues and medical devices plays a significant
role in the establishment of chronic infections. Staphylococcal biofilms encase bacteria in a matrix and
protect the cells from antimicrobials and the immune system, resulting in infections that are highly
resistant to treatment. The biology of biofilms is complex and varies between organisms. In this
review, we focus our discussion on S. aureus biofilms and describe the stages of their formation. We
particularly emphasize genetic and biochemical processes that may be vulnerable to novel treatment
approaches. Against this background, we discuss treatment strategies that have been successful in
animal models of S. aureus biofilm-related infection and consider their possible use for the prevention
and eradication of biofilm-related S. aureus prosthetic joint infection.
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1. Staphylococcus aureus Biofilms: Slow Growing Organisms Highly Resistant to Drugs

Approximately 20% and 60% of healthy adults are persistent and intermittent S. aureus
nasal carriers, respectively [1]. S. aureus carriers are at higher risk of endogenous infection.
It has been shown that 80% of cases of severe invasive infections in S. aureus carriers
are caused by strains colonizing their anterior nares [2]. Acute infections are caused by
planktonic bacterial forms characterized by free floatation, while sessile forms mainly cause
chronic infections [3]. Sessile forms of bacteria are metabolically less active than planktonic
forms and are protected by a filmy layer of “slime” referred to as the extra-polymeric
substance (EPS) [4]. These properties of sessile forms of bacteria, particularly when they
form biofilms, make them recalcitrant to antibiotic treatment [4,5]. Biofilms represent a
mode of bacterial growth that acts as a multi-cellular structure, where each bacterial cell
works in coordination to keep the structure alive and safe from adverse conditions [6].

2. Stages of Biofilm Formation in S. aureus

Bacterial biofilm formation occurs in three sequential stages: 1. attachment, 2. matu-
ration, and 3. dispersal. Free-floating planktonic cells attach to surfaces and multiply to
form micro-colonies. During maturation, these micro-colonies produce an extracellular
matrix and form solid three-dimensional biofilm structures. After full maturation of the
biofilm, the extracellular matrix degrades and releases part of the bacteria to establish a
new biofilm at another location (Figure 1).

2.1. The First Step: Attachment of S. aureus to Surfaces

Planktonic cells come into contact with surfaces with the help of gravitational forces
and Brownian movement [7]. Attracting and repelling forces arising from physicochem-
ical and electrostatic interactions between bacterial cells and inanimate surfaces cause
the initial and reversible bacterial attachment [8]. Negatively charged extracellular DNA
(eDNA) helps to develop an electrostatic interaction [1]. In S. aureus, microbial surface
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components, such as fibronectin-binding proteins (FnBPA and FnBPB), clumping factors,
and Protein A, referred to collectively as microbial surface components recognizing adhe-
sive matrix molecules (MSCRAMMs), play an important role in the initial attachment to
surfaces [9–12]. S. aureus expresses up to 24 different cell-wall-anchored proteins, including
MSCRAMMs (FnBPs, ClfB, and SdrC proteins) and other proteins, such as SasG, Bap, and
SasC (Table 1) [13]. These intrinsic matrix molecules attach to the S. aureus cell wall after
being cleaved by the membrane-associated protein Sortase A [14], and they interact with
host matrix components, such as cytokeratin, fibronectin, collagen, and fibrinogen [15].
Loss of the Sortase and mutations in the fnbA and fnbB genes encoding FnBPA and FnBPB,
respectively, reduces biofilm formation in methicillin-resistant S. aureus (MRSA) [10]. Simi-
larly, mutants of the S. aureus Newman strain defective in clumping factor A adhere poorly
to fibrinogen-coated polymethylmethacrylate (PMMA) coverslips and do not form clumps
in soluble fibrinogen [11]. Additionally, novel staphylococcal Protein A receptor, C1qR, has
been identified in wounds [12].
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https://www.frontiersin.org/files/Articles/123319/fcimb-04-00178-HTML/image_m/fcimb-04-00178-g001.jpg (accessed
on 5 April 2021) by Lister J.L., Horswill A.R., Staphylococcus aureus biofilms: recent developments in biofilm dispersal,
Frontiers in cellular and infection microbiology, 2014, by permission of copyright holders Lister and Horswill, 2014, under
creative commons license http://creativecommons.org/licenses/by/4.0/ (accessed on 5 April 2021) [1]).

MSCRAMMs play a lesser role in attachment to abiotic surfaces, where electrostatic
and hydrophobic interactions predominate in the initial attachment [16]. Apart from
MSCRAMMs, teichoic acid, a negatively charged component of the S. aureus cell wall, is
also responsible for the initial, relatively loose attachment of planktonic cells [17]. Therefore,
while there are multiple mechanisms contributing to initial attachment, the process is a
dynamic one and bacteria may detach in response to repulsive forces and limited nutrient
availability in biofilms including iron [8,18].

2.2. Maturation of the S. aureus Biofilm

After initial attachment, and in the presence of sufficient nutrients, bacteria begin
to form micro-colonies [19]. Concurrently, changes in gene expression are triggered in
response to surface contact, leading to the upregulation of factors favoring transforma-
tion into sessile forms [20]. As these micro-colonies grow, they produce EPS to form
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a mature biofilm [21]. Biofilm maturation is characterized by intercellular aggregation
and three-dimensional structure formation [22]. In S. aureus, polysaccharide intercellular
adhesin/poly-β(1–6)-N-acetylglucosamine (PIA/PNAG) is responsible for intercellular ag-
gregation [23]. Intercellular adhesion (ica) locus mutant does not produce PIA/PNAG and
hence biofilm [23]. PIA/PNAG in combination with teichoic acid and proteins contributes
to the extracellular matrix of staphylococcal biofilm [22].

