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Abstract

:

Increasing numbers of potentially zoonotic multidrug-resistant (MDR) staphylococci strains, associated with mastitis in dairy cows, are being reported globally and threaten disease management in both animal and human health. However, the prevalence and antimicrobial resistance profiles of these strains, including methicillin-resistant staphylococci (MRS), in Kenya is not well known. This study investigated the drug resistance profiles and genes carried by 183 staphylococci isolates from 142 dairy cows representing 93 farms recovered from mastitis milk of dairy cows in two selected counties in Kenya. Staphylococci isolates were characterized by phenotypic characteristics, polymerase chain reaction (PCR) amplification, partial sequencing and susceptibility testing for 10 antimicrobial drugs. Detection of seven resistance genes to the various antimicrobial drugs was conducted using PCR. Overall, phenotypic resistance among the staphylococci ranged between 66.1% for ampicillin and 3.5% for fluoroquinolones. Twenty-five percent (25%) of S. aureus and 10.8% of the coagulase-negative staphylococci (CoNS) isolates, were methicillin-resistant staphylococci phenotypically (defined as resistance to cefoxitin disk diffusion). The most common genes found in S. aureus and CoNS were blaZ and strB at 44.3% and 26%, and 78% and 50%, respectively. MDR was observed in 29.67% and 16.3% of S. aureus and CoNS, respectively. These findings pose a threat to bovine mastitis treatment and management as well as human health.
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1. Introduction


Staphylococcus aureus (S. aureus) and coagulase-negative staphylococci (CoNS) are economically significant and potentially zoonotic agents of dairy cow mastitis worldwide [1,2]. Economic losses due to mastitis have been estimated at over USD 2 billion per year in USA [3]. In humans, these Gram-positive bacteria have been isolated from a variety of infections including mastitis, soft tissue infections, food poisoning, endocarditis and septicemia [4,5]. Diseases due to multi-drug resistant (MDR) staphylococci are often severe, challenging to treat, and threaten animal and human healthcare [6].



Antimicrobial treatment is an important tool for controlling intramammary infections in dairy cows in most countries globally [7]. However, the efficacy of antimicrobial therapy against mastitis pathogens including Staphylococcus species is on the decline [8]. This low cure rate of staphylococci pathogens is, in part, related to the rise in multi-drug resistance accelerated by over-use and misuse of antimicrobials in veterinary practice [9,10]. Of great concern, is the high level of resistance to β-lactam antibiotics being report among staphylococci species isolated from bovine milk [11,12].



Multidrug-resistant (MDR) staphylococci, including methicillin-resistant staphylococci (MRS), are an emerging global public health problem [13]. Mastitis milk has been documented as an important reservoir of these MDR strains [14,15]. Indeed, the newly emerging livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 (LA-MRSA CC398) isolated from humans has been linked to cow mastitis milk origin [2,16]. Further, methicillin-resistant coagulase-negative staphylococci (MRCoNS), specifically Staphylococcus epidermidis, are increasingly being reported in mastitic milk of cows [17,18]. Increased risk of clonal transmission of MRS between dairy cows and the persons in contact with those animals has also been described [6,10]. This growing trend presents a serious threat to mastitis management and poses a potentially significant public health risk to humans consuming or handling raw milk [10,11].



While poorly quantified, the burden of antimicrobial resistance (AMR) attributable to livestock is comparatively higher in low-income countries, including Kenya and wider sub-Saharan Africa [19,20]. One of the key drivers of this, is the high burden of subclinical mastitis (>50%) and the largely unregulated use of veterinary antimicrobials [20,21]. In addition, Kenyan farmers often self-diagnose and treat cows with mastitis without laboratory confirmation to guide therapy, and there is a general lack of stringent measures on drug withdrawal periods [21,22]. As a consequence, these practices have significantly contributed to the emergence and spread of antibiotic-resistant bacterial strains, resulting in treatment failures [23]. In view of this, there is an urgent need for an evidence-informed policy on antibiotic use and AMR in dairy farming in Kenya [24].



Studies on antimicrobial resistance (AMR) patterns and genes of S. aureus are well documented [11,25]. However, to date, only a handful of studies on staphylococcal mastitis pathogens and their associated resistance genes have been conducted in Kenya [26]. The few available studies have mainly focused on phenotypic antimicrobial susceptibility profiles of S. aureus with limited attention to genotypic characterization of resistance [27]. Moreover, very few studies on phenotypic and genotypic AMR profiles of CoNS have been conducted in Kenya [28]. Identification of AMR genes in staphylococci species is critical in order to minimize the risk of transmission to persons and animal reservoirs [29]. Therefore, the aim of this study was to determine the antimicrobial susceptibility patterns and the presence of key AMR genes in staphylococci isolated from mastitic dairy cattle in two selected counties in Kenya. This information is key to improving antimicrobial stewardship and to mitigating the emergence and spread of AMR.




2. Results


2.1. Confirmation of Staphylococci Species with PCR


All 91 (100%) S. aureus isolates yielded an amplicon for the nuc gene. A subset (eight) of nuc genes was sequenced and revealed 97–100% homogeneity to S. aureus.




2.2. Antimicrobial Resistance Patterns of S. aureus and CoNS


The highest phenotypic resistance was reported in ampicillin (66.1%; n = 121) followed by tetracycline (23%; n = 42). However, lower resistance rates to fluoroquinolones (4%; n = 8) and gentamicin (5.4%; n = 10) were noted among the isolates. S. aureus showed a significantly higher resistance to cefoxitin and ampicillin compared to CoNS (p < 0.009, p < 0.014), respectively. However, there was no statistically significant differences in the resistance frequencies for the other antibiotics between S. aureus and CoNS.



Among the S. aureus isolates, 75.8% (n = 69) of the isolates were resistant to at least one the antimicrobial agents tested. As shown in Table 1 ampicillin was the most frequent resistant phenotype (71.4%) followed by erythromycin at 25.2%, while a lower resistance rate was reported in fluoroquinolones (3–4%). Further, 25% of the isolates were phenotypically methicillin-resistant S. aureus (MRSA) based on the cefoxitin disc diffusion test. In addition, all MRSA isolates showed 100% phenotypic resistance to ampicillin followed by 52% for erythromycin, 48% for tetracycline, streptomycin 39% and 30% for trimethoprim–sulfamethoxazole. In this study, significantly higher resistance to various antimicrobials was observed in MRSA compared to MSSA (p < 0.05), except for ciprofloxacin and trimethoprim–sulfamethoxazole (Table 2).



Among the CoNS, 68.5% (n = 63) of the isolates were resistant to at least one antimicrobial agent tested. Ampicillin resistance was the most frequent phenotype at 57.6% followed by resistance to tetracycline (22.8%), while lower resistance to fluoroquinolones (3%) was noted among the isolates. In this study, cefoxitin resistance was reported in 10.8% of the isolates and were termed as methicillin-resistant coagulase-negative staphylococci (MRCoNS) (Table 1).




2.3. Prevalence of Multidrug Resistance in Staphylococci Species


Multidrug resistance (MDR), defined as isolates showing resistance to three or more classes of antibiotics, was detected in 22.9% (n = 42) of the staphylococci isolates. Significantly, a higher proportion of MDR isolates were reported among S. aureus at 29.67% (n = 27) compared to CoNS at 16.3% (n = 15; p = 0.032). Among the S. aureus, MRSA and MSSA showed MDR at 56.52% (n = 13) and 20.5% (n = 14), respectively. For CoNS, 10 isolates classified as MRCoNS, where seven were also MDR. Further, 3.2% (n = 6) staphylococci isolates showed resistance to more than seven antimicrobial agents tested, out of which five of them were MRSA and two were MRCoNS.




2.4. Detection of Resistant Genes from the Staphylococci Species


Overall, 57.2% (95/166) of isolates harbored at least one resistance gene of the seven different genes detected in different combination. As shown in Table S1, one isolate carried four genes, eight isolates carried three genes and 20 isolates carried two genes. In addition, 66 isolates carried one gene, of which 97% (64/66) of these isolates carried blaZ genes. Notably, 22 of the isolates carrying more than ≥2 genes were MDR. All the isolates carrying ≥2 antimicrobial resistance genes showed high resistance to ampicillin (100%) and tetracycline (75%).



Overall, more resistance genes were reported in CoNS isolates at a prevalence of 70.2% (n = 59) compared to S. aureus—42.3% (n = 36; p < 0.001). The most prevalent resistance gene was the β-lactamase gene blaZ—59.2% (n = 90). The prevalence of the blaZ gene was higher in CoNS (65.4%; n = 55) compared to S. aureus (41.1%; n = 35; p < 0.002). Strikingly, we noted that 20.5% (n = 14) of the MSSA strain carried the blaZ gene. Further, one of the MRCoNS isolates carried three resistance genes; namely blaZ, msrA, strB conferring resistance β-lactams, aminoglycosides and macrolides (Table 3 and Table S1).



Tetracycline resistance to tetM and tetK genes was detected at 16.2% and 6.9%, respectively. We noted, however, that all tetK detected in this study were from CoNS, with none from S. aureus. The streptomycin-resistant strB gene was present in 35.7% of staphylococci isolates. A Higher occurrence of strB genes was reported in CoNS at 50% compared to S. aureus at 13%. Among the erythromycin-resistant isolates, msrA (24.3%) and ermB (21.6%) were the most prevalent among the isolates. The frequencies of msrA and ermB in S. aureus and CoNS were similar (Table 3).





3. Discussion


Our study investigated the antibiotic susceptibility patterns and antimicrobial resistance genes in staphylococci recovered from mastitic cow milk in Kenya in order to improve mastitis therapy and the control emergence and spread of AMR.