Expression of cell-wall-anchored proteins varies among strains and growth conditions
as some proteins are expressed only in iron-deficient conditions, while others are preferen-
tially expressed at exponential or stationary growth phases [13]. These proteins facilitate
intercellular binding and therefore the accumulation of bacterial cells [13]. For example,
S. aureus strains expressing the biofilm-associated protein (Bap) showed strong intercellular
and surface adherence resulting in luxuriant in vitro biofilm formation and persistent
infection in a mouse infection model, in contrast to bap mutants, which were less adherent
and weak biofilm producers [24]. Similarly, the addition of Protein A to growth media
induced biofilm formation, which was completely inhibited after the addition of antibodies
against Protein A [25]. In a murine model of subcutaneous catheter infection, the number of
wild-type bacteria recovered was significantly higher than the Protein A-deficient bacteria,
when the medical implant was co-infected with both the strains [25].

S. aureus also uses cytoplasmic proteins, such as enolase and GAPDH, as matrix com-
ponents [26]. These cytoplasmic proteins, probably released through autolysis, attach to
cell surfaces and eDNA at low pH and help in the formation of a stable three-dimensional
biofilm structure [26–28]. However, an S. aureus biofilm formation model in which the
bacteria do not use dedicated biofilm matrix proteins but recycle cytoplasmic proteins
released at the stationary phase has been proposed [26]. Other mechanisms for cyto-
plasmic protein release may be secretion, vesicle formation, and bacteriophage-related
cell lysis [29]. Extracellular proteins such as phenol-soluble modulins (PSMs), [30] and
nucleoid-associated proteins also help in biofilm stabilization by binding with eDNA [31],
an important structural component of the mature staphylococcal biofilm [32].

2.3. Triggering of the Biofilm Dispersal Response

Following biofilm maturation, bacterial cells disperse to start a new cycle of biofilm
formation at distant sites [33]. In S. aureus biofilms, early dispersal may begin after six hours
through the nuclease-dependent degradation of eDNA [34]. This early dispersal is known
as ‘exodus’ and helps in biofilm reorganization [34]. Exodus involves a subpopulation of
biofilm cells that secret nuclease [34].

Later stages of S. aureus biofilm dispersal are orchestrated by the agr quorum sensing
(QS) system (Figure 2) [35]. Quorum sensing (QS) is a coordinated cell to cell communica-
tion induced by chemical signals [36]. In S. aureus, these signals are short cyclical peptides
known as auto-inducing peptides (AIPs) [37]. The S. aureus agr system consists of four
genes (agrA, agrB, agrC, agrD), among which agrD and agrB synthesize and export AIPs,
while agrC and agrA form a signal transduction system [37,38]. On the accumulation of
extracellular AIPs to threshold level, they bind to and activate histidine kinase, AgrC,
which then phosphorylates AgrA, and, in turn, AgrA binds to promoters P2 and P3, and
finally, regulatory molecules, RNA II and RNA III, respectively, are expressed [37,39]. RNA
II encodes components of the agr system, i.e., AgrB, AgrD, AgrC, and AgrA [37], while
RNA III encodes several other S. aureus virulence factors [40,41]. In addition, P3 activation
increases protease activity through extracellular protease production, which contributes to
the degradation of the protein-based biofilm matrix [42].

Alternatively, agr-dependent dispersal may also occur through the production of
PSMs, which have surfactant properties and cause biofilm dispersal by interacting with the
biofilm matrix [43,44]. These modulins are produced when phosphorylated AgrA binds to
the psm operon promoter region [44]. However, PSM aggregates can also stabilize biofilm
structures through insoluble amyloid fiber production [45]. Formation of these amyloid
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fibers is promoted by the presence of eDNA [30]. Hence, the role of PSM in biofilms
depends upon the state in which it is produced.

Table 1. S. aureus biofilm components and their functions.

Biofilm/Cell Components Biofilm Stages Functions References

eDNA
Attachment Development of electrostatic interaction for initial attachment [1]
Maturation Biofilm matrix formation and biofilm stabilization [28]

Cell-wall-anchored proteins Attachment Initial attachment [9–13]
Maturation Intercellular binding and bacterial cell accumulation [13]

Sortase A Attachment Cleavage of cell-wall-anchored proteins to catalyze initial attachment [14]

Teichoic acid
Attachment Initial attachment [17]
Maturation Biofilm matrix formation [22]

Cytoplasmic proteins Maturation Biofilm matrix formation and biofilm stabilization by binding with eDNA [26]

PSMs
Maturation Biofilm stabilization by forming insoluble amyloid fibers and binding with eDNA [30,45]
Dispersal Biofilm dispersal by interacting with biofilm matrix [43,44]

Nucleoid-associated proteins Maturation Biofilm stabilization by binding with eDNA [31]
Nucleases Dispersal Biofilm dispersal through degradation of eDNA [34]
Proteases Dispersal Biofilm dispersal through degradation of protein component of biofilm [42]

AIPs Dispersal Biofilm dispersal through activation of agr quorum sensing system [37,39]
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Figure 2. S. aureus accessory gene regulatory (agr) system. Briefly, AgrD and AgrB synthesize and
export AIPs to external environment. On accumulation of extracellular AIPs to threshold levels,
they bind to and activate histidine kinase, AgrC, which then phosphorylates AgrA. AgrA then
binds to different promoter regions, driving expression of components of agr system, S. aureus
virulence factors, and PSMs. (Reproduced from https://msphere.asm.org/content/msph/3/1/e0
0500-17/F1.large.jpg (accessed on 5 April 2021) by Salam A.M., Quave C.L., Targeting virulence in
Staphylococcus aureus by chemical inhibition of the accessory gene regulator system in-vivo, mSphere,
2018, by permission from copyright holder Salam and Quave, 2018, under creative commons license
https://creativecommons.org/licenses/by/4.0/ (accessed on 5 April 2021) [46]).