S. aureus and CoNS are recognized as the leading causative agents of mastitis in dairy cows in Kenya [21,30]. However, further molecular characterization of the CoNS to species level is required in Kenya in order to confirm the circulating species and their specific antibiogram.



Overall, our study showed a high proportion of resistance (71.5%) to at least one antibiotic tested, with no differences between S. aureus (75%) and CoNS (68%). This was slightly lower than reported in other studies in Malaysia (96.15%) and South Africa (90%) in S. aureus and CoNS, respectively [31,32] In contrast, a slightly lower resistance proportion in S. aureus (50%) and CoNS (50%) were reported in Uganda [33]. High resistance levels observed in this study could be linked to indiscriminate use of antimicrobials for treatment of mastitis in dairy cows by farmers and veterinarians [34]. As with many developing countries, in Kenya most of these antimicrobials are cheap and readily available as over-the-counter drugs and can be bought without any veterinary prescription [33]. However, further studies investigating antibiotic use and practices in dairy farms in Kenya are necessary to provide conclusive evidence on the extent which such practices contribute to the spread of antimicrobial resistance.



This study reported much higher resistance rates in penicillins (ampicillin) than those reported previously in dairy cows in Kenya by Gitau et al. [21] and Shitandi et al. [27] of about 30% [21,27]. However, our findings were comparable to a recent report by Mureithi et al. [28] in Kenya, who found a prevalence rate of 64% in ampicillin [28]. These results indicate an increase in resistance in staphylococci over the years. High resistance levels to penicillin and other β- lactams among mastitis-causing staphylococci has been described [35,36,37]. In contrast, a lower resistance to penicillin in staphylococci (0–20%) has also been reported in some European countries [38,39] and Canada [7]. Higher resistance rates are likely due to the wide-spread use of penicillin in the treatment of mastitis in dairy cows as observed in the study farms and as evidenced by other previous studies in Kenya [27,40] Further, changes overtime, spatial sampling, differences in antibiotic use and practices might explain discrepancies in resistance levels between regions [33,41].



We observed that S. aureus had a significantly higher proportion of ampicillin resistance when compared to CoNS species. S. aureus has been described as a common cause of bovine mastitis in the study region [21]. This higher resistance could be due to the fact that penicillin is still the first-line drug of choice for treatment of mastitis in Kenya [27,34]. Routine culture and identification, coupled with antibiotic sensitivity testing, should be adopted before treatment with antimicrobials to avoid selection pressure of antimicrobial resistant S. aureus [37,39].



S. aureus had a significantly higher proportion of methicillin resistance compared to CoNS in this study. A study in Korea found a slightly higher prevalence of MRSA compared to MRCoNS [42]. However, in contrast, Schnitt and Tenhagen [43] in their review highlighted several studies that have reported higher MRCoNS compared to MRSA in mastitic milk samples [43]. Noteworthy, in all these studies, MRS was defined based on the presence of the mecA gene unlike in our study and could explain the discrepancy. However, although the reason for the higher prevalence of MRSA in our findings is unclear; lower virulence observed in MRCoNS might be a contributing factor [43].



Low resistance levels to quinolones and chloramphenicol were reported in this study among the staphylococci. Authors in Ethiopia [44], South Africa [32], Canada [7] and Uganda [33] reported similar findings. These critically important human-medicine antibiotics are restricted for use in treatment of animal diseases in many countries, including Kenya [32]. However, even the low resistance rates reported are of public health significance and control measures should be implemented to curb further spread [7].



In the present study, 25% of S. aureus and 10.8% of CoNS isolates were phenotypically resistant to cefoxitin, and were consequently classified as MRSA and MRCoNS, respectively. Cefoxitin disk tests have shown in several studies to be a reliable marker for methicillin-resistant S. aureus and CoNS not identified to species levels [45,46]. It is worth noting that all MRSA and MRCoNS showed resistance to ampicillin. Our findings on MRSA were in close agreement with reports by Liu et al. [37] in China. A relatively higher prevalence of cefoxitin-resistant MRSA has been reported in Malaysia (38.6%) and Ethiopia (58.1%) [31,45]. Similarly, a higher prevalence of phenotypic MRCoNS has been reported in South Korea (21.2%) [47], Tunisia (29.41%) [48] and Switzerland (47%) [36]. Detection of methicillin-resistant staphylococci (MRS) in mastitic milk is a public health concern and should be further investigated as most of these organisms have shown to be potentially zoonotic in addition to multidrug-resistant, reducing the role of therapy in the control of staphylococcal mastitis [29]. The culling of infected cows to avoid further transmission would be of highest importance [49].