3. Biofilm Formation through PIA/PNAG-Dependent Mechanism

Production of PIA/PNAG is controlled by the ica operon, which is upregulated in
anaerobic conditions, such as inside biofilms (Figure 3) [23,47]. Under anaerobic conditions,
SrrAB, a staphylococcal respiratory response regulator, induces PIA/PNAG production by
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the binding of phosphorylated SrrA to the ica operon promoter region [48]. However, the
production of PIA/PNAG may also be induced by other adverse environmental conditions,
such as excess glucose, sub-inhibitory antibiotic concentrations, high osmolarity, and
temperature [49]. The stress response in S. aureus is regulated by Spx, which downregulates
biofilm formation by modulating IcaR, a negative regulator of icaADBC [50]. However,
Rbf, a regulator of biofilm formation, represses icaR and enhances biofilm formation by
increasing ica expression and PIA production [51]. TcaR, a teicoplanin-associated locus
transcriptional regulator, can also repress PIA synthesis [52]. However, TcaR is a weaker
negative regulator than IcaR, because icaR expression can mask the phenotypic effect of
tcaR deletion [52]. Therefore, it can be concluded that most of the ica regulators rely on
IcaR to regulate PIA/PNAG-dependent biofilm formation.

Insertion sequence (IS256) [53] and a two-component ica repressor system, arLRS, are
other ica operon regulators [54]. Insertion of IS256 inactivated the icaC gene and converted
a biofilm-positive S. aureus strain into a biofilm-negative phase variant, reducing bacterial
adherence to surfaces, the preliminary step for biofilm formation [53]. In contrast, initial
attachment and PIA/PNAG accumulation are enhanced in the arlRS mutant, and biofilm
formation is not affected by deletion of the icaADBC operon [54]. This indicates the presence
of alternative mechanism of biofilm formation.

4. Biofilm Formation through PIA-Independent Mechanisms

ica locus deletion had no effect on biofilm formation by MRSA strain, BH1CC, while
other mutant strains lost their biofilm-producing ability [55]. PIA-independent biofilms
consist of eDNA and a long list of proteins that include surface adhesins, secreted proteins,
and intracellular proteins released during cell lysis (Figure 3) [1,56]. In the absence of
PIA, protein A (SpA) is an important component of S. aureus biofilm [25]. Surface adhesin
FnBp also contributes to biofilm formation with the help of major autolysin (Atl) and
sigB regulation [57], while secreted proteins, Eap and beta toxin (Hlb), help in mature
biofilm establishment [58,59]. Eap is a predominant protein present in the biofilm matrix
of S. aureus MR23 [59].

The Hlb and DNABII family of proteins, after binding with eDNA, form insoluble
components that help to give a three-dimensional structure to the biofilm [31,58]. Extracel-
lular matrix binding protein (Emp) and Eap contribute significantly to S. aureus biofilm
formation in iron-restricted environment, representative of the in vivo infection [60]. Under
iron-deficient conditions, these proteins are regulated by the iron regulator, Fur (ferric
uptake regulator) [60]. In addition, sae, agr, and ica are essential for the expression of Eap
and Emp, while sarA has a less significant role [60]. However, iron regulation of these
secreted proteins is Fur-independent [60].

Extracellular DNA helps in the maturation of biofilms and the initial establishment of
a atl/fnbp-dependent biofilm [61]. Earlier, eDNA in biofilms was thought to be excreted
through membrane vesicles rather than cell death [62]. However, later genomic DNA
release was demonstrated to occur via cidA-controlled cell lysis [32]. A cidA mutant
exhibited a less adherent and moderately DNase I-sensitive biofilm, with more dead
cells accumulated—indicative of reduced cell lysis, and five-fold less genomic DNA in
comparison to the parental strain’s (UAMS-1) highly DNase I-sensitive biofilm [32]. The
cid operon upregulates atl and lytM, leading to the production of murein hydrolases,
which are responsible for bacterial autolysis [63]. This autolysis is induced in certain
biofilm micro-environments, such as hypoxic conditions [64]. cidA-controlled cell lysis
is downregulated through activation of the lrgAB operon by LytSR, a two-component
regulatory system [61,65]. A lytS mutant produced luxuriant biofilm containing a higher
amount of matrix-associated eDNA relative to the parent strain [65]. cid and irg operons
work in a way close to bacteriophage holins and anti-holins [63]. Holins and anti-holins
are membrane proteins that regulate bacteriophage-induced bacterial death and lysis [66].
Phages have been detected in biofilm culture with the help of an electron microscope [67].
Activation of phage genes may also help in the release of S. aureus DNA through cell
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lysis, leading to phage release [67]. However, these studies suggest that the mechanism of
eDNA release is strain-specific as different modes of eDNA release were found in different
S. aureus strains.