Presence of the mecA gene is considered the gold standard of defining MRSA, in addition to the new resistance genes mecC and mecB which are homologue to mecA [14,46,50,51]. However, in this study, screening for mec genes in the phenotypically methicillin-resistant strains were not carried out which is a limitation in this study. Further investigation targeting mec genes and other mechanisms should be carried out in future studies in order to broaden our understanding on the genetic basis of antimicrobial resistance of these isolates [52]. Molecular typing to assess the clonality of the isolates is also recommended.



Strikingly, the trimethoprim–sulfamethoxazole resistance rate in MRSA reported in this study was quite high (30%). Higher resistance rates in Escherichia coli (E. coli) to trimethoprim–sulfamethoxazole have been reported in livestock (54.2%), especially in poultry and pigs in Kenya [53]. Although data supporting the use of trimethoprim–sulfamethoxazole directly in cows are limited, sulfonamides have been reported as the second commonly used antibiotic in food animals after tetracycline [34,40]. Moreover, Muloi et al. [54] in their study on antibiotic practices and knowledge among antibiotics retailers in Nairobi, reported that sulfonamides (63%) were amongst the most purchased class of drug by dairy farmers from Agrovet in Nairobi, Kenya, which neighbors the two study counties [54]. Further, according to Mitema et al. [40] sulfonamides are extensively used in the poultry industry and treatment of calf scours and pneumonia in Kenya [40]. The role of horizontal transfer of AMR genetic determinant between different bacterial species and among humans and animal species has been described [20]. This high resistance rate reported in this study is very concerning since trimethoprim–sulfamethoxazole is heavily used for prophylaxis in HIV-infected patients especially in a highly infectious disease setting, including Kenya [55].



This study reported 20.5% (n = 14) of methicillin-susceptible S. aureus (MSSA) with an effective blaZ variant. A significantly higher prevalence of blaZ (91%) in MSSA has been reported in a hospital setting in Kuwait [56]. Qu et al. [8] also found that 76 of S. aureus isolates carried the blaZ gene but lacked the mecA gene [8]. Presence of blaZ genes in S. aureus has been shown to play a significant role in promoting the acquisition and stabilization of the mecA gene [57]. However, according to Vali et al. [56] and Milheiriço et al. [57] the presence of the blaZ gene in MRSA and MSSA may be responsible for encoding for resistance to penicillin only [56,57]. Penicillins are extensively used in food animals and are still the first-line drug of choice for the treatment of mastitis in Kenya [27]. Further, African MSSA isolated from hospital settings in urban areas has shown to have a significantly higher resistance to penicillin, ranging between 73.7 and 100% compared to other MSSAs as described by [58] in their review. Diversities between blaZ allotypes due to non-clonal evolutions in MRSA and MSSA isolates have also been observed in different geographical regions [57]. Therefore, evaluation of the blaZ allele between MRSA and MSSA isolates in the study should be investigated in future.



Similar to other studies, we observed a significantly higher multidrug resistance (MDR) in MRSA strains compared to MSSA [29,37]. MRSA have shown to have the potential to develop resistance to nearly all the antimicrobial agents [2]. This evolving trend, and the rapid emergence of antimicrobial resistance in S. aureus, threatens disease management in both animal and human health [10].



A higher proportion of MDR isolates were reported among S. aureus compared to CoNS. In contrast, Dorneles et al. [59] and Cheng et al. [60] reported higher MDR rates in CoNS compared to S. aureus in a similar study in Brazil and China, respectively. Significantly higher MDR rates in S. aureus have been described [29,37]. The widespread resistance of cattle-derived S. aureus presents a serious challenge to bovine mastitis therapy and a potential public health risk to humans in Kenya.



Knowledge of distribution of antimicrobial resistance genes among pathogenic udder microbes is key to understanding the evolution of multidrug-resistant agents in dairy cattle. Higher levels of resistance genes were reported in CoNS (70.2%) compared to S. aureus (42.3%) in this study. These findings support the hypothesis that CoNS are considered a main reservoir of genetic elements transferrable to other species of bacteria, including S. aureus [61].



In agreement with other studies, genes encoding for the beta-lactamases blaZ gene were identified in staphylococci at 97% [8,62]. This likely contributed to the high resistance level to penicillin (ampicillin 66.1%) recorded in this study. High blaZ genes might indicate an increased use, and possibly misuse, of β lactams in the study farms [62].



We observed a low to moderate prevalence of antimicrobial resistance genes (ARGs) to tetracycline (tetM and tetK), macrolides (msrA, emrB, ermC) and streptomycins (strB) compared to the phenotypic resistance. Low prevalence of ARGs has been reported by Pekana et al. [63] who found low expression of genotypic resistance in S. aureus in South Africa. Other studies by Gao et al. [64] and Yang et al. [62]—both in China—also reported low genotypic resistance compared to phenotypic resistance in staphylococci isolates. Resistance mediated by other independent mechanisms, such as point mutations, biofilm formation or antibiotic tolerance, could explain these findings [36,65]. Moreover, resistance genes not included in this study may account for phenotypic resistance observed [63]. Further, use of human disc diffusion interpretative criteria may have contributed to the misalignment between phenotypic and genotypic resistance observed in the isolates. Whole genome sequencing is needed to expand our knowledge on staphylococci and their genetic basis of antimicrobial resistance [66].




4. Materials and Methods


4.1. Study Areas and Design


Study areas and design have been previously described [30]. Briefly, this study was a cross-sectional survey undertaken between November 2018 and June 2019 in Embu and Kajiado—counties in Kenya. The counties were selected purposefully based on the high populations of cows, the human population’s demand for milk and dairy products, and diversity of cattle breeds and farming practices. Lactating dairy cows of local and exotic origin in different stages of lactation and parity were randomly selected and sampled.




4.2. Herd and Sampling


The isolates utilized in this study were obtained from a previous study on prevalence of mastitis in dairy cows in Kenya [30]. Out of the 595 available staphylococci isolates, a total of 183 colonies, including 91 Staphylococcus aureus (S. aureus) and 92 coagulase-negative staphylococci (CoNS) from 142 dairy cows representing 93 smallholder farms, were randomly selected and analyzed. Distribution of the isolates among the counties were as follows: For S. aureus, n = 58 isolates from 31 cows from Embu and n = 43 were isolated from 29 cows from Kajiado County. For CoNS, n = 53 isolates from 48 cows in Embu and n = 39 were isolated from 34 cows in Kajiado. Detection of clinical and subclinical mastitis was conducted as previously described by [67].




4.3. Milk Sample Collection


Milk samples were collected following standardized procedures described by the National Mastitis Council [68]. The samples were transported at 4 °C to the University of Nairobi, Department of Veterinary Pathology, Microbiology and Parasitology bacteriology laboratory for microbiological examination.




4.4. Laboratory Analysis


4.4.1. Isolation and Phenotypic Characterization of the Isolates


Initial bacterial culture and identification was performed according to standard methods described in [68,69]. Briefly, a 0.01 mL aliquot of each milk was aseptically streaked onto the surface of 5% sheep blood agar (Oxoid, Basingstoke, England) and incubated aerobically at 37 °C for 24–48 h. Where growth occurred, colony morphology, Gram stain reaction, catalase, coagulase tube testing and mannitol salt agar (Oxoid, Basingstoke, England, UK) were used to presumptively identify S. aureus and CoNS. Single colonies from respective isolates were sub-cultured on nutrient agar slants, and the slants were stored at 4 °C for further use.




4.4.2. Bacterial Genomic DNA Extraction


The boiling method was used to extract bacterial genomic DNA [70]. Briefly, a loopful of a bacterial colony grown overnight on tryptone soy agar (TSA) was added to 1.5 mL Eppendorf tubes containing 100 μL of nuclease-free water. The tubes were boiled in water bath at 100 °C for 25 min. After centrifugation at 30,000× g for 5 min in a microcentrifuge (Eppendorf Hamburg, Germany), the supernatant was transferred to a new 1.5 microcentrifuge tube. The extracted DNA was stored in a freezer at −20 °C until used for PCR analysis.




4.4.3. Staphylococcus Aureus nuc Gene Amplification


PCR amplification of the staphylococcal thermonuclease (nuc) gene was used to confirm ninety-one biochemically identified S. aureus. The oligonucleotide primers described by [71] in Table 4 were used and the PCR was performed using Taq Polymerase (QIAGEN, GmbH, Hilden, Germany) following the manufacturers’ instruction. For positive and negative controls, S. aureus ATCC 29,213 (nuc positive strains) [50] and DNase deionized water, respectively, were used. Electrophoresis for each PCR amplicon was performed using ethidium bromide-stained 1.5% agarose gel in the Tris-Borate-EDTA (TBE) buffer and visualized using UV illuminator (GelMax® Imager, Cambridge, UK). A molecular ladder was used to determine the sizes of the amplicon (GelPilot 1 kb Plus Ladder (100), QIAGEN, GmbH, Hilden Germany) with an expected amplicon size of 276 bp.




4.4.4. Antibiotic Susceptibility Testing


Phenotypic antibiotic susceptibility characterization was carried out using the Kirby–Bauer disc diffusion method following the Clinical & Laboratory Standards Institute (CLSI) guidelines [50]. Briefly, fresh cultures of bacterial isolates were suspended in sterile physiological saline to attain turbidity equivalent to 0.5 McFarland. Sterile cotton wool swabs were then used to inoculate the standardized bacterial suspension onto Mueller–Hinton (Oxoid) agar plates. The antibiotics discs belonging to seven classes of antibiotics at the following concentration were analyzed: aminoglycosides (gentamicin 10 µg, streptomycin 10 µg), fluoroquinolone (ciprofloxacin 5 µg and norfloxacin 10 μg), tetracycline (tetracycline 30 μg), folate pathway inhibitors (sulfonamide + trimethoprim 25 μg), macrolides (erythromycin 15 µg), beta lactams (ampicillin 25 µg and cefoxitin 30 μg) and phenicols (chloramphenicol 10 μg). The choice of antibiotics was guided by drugs that are commonly used in dairy veterinary practice in Kenya, some of which are important to human medicine. The inoculated plates were then incubated at 35–37 °C for 17 h.