Amyloid and fibrin are other types of PIA-independent S. aureus biofilms [45,68].
Amyloid biofilms consist of amyloid fibers formed from PSM aggregates [45] and the
formation of these fibers is promoted by the presence of eDNA [30]. A fibrin biofilm
is formed on plasma-coated surfaces, where coagulase (Coa) from S. aureus converts
fibrinogen to fibrin [68]. Fibrin thus formed makes a scaffold for an S. aureus biofilm [69].
The saeRS system regulates coa expression, thus taking part in the formation of a fibrin-
mediated biofilm [70].

Antibiotics 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 
Figure 3. PIA-dependent and -independent S. aureus biofilm formation. Briefly, Rbf downregulates 
icaR, while Spx upregulates it. icaR and tcaR downregulate ica. Under anaerobic conditions, regu-
lator SrrAB upregulates ica, leading to PIA production and PIA-dependent biofilm formation. 
Cell-wall-associated proteins and eDNA released through cidA- and irg-regulated cell lysis form 
PIA-independent biofilms. irg downregulates cell lysis while cidA upregulates it. eDNA biofilm 
formation is prevented by DNase. (Adapted from https://www.ncbi.nlm.nih.gov/pmc/articles/ 
PMC3322633/figure/F5/?report=objectonly (accessed on 5 April 2021) by Archer N.K., Mazaitis 
M.J., Costerton J.W., et al., Staphylococcus aureus biofilms: properties, regulation, and roles in human 
disease, Virulence, 2011, by permission from copyright holders Taylor & Francis, 2011, under crea-
tive commons license https://creativecommons.org/licenses/by-nc/3.0/ (accessed on 5 April 2021) 
[71]). 

5. Regulation of S. aureus Biofilm Formation: The Master Controllers and Their Tar-
gets 

Biofilm formation in S. aureus is controlled by sarA, agr, sigB, and sae regulons 
[42,72–74] (Figure 4). sarA and agr regulate a two-component virulence regulator system, 
arlS-arlR [75]. This system downregulates the production of virulence factors, such as 
beta-hemolysin, alpha-toxin (Hla), serine protease (Ssp), lipase, coagulase, and Spa [75]. 
Mutations in either component of arlS-arlR enhance the secretion of these proteins [75]. 

5.1. sarA 
sarA upregulates ica, leading to PIA/PNAG production and consequently increased 

biofilm formation [76]. Additionally, sarA downregulates the expression of a protein that 
either degrades PIA/PNAG or represses the production; sigB upregulates the protein 
synthesis [76]. Transcriptional profiling suggested that the expression of fnbA and fnbB is 
sarA-dependent [77]. sarA mutants showed reduced biofilm formation in six out of eight 
S. aureus strains tested [78], which can be recovered by nuc gene deletion or/and protease 
inhibition [79]. In sarA mutants, there is increased production of extracellular nucleases 
and proteases that degrade biofilm components [79]. 

5.2. agr 
Presence of the sarA gene is required for optimal agr expression [80]. In sarA mu-

tants, the level of agr regulatory molecule, RNAIII, was found to be significantly reduced 
or absent, but it was partially restored when the intact sarA gene was reinserted [80]. 
However, involvement of the sarA in biofilm formation is agr-independent and sarA 
mutants show reduced biofilm formation despite the functional status of the agr [81]. An 
inactive agr quorum sensing system is required for protein-based S. aureus biofilm for-

Figure 3. PIA-dependent and -independent S. aureus biofilm formation. Briefly, Rbf downregu-
lates icaR, while Spx upregulates it. icaR and tcaR downregulate ica. Under anaerobic conditions,
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disease, Virulence, 2011, by permission from copyright holders Taylor & Francis, 2011, under creative
commons license https://creativecommons.org/licenses/by-nc/3.0/ (accessed on 5 April 2021) [71]).

5. Regulation of S. aureus Biofilm Formation: The Master Controllers and Their Targets

Biofilm formation in S. aureus is controlled by sarA, agr, sigB, and sae regulons [42,72–74]
(Figure 4). sarA and agr regulate a two-component virulence regulator system, arlS-arlR [75].
This system downregulates the production of virulence factors, such as beta-hemolysin,
alpha-toxin (Hla), serine protease (Ssp), lipase, coagulase, and Spa [75]. Mutations in either
component of arlS-arlR enhance the secretion of these proteins [75].

5.1. sarA

sarA upregulates ica, leading to PIA/PNAG production and consequently increased
biofilm formation [76]. Additionally, sarA downregulates the expression of a protein that
either degrades PIA/PNAG or represses the production; sigB upregulates the protein
synthesis [76]. Transcriptional profiling suggested that the expression of fnbA and fnbB is
sarA-dependent [77]. sarA mutants showed reduced biofilm formation in six out of eight
S. aureus strains tested [78], which can be recovered by nuc gene deletion or/and protease
inhibition [79]. In sarA mutants, there is increased production of extracellular nucleases
and proteases that degrade biofilm components [79].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322633/figure/F5/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322633/figure/F5/?report=objectonly
https://creativecommons.org/licenses/by-nc/3.0/
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by permission from copyright holders Taylor & Francis, 2011, under creative commons license
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5.2. agr