Since most of the antibiotics used have no approved bovine breakpoints, interpretive criteria described by [46,50] were used. The inhibition zones were measured and interpreted as either susceptible, intermediate, or resistant to the tested antibiotic agent when appropriate break points were available. However, in this study, all strains read as intermediate were considered as resistant. Due to lack of approved interpretive criteria for streptomycin in staphylococci, isolates were interpreted using the interpretive criteria of another aminoglycoside (gentamicin 10 µg) in this study [50]. Staphylococcus aureus ATCC 25,923 was used as the quality control strain. Isolates resistant to cefoxitin (S. aureus) and (CoNS) were presumptively identified as MRSA and MRCoNS, respectively [46,50]. The isolates were classified as multidrug-resistant (MDR) if they were found resistant to three or more different antimicrobial classes used [75].




4.4.5. Detection of Antimicrobial Resistance Genes


All staphylococci isolates (S. aureus and CoNS) showing phenotypic resistance to beta lactams, erythromycin, tetracyclines and streptomycin were analyzed by PCR for genes that confer resistance to penicillin (blaZ), erythromycin (ermB, ermC, msrA), streptomycin (strB) and tetracycline (tetK, tetM). The details on primers and annealing temperatures used in the study are provided in Table 4. PCR products (10 μL) were electrophoresed using ethidium bromide-stained 1.5% agarose gel in the Tris-Borate-EDTA (TBE) buffer and visualized using the UV illuminator (GelMax® Imager, Cambridge UK). Molecular ladder was used to determine the sizes of the amplicon (GelPilot 1 kb Plus Ladder (100), QIAGEN, GmbH, Hilden Germany). In all PCR reactions, RNAse-free water was used as negative control.





4.5. nuc Gene and Antibiotic Resistance Gene Sequencing and Analysis


A subset of the PCR amplicon of the nuc and the antibiotic resistant genes were sequenced to confirm identities of the detected organisms and genes using Sanger DNA sequencing approaches [76]. Quality control, assembly and editing of nucleic sequence trace files were performed using SnapGene version 5.2.4 [77] and customized UNIX shell scripts. Sequence identities were confirmed using the Basic Local Alignment Search Tool (BLAST) [78].




4.6. Statistical Data Analysis


Antibiotic resistance data were analyzed using STATA version 15. Descriptive statistics were used to calculate the proportion and frequencies of all variables. The chi-square test (χ2 test) or Fisher’s exact test were used when applicable to compare categorical variables. Statistical significance level was set at 0.05 (p < 0.05).





5. Conclusions


This study revealed a high ampicillin resistance rate among bovine mastitis staphylococci. In addition, detection of various antimicrobial resistance genes in these strains signifies a public health concern and a serious challenge to bovine mastitis therapy. Therefore, there is a need to control the emergence and spread of AMR in dairy farms. The presence of phenotypic methicillin-resistant staphylococci (MRS) in this study provides baseline for further monitoring in Kenyan dairy farms. Further screening of the mec genes (A, B, C) and other intrinsic mechanisms encoding for resistance to MRS should be considered in future studies. Molecular characterization of CoNS isolates to species level will be necessary to confirm circulating species in Kenya. We used PCR to determine the genotypic resistance, this technique targets fewer AMR genes, restricting the results to screened elements. Therefore, there is a need for further characterization of the isolates using whole genome sequencing and spa typing in order to assess the clonal diversities of the isolates.








Supplementary Materials


The following are available online at https://www.mdpi.com/article/10.3390/antibiotics10070772/s1, Table S1: Antimicrobial resistance profile of staphylococci recovered from dairy cows’ mastitis cases from two counties, Kenya.





Author Contributions


C.M.M. (Christine M. Mbindyo), G.C.G., P.J.P., R.B. and C.M.M. (Charles M. Mulei) participated in the designing of the study. C.M.M. (Christine M. Mbindyo) and G.C.G. participated in the field and laboratory data collection. C.M.M. (Christine M. Mbindyo) and B.W.K. participated in data analysis. All authors participated in the writing and revising of the manuscript. All authors have read and agreed to the published version of the manuscript.




Funding


This research was supported by the Consortium for Advanced Research Training in Africa (CARTA). CARTA is jointly led by the African Population and Health Research Center and the University of the Witwatersrand and funded by the Carnegie Corporation of New York (Grant No—G-19-57145), Sida (Grant No:54100113), Uppsala Monitoring Centre and the DELTAS Africa Initiative (Grant No: 107768/Z/15/Z). The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD Agency) with funding from the Wellcome Trust (UK) and the UK government.