Presence of the sarA gene is required for optimal agr expression [80]. In sarA mutants,
the level of agr regulatory molecule, RNAIII, was found to be significantly reduced or
absent, but it was partially restored when the intact sarA gene was reinserted [80]. However,
involvement of the sarA in biofilm formation is agr-independent and sarA mutants show
reduced biofilm formation despite the functional status of the agr [81]. An inactive agr
quorum sensing system is required for protein-based S. aureus biofilm formation, and
activation of this system by the addition of AIP or glucose depletion in mature biofilm
leads to dispersal [42]. Depending upon strains and growth conditions, the role of the
agr quorum sensing system may vary, as disruption of the agr inhibits, enhances, or has
no effect on biofilm formation [82,83]. Another S. aureus quorum sensing system, luxS,
reduces biofilm formation by disrupting intercellular aggregation through downregulation
of exopolysaccharide production [84].

5.3. sigB

sigB, another regulator of S. aureus biofilm formation, positively affects the expression
of two microbial surface proteins, FnbA and ClfA, which are responsible for the initiation
of biofilm formation [85]. sigB mutant strain, BB1591, had two-fold lower capacity to be
internalized by osteoblasts in comparison to its parent strain, LS-1 [85]. In addition, based
on the levels of sigB expressed, individual strains of S. aureus had differing capacities to
be internalized [85]. These authors suggested that sigB may increase the expression of
MSCRAMMs, such as FnBPs, which play an important role during the internalization
of S. aureus by osteoblasts [85]. Additionally, sigB suppresses agr and inhibits biofilm
dispersal [86]. In the sigB mutant strain USA300 LAC, agr RNAIII levels were elevated,
which is responsible for biofilm dispersal through the elevation of extracellular protease
levels [86]. Similarly, in the COL strain, thermo-nuclease, an enzyme that promotes biofilm
dispersal through degradation of eDNA, production was enhanced in a sigB mutant
compared with the parent strain [61,87]. This higher production of thermo-nuclease

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322633/figure/F5/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322633/figure/F5/?report=objectonly
https://creativecommons.org/licenses/by-nc/3.0/
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suggests an inhibitory role of sigB on either the production or excretion of the protein,
thus favoring biofilm development [87]. However, the role of sigB on thermo-nuclease
production is strain-specific, as there was no difference in thermo-nuclease production
between sigB mutants and the wild type in strains Newman and 8325 [87].

There was no effect of sigB deletion in PIA/PNAG-dependent biofilm formation [76],
suggesting that sigB is directly involved in the regulation of protein biofilms but not
in PIA/PNAG-dependent biofilms. However, in the sarA-sigB double mutant, ica ex-
pression decreased but PIA/PNAG production and biofilm formation increased in com-
parison with the sarA single mutant [76]. This means that some indirect role of sigB in
PIA/PNAG-dependent biofilm formation may exist. Some researchers have reported a
loss of PIA/PNAG production and biofilm formation in sigB mutants under osmotic stress,
suggesting a role of sigB in S. aureus biofilm regulation under adverse conditions such as
heat shock, alkaline shock, high salt, and stationary phase growth in complex media such
as LB [88,89].

In the stationary phase of strains LAC, Newman, and 8325, sigB mutants showed
increased lipase production in comparison with the wild type, suggesting an inhibitory
role of the sigB on lipase, effecting the biofilm formation negatively [87]. Lipase-coding
gene mutants produce weak biofilms in comparison to wild-type strains [90], and biofilm
formation can be inhibited by the addition of anti-lipase serum [91]. In addition, intra-
peritoneally injected lipase mutant produced a defective peritoneal abscess in mice with a
lower concentration of bacteria in different organs in comparison with the wild type [90].
Immunization of mice with recombinant lipase saved mice from lethal S. aureus infec-
tion [90]. sigB is regulated by positive regulator RsbU, negative regulator RsbW, and
anti-RsbW regulator RsbV [89].

5.4. saeRS

saeRS, a two-component S. aureus regulatory system, inhibits biofilm formation by
producing a heat-stable inhibitory protein that affects the attachment step [74]. In a sae
constitutively expressed S. aureus Newman strain, a weak biofilm producer, deletion of
saeRS resulted in the production of a robust biofilm [74]. saeRS consists of the SaeS protein,
a histidine kinase, which phosphorylates SaeR, a response regulator [74]. sae upregulates
atlR and bacteriophage genes; atlR encodes a repressor of atlA, thus reducing autolysis and
DNA release [57,74].

6. Clinical Context of Biofilm-Related S. aureus Prosthetic Joint Infections: Failure of
Life-Enhancing Prosthetic Joints

Medical devices, such as prosthetic joints, provide a surface for bacterial proliferation
and biofilm formation [92]. Every year, around two million total knee and hip arthro-
plasties are carried out worldwide [93]. Arthroplasty surgery has life-changing benefits,
as these surgeries relieve pain and restore function [94]. However, a significant number
of prosthetic joints fail due to biofilm-related infections that are difficult to treat. The
incidence of prosthetic joint infection in the US was 2.18% of the total number of hip and
knee arthroplasties performed in 2009 and has been estimated to increase over time [95].
While infections of orthopedic devices carry a low attributable mortality rate, the economic
burden of treatment is substantial [96].

S. aureus is the most common cause of prosthetic joint infections, with studies reporting
the involvement of this bacterium in up to 57% of total prosthetic joint infections [97]. The
mode of infection may be direct inoculation during surgery or the hematogenous route [98].
If the bacterium is inoculated during surgery, it causes acute infection within 3 months;
however, the infection may also occur at any time after surgery through the hematogenous
route [99]. A low number of bacteria, such as <50 CFU of S. aureus, are enough to establish
infection, in comparison to 104 CFU in the absence of an implant [100].

Surgical interventions for prosthetic joint infections are debridement with polypropy-
lene liner exchange and one- or two-stage re-implantation operations—all followed by
prolonged antimicrobial therapy [98]. While the success rates are in the range of 85–90%,
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there are a proportion of patients who are either not suitable for surgery or in whom these
costly procedures fail [98,101,102]. Additionally, all surgical procedures have considerable
morbidity [98]. Novel adjuvant treatments that may be able to eradicate prosthetic joint
infections would be highly beneficial.

7. Possible Adjuvant Treatments for Biofilm-Related S. aureus Prosthetic Joint
Infections—The Search for a Novel Approach to an Intractable Problem

We focus our discussion on treatment strategies such as QS inhibitors that target
biofilm regulators and have already been used successfully to treat biofilm-related infection
in animal models.

7.1. Quorum Sensing and Quorum Sensing Inhibitors: Stopping the Bacterial Communication

Quorum sensing includes a series of events, such as signal production, signal de-
tection, and gene activation/inactivation [103], and results in group behaviors such as
expression of virulence factors including biofilm [104]. Interruption of any steps of QS leads
to failure in quorum sensing and has a detrimental effect on bacterial pathogenicity [103].
QS inhibiters do not directly kill bacteria; rather, they repress signal generation, block signal
receptors, and disrupt the QS signal [103]. Therefore, there is less selection pressure and a
low rate of resistance development, although it should be remembered that also, in this
case, the possibility of the emergence of resistant mutants still exists [103,105]. However,
there are no data on the dosage, route of administration, bioavailability, pharmacody-
namic/pharmacokinetic profile, and toxicity of quorum sensing inhibitors, particularly in
relation to their use in the treatment of prosthetic joint infection. Thus, further studies are
needed. Non-peptide small molecules, peptides, and proteins are three main classes of QS
inhibitors [103].

7.1.1. RNAIII-Inhibiting Peptide

RNAIII-inhibiting peptide (RIP), alone or in combination with antibiotics and an-
timicrobial peptides, inhibits S. aureus biofilm, including biofilm formation by MRSA
and glycopeptide-intermediate strains, and also helps in the treatment of established
biofilms [106–109]. This peptide was efficient in the treatment of central venous catheter-
associated infection, polymethylmethacrylate subcutaneous implant infection, and graft
infection in animal models [106–109]. Synthetic RIP analogues and RIP derivatives have
also similar activity as RIP [110,111]. However, not all RIP derivatives that inhibit RNAIII
in vitro show efficacy for the inhibition of in vivo infection but only that containing lysine
at position 2 and isoleucine at 4 4 [110]. This indicates that the activity of RIP derivatives
depends upon the positioning of the amino acids, which gives a special spatial structure
and property to the derived molecules, making them active even inside living beings.
Further, even for closely related molecules that show similar activity in vitro, it is not
guaranteed that they will also show similar activity in vivo.

RIP disarms S. aureus of its virulence factors by inhibiting RNAII and RNAIII—the two
agr transcripts [110]. Due to structural homology, RIP competes with RNA III activating
protein (RAP), a protein responsible for RNAIII synthesis, and prevents the phosphory-
lation of its target (TRAP) [112]. Vaccination using RAP was effective in the prevention
of S. aureus infection in a cutaneous infection mouse model, as antibodies to RAP block
the activation of RNAIII [111]. However, RIP/RAP/TRAP system analysis showed no
evidence for its involvement in virulence determinant regulation, challenging the related
findings [113]. Since the efficacy of RIP for the treatment of S. aureus infections is already
established in animal models, further studies are needed to confirm the mechanism of
action [106–109]. The RIP concentrations used in the animal studies were extremely high in
comparison with effective native inhibitory AIP concentrations [114]. Additionally, RIP has
been shown to reduce S. aureus adherence through agr-independent gene regulation [115].
Given that the antibacterial effect of RIP has never been tested, it may be that RIP has
a direct, non-specific, inhibitory effect on S. aureus [114]. Although RIP, RIP derivatives,
and RAP have been effective in the treatment and prevention of biofilm-related S. aureus
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infection in some other animal models, they are yet to be tested in prosthetic joint infection
animal studies.

7.1.2. Hamamelitannin

Hamamelitannin, a non-peptide analogue of the quorum sensing inhibitor RNAIII-
inhibiting peptide (RIP), prevents in vitro as well as in vivo biofilm formation in S. aureus,
including MRSA, by inhibiting attachment [116]. Hamamelitannin prevented infection
in a subcutaneous graft rat model [116]. This plant-derived compound, when used in
combination with vancomycin or clindamycin, shows a synergistic effect to remove the
biofilm and increase host survival [117]. Hamamelitannin inhibits the traP QS system by
interfering with its receptor and makes S. aureus biofilm more susceptible to vancomycin
treatment [118]. At the molecular level, hamamelitannin alters the expression of genes
involved in cell wall synthesis and eDNA release such that the increase in cell wall thickness
and eDNA release induced by vancomycin treatment is inhibited [118]. Hamamelitannin
and its analogues are good antibiotic potentiators, having been used successfully in treating
a mouse model of S. aureus mastitis [119]. However, hamamelitannin and its analogues are
yet to be tested in S. aureus prosthetic joint infection animal models.