Institutional Review Board Statement


The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Biosafety, Animal Use, Care, and Ethics Committee Faculty of Veterinary Medicine, University of Nairobi, before initiation of the study with reference: FVM/BAUEC/2018/157 on 13 July 2018.




Informed Consent Statement


Informed consent was obtained verbally from farmers before participation in the study.




Data Availability Statement


All datasets are available from the corresponding author on reasonable request.




Acknowledgments


The authors thank: Alfred Mainga and George Dimbu at the Department of Public Health, Pharmacology and Toxicology and Department of Veterinary Pathology, Microbiology and Parasitology, respectively, for their technical assistance. Marta Vicente-Crespo, of the African Population Health and Research, Kenya, and Helen W. Kariuki for support with molecular data analysis. Dairy farmers of Kajiado and Embu Counties for allowing milk sample collection.




Conflicts of Interest


The authors declare no conflict of interest.




Nucleotide Sequence Accession Numbers


Partial sequences obtained from this study were deposited in GenBank under the following accession numbers: MW826578-MW826579 for the nuc gene (S. aureus), MW826580–MW826581 for tetK, MW826582 for ermB, MW826583 for ermC, MW826584 for tetM, MW826585 for StrB.




References


	



Zadoks, R.N.; Middleton, J.R.; McDougall, S.; Katholm, J.; Schukken, Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia 2011, 16, 357–372. [Google Scholar] [CrossRef] [PubMed]

	



Wang, W.; Lin, X.; Jiang, T.; Peng, Z.; Xu, J.; Yi, L.; Li, F. Prevalence and Characterization of Staphylococcus aureus Cultured from Raw Milk Taken from Dairy Cows with Mastitis in Beijing, China. Front. Microbiol. 2018, 9, 1123. [Google Scholar] [CrossRef]

	



Kuehn, J.S.; Gorden, P.J.; Munro, D.; Rong, R.; Dong, Q.; Plummer, P.J.; Wang, C.; Phillips, G.J. Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. PLoS ONE 2013, 8, e61959. [Google Scholar] [CrossRef] [PubMed]

	



Holmes, M.A.; Zadoks, R.N. Methicillin resistant S. aureus in human and bovine mastitis. J. Mammary Gland Biol. Neoplasia 2011, 16, 373–382. [Google Scholar] [CrossRef] [PubMed]

	



Hennekinne, J.; Buyser, M.-L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef]

	



Gindonis, V.; Taponen, S.; Myllyniemi, A.L.; Pyörälä, S.; Nykäsenoja, S.; Salmenlinna, S.; Lindholm, L.; Rantala, M. Occurrence and characterization of methicillin-resistant staphylococci from bovine mastitis milk samples in Finland. Acta Vet. Scand. 2013, 55. [Google Scholar] [CrossRef] [PubMed]

	



Nobrega, D.B.; De Buck, J.; Barkema, H.W. Antimicrobial resistance in non-aureus staphylococci isolated from milk is associated with systemic but not intramammary administration of antimicrobials in dairy cattle. J. Dairy Sci. 2018, 101, 7425–7436. [Google Scholar] [CrossRef] [PubMed]

	



Qu, Y.; Zhao, H.; Nobrega, D.B.; Cobo, E.R.; Han, B.; Zhao, Z.; Li, S.; Li, M.; Barkema, H.W.; Gao, J. Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J. Dairy Sci. 2019, 102, 1571–1583. [Google Scholar] [CrossRef]

	



Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef]

	



Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef]

	



Yang, F.; Zhang, S.; Shang, X.; Li, H.; Zhang, H.; Wang, L.; Sun, Y. Short communication: Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. J. Dairy Sci. 2020, 103, 840–845. [Google Scholar] [CrossRef]

	



Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; Vicca, J.; Hermans, K.; Butaye, P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol. 2010, 144, 166–171. [Google Scholar] [CrossRef]

	



Anjum, M.F.; Marco-Jimenez, F.; Duncan, D.; Marín, C.; Smith, R.P.; Evans, S.J.; Butaye, P.R. Livestock-Associated Methicillin-Resistant Staphylococcus aureus From Animals and Animal Products in the UK. Front. Microbiol. 2019, 10, 1236. [Google Scholar] [CrossRef]

	



Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [PubMed]

	



Verraes, C.; Claeys, W.; Cardoen, S.; Daube, G.; De Zutter, L.; Imberechts, H.; Herman, L. A review of the microbiological hazards of raw milk from animal species other than cows. Int. Dairy J. 2014, 39, 121–130. [Google Scholar] [CrossRef]

	



Smith, T.C. Livestock-Associated Staphylococcus aureus: The United States Experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef] [PubMed]

	



Sawant, A.A.; Gillespie, B.E.; Oliver, S.P. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet. Microbiol. 2009, 134, 73–81. [Google Scholar] [CrossRef] [PubMed]