7.1.3. Auto-Inducing Peptides

AIPs are able to inhibit agr in multiple strains, making these molecules good can-
didates for the development of an anti-quorum sensing strategy. The agr expression of
group I S. aureus is inhibited by group IV S. aureus supernatant but not vice versa [120].
However, synthetic AIPs of agr group I and group IV inhibited the agr expression of one
another [121]. This discrepancy in the results may be due to a difference in the purity of
the AIPs used in the two studies. In addition, the inhibitory role of a synthetic AgrDII
peptide on subcutaneous abscesses caused by group I S. aureus strains has already been
reported [122]. The thiolactone moiety gives a cyclic structure to AIP and is required
for both biological activities, self-activation and cross-group inhibition, of AIP [121,122]—
synthesized linear peptides (agr group II and III peptides, and RIP) that lack the thiolactone
moiety are inactive [121]. However, modification of the AIP tail inhibits agr activation
but not cross-group inhibition, implying the existence of different mechanisms for activa-
tion and inhibition [122]. Therefore, AIP or AIP analogues modified by tail removal or
switching the position of rings and tails can be used as agr inhibitors [121,123,124]. Group
II and I thiolactone peptide without tail represses all four groups of S. aureus agr [121,123].
The alanine-modified AIP group I and II, AIP group II lactone, and lactone analogues
are QS inhibitors that do not act as activators for any agr groups [121,122]. Immunogenic
challenge with cyclic peptide or analogue carried on a macromolecule can activate the hu-
moral response against the native AIPs [125]. Antibodies produced thus, such as antibody
against AIP-IV, quench the QS system [126]. Antibodies against AIP-IV prevented S. aureus
subcutaneous infection in a mouse model and protected mice from a lethal intraperitoneal
S. aureus infection [126]. In conclusion, agr quorum sensing can be inhibited either by
preventing the accumulation of AIP or using the cross-group inhibition property of AIP,
however, by neutralizing its self-group activation activity. Synthetic AgrDII peptides and
antibodies against AIP-IV are yet to be tested in prosthetic joint infection animal studies.
Other AIP-related molecules described under this topic that have shown effectiveness in
in vitro studies are yet to be tested in animal models.

7.1.4. Savirin

Savirin is a small synthetic molecule that, when injected subcutaneously, can both
inhibit and treat S. aureus skin and subcutaneous infections in mouse models [127]. This
molecule inhibits the attachment of AgrA to promoter regions, subsequently inhibiting the
agr quorum sensing system and key virulence factors [127]. Thus, savirin disarms S. aureus,
making it less competent to survive inside the host, which is subsequently cleared by the
immune system [127]. Due to savirin’s low molecular weight (368), lipophilicity, and lack
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of reported animal model toxicity, this molecule meets all the criteria for an ideal agent
for drug development [127]. Additionally, as savirin is a synthetic molecule, it could be
synthesized in large quantities in pure form. Study of its biological activity could include
structural modifications to improve savirin’s efficacy. Since the mode of action of savirin
involves disarming bacterial virulence factors rather than direct inhibition, S. aureus does
not appear to develop resistance to savirin as readily as it does against antibiotics [127].

Savirin may also be effective in the treatment of prosthetic joint infection as similar
immune defense mechanisms relying on macrophages that are present in the skin also
exist in joints [128]. However, higher doses or different sites of injection that ensure higher
bio-availability at the site of infection may be needed, as it is difficult for drugs to penetrate
through bones or joints [129]. In addition, the pharmacokinetics and pharmacodynamics
of this molecule are not known. Therefore, further study is required to optimize the route
of administration and dose for the treatment of prosthetic joint infection.

7.2. Drug Repurposing: Can Old Become New Again?

Drug repurposing relates to the use of existing or abandoned drugs for the treatment
of diseases for which they were not originally developed [130]. Cheaper and faster clinical
translation along with known safety profiles and pharmacology of existing drugs are the
main advantages of drug repurposing [131]. Here, we discuss the drugs that have already
shown efficacy in the treatment of biofilm-related S. aureus infection in animal models. We
also include drugs with significant in vivo anti-biofilm activities, whose modes of action
are yet to be known.

7.2.1. Auranofin

Auranofin, an anti-arthritis drug, and its derivative, MH05, showed a positive effect
in the treatment of biofilm-related S. aureus infection in an intra-peritoneal polypropylene
mesh implant infection mouse model [132]. Auranofin’s antibacterial effect is through
the inhibition of multiple key pathways responsible for the synthesis of important cell
components, such as cell wall, DNA, and proteins [133]. Auranofin and MH05 did not
eradicate the infection and mono-therapy with them may not be sufficient to treat biofilm-
related infections mainly in immune-compromised patients [132]. Auranofin has been
reported to show a significant synergistic effect with antibiotics, linezolid and fosfomycin,
for the treatment of MRSA and MSSA cutaneous abscesses in a mice model [134]. Thus,
adjuvant therapies using auranofin in combination with antibiotics may be beneficial to
eradicate biofilm-related infection. Additionally, the emergence of auranofin-resistant
S. aureus mutants is uncommon [135]. This drug may also be effective in the treatment of
prosthetic joint infection; however, dose optimization would be required. Additionally, the
mode of action of these drugs for the treatment of biofilm-related infections is not known
and requires further study.

7.2.2. Aspirin

Aspirin is among the most widely used drugs for its preventive effect on cardiovas-
cular disease. In a catheter-induced S. aureus endocarditis rabbit model, aspirin treat-
ment reduced bacterial biofilm, bacteremia, and, consequently, embolism [136]. Similarly,
hemodialysis patients with tunneled catheters, when treated with aspirin, are less likely to
develop an S. aureus blood infection [137]. Aspirin activates sigB, a stress-induced operon,
and inhibits α-hemolysin (hla) and fibronectin (fnbA) gene expression [138]. sigB activation
represses sarA and agr [138]. However, salicylic acid, the active component of aspirin,
has also been reported to induce PIA-dependent S. aureus biofilm formation in a nasal
colonization murine model using the Newman strain [139]. Environmental stresses such
as acidic pH and salt content of nasal secretion may also contribute to increased biofilm
formation [140]. Salicylic acid stabilizes in vitro S. aureus biofilm through agr quorum sens-
ing system inhibition [141]. These results indicate that the S. aureus biofilm-related activity
of aspirin is either strain-dependent or biofilm-type-dependent. Due to differences in the
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composition of colonizing materials in internal nares and heart valves, the mechanisms
of biofilm formation and the types of biofilm formed may be quite different at the two
locations. Heart valves are coated with plasma and may favor fibrin biofilm formation [68].

7.2.3. Ticagrelor

Ticagrelor is an anti-platelet drug that is used for the treatment of atherosclerosis. It
is a platelet adenosine diphosphate P2Y12 receptor inhibitor [142]. Post hoc analysis of
large cardiovascular disease prevention studies showed that in acute coronary syndrome
and pneumonia patients treated with ticagrelor, lower risks of infection-related death
and improved lung function were present [143–145]. Subsequent investigation of this
unexpected effect showed that ticagrelor inhibited S. aureus biofilm growth and bacterial
dissemination to surrounding tissue in a pre-contaminated subcutaneous foreign body
S. aureus infection mouse model [146]. However, the mode of action for the inhibition of
biofilm formation is yet to be studied, but it can be hypothesized that ticagrelor downregu-
lates key biofilm-related genes. Additionally, its antimicrobial effect may have contributed
to the inhibition of biofilm formation, as this requires bacterial concentrations to reach a
threshold level [147]. In vitro experiments using ticagrelor showed a synergistic effect with
rifampicin, ciprofloxacin, and vancomycin [146]. The anti-MRSA antimicrobial activity of
ticagrelor alone was superior to vancomycin but similar to daptomycin [146]. However,
anti-platelet drugs, such as ticagrelor and aspirin, reduce the effect of platelet antibacterial
peptides against S. aureus, when used alone or in combination [148].

7.2.4. Simvastatin

The lipid lowering statin class of drugs have been tested for their antimicrobial
activities, with simvastatin shown to have activity against S. aureus [149]. Simvastatin also
inhibits biofilm formation by S. aureus and is more potent than linezolid or vancomycin
in the disruption of established in vitro S. aureus biofilms [149,150]. Simvastatin reduced
the bacterial burden in a murine MRSA skin infection model significantly [150]. This
drug is known to inhibit adhesion, reduce cell viability, and lower extra-polysaccharide
production [150]. However, molecular mechanisms for the inhibition of S. aureus biofilms
are yet to be studied [150]. Additionally, there are no data available on the activity of
simvastatin for treatment of prosthetic joint infection animal models.

7.2.5. Thioridazine

Thioridazine, an antipsychotic drug, inhibited the dissemination of epicutaneously
inoculated MSSA to the spleen and kidney and reduced abscess size produced by intra-
dermally injected MSSA and MRSA [151]. This drug at its sub-inhibitory concentration
enhanced the in vitro bactericidal effect of β-lactam antibiotics to MRSA [152]. However,
the enhancement was not seen in a cutaneous abscess mouse model [151]. The thioridazine
concentration required to reverse the methicillin resistance of MRSA used in the later
study might be too high to attain in an animal model [151]. Thioridazine downregulates
biofilm pathway genes, such as genes related to cell membrane and cell wall component
synthesis and their transport, that are induced by saeRS and disturbs peptidoglycan biosyn-
thesis [152]. This drug is yet to be tested in an S. aureus prosthetic joint infection animal
model. However, since thioridazine has significant toxicity, the development of less toxic
derivatives or significantly lower doses using adjuvant therapies would be beneficial.

8. Conclusions and Future Perspectives

Biofilm-related S. aureus prosthetic joint infections cause significant morbidity and, as
treatment relying on surgical debridement and antibiotics is not universally effective, there
is growing interest in the development of novel therapies. In this review, we highlight
both novel molecules and repurposed drugs that have shown efficacy in the treatment of
biofilm-related S. aureus infections in pre-clinical studies. In most cases, biofilms occurring
in animal models of prosthetic joint infection have not been studied.
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While repurposed drugs have defined pharmacokinetics, pharmacodynamics, and
toxicity profiles, these are not available for the novel molecules described here. Additionally,
the modes of action of biofilm disruption of many of the described novel molecules and
drugs are still unknown and require further investigation. As the world’s population ages,
there is an increasing reliance on the use of prosthetic joints. Arthroplasty surgery is among
the most life-enhancing of all modern medical treatments. Failure of prosthetic joints due
to infection requires broad consideration of novel treatment strategies.
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