	



Thorberg, B.M.; Kuhn, I.; Aarestrup, F.M.; Brandstrom, B.; Jonsson, P.; Danielsson-Tham, M.L. Pheno- and genotyping of Staphylococcus epidermidis isolated from bovine milk and human skin. Vet. Microbiol. 2006, 115, 163–172. [Google Scholar] [CrossRef]

	



Grace, D. Review of Evidence on Antimicrobial Resistance and Animal Agriculture in Developing Countries; International Livestock Research Institute: Nairobi, Kenya, 2015. [Google Scholar] [CrossRef]

	



Thu, T.; Van, H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Journal of Global Antimicrobial Resistance Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. Integr. Med. Res. 2020, 20, 170–177. [Google Scholar] [CrossRef]

	



Gitau, G.K.; Bundi, R.M.; Vanleeuwen, J.; Mulei, C.M. Mastitogenic bacteria isolated from dairy cows in Kenya and their antimicrobial sensitivity. J. S. Afr. Vet. Assoc. 2014, 85, 950. [Google Scholar] [CrossRef] [PubMed]

	



Global Antibiotic Resistance Partnership (GARP). Situation Analysis and Recommendations: Antibiotic Use and Resistance in Kenya. Available online: https://cddep.org/wp-content/uploads/2017/08/garp-kenya_es.pdf (accessed on 2 March 2021).

	



Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]

	



FAO. The FAO Action Plan on Antimicrobial Resistance 2016–2020; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; pp. 1–14. Available online: http://www.fao.org/3/a-i5996e.pdf (accessed on 4 March 2021).

	



Asiimwe, B.B.; Baldan, R.; Trovato, A.; Cirillo, D.M. Prevalence and molecular characteristics of Staphylococcus aureus, including methicillin resistant strains, isolated from bulk can milk and raw milk products in pastoral communities of South-West Uganda. BMC Infect. Dis. 2017, 17, 422. [Google Scholar] [CrossRef] [PubMed]

	



Gunga, P.M. Antibiotic Resistance Phenotypes and Genotypes of Staphylococcus aureus Isolated from Milk Submitted to the Central Veterinary Laboratories. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 11 November 2018. [Google Scholar]

	



Shitandi, A.; Sternesjö, Å. Prevalence of Multidrug Resistant Staphylococcus aureus in Milk from Large- and Small-Scale Producers in Kenya. J. Dairy Sci. 2014, 87, 4145–4149. [Google Scholar] [CrossRef]

	



Mureithi, D.; Khang, C.; Kamau, M.N. Antimicrobial resistance profile in bacterial isolates from subclinical mastitic milk samples in dairy herds in Kenya. Bull. Anim. Health Prod. Afr. 2017, 65, 167–173. [Google Scholar]

	



Wang, D.; Wang, Z.; Yan, Z.; Wu, J.; Ali, T.; Li, J.; Lv, Y.; Han, B. Bovine mastitis Staphylococcus aureus: Antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in China. Infect. Genet. Evol. 2015, 31, 9–16. [Google Scholar] [CrossRef] [PubMed]

	



Mbindyo, C.; Gitao, C.; Mulei, C. Prevalence, Etiology, and Risk Factors of Mastitis in Dairy Cattle in Embu and Kajiado Counties, Kenya. Vet. Med. Int. 2020, 2020. [Google Scholar] [CrossRef]

	



Aklilu, E.; Chia, H.Y. First mecC and mecA Positive Livestock-Associated Methicillin Resistant Staphylococcus aureus (mecC MRSA/LA-MRSA) from Dairy Cattle in Malaysia. Microorganisms 2020, 8, 147. [Google Scholar] [CrossRef]

	



Phophi, L.; Petzer, I.-M.; Qekwana, D.N. Antimicrobial resistance patterns and biofilm formation of coagulase-negative Staphylococcus species isolated from subclinical mastitis cow milk samples submitted to the Onderstepoort Milk Laboratory. BMC Vet. Res. 2019, 15, 1–9. [Google Scholar] [CrossRef]

	



Majalija, S.; Tumwine, G.; Kiguli, J.; Bugeza, J.; Ssemadaali, M.A.; Kazoora, H.B.; Muwanguzi, E.N.; Nantima, N.; Tuyiragize, R. Pastoral community practices, microbial quality and associated health risks of raw milk in the milk value chain of Nakasongola District, Uganda. Pastoralism 2020, 10, 1–11. [Google Scholar] [CrossRef]

	



Omwenga, I.; Aboge, G.O.; Mitema, E.S.; Obiero, G.; Ngaywa, C.; Ngwili, N.; Wamwere, G.; Wainaina, M.; Bett, B. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus, Including Methicillin-Resistant Strains in Raw Milk of Livestock from Northern Kenya. Microb. Drug Resist. 2021, 27, 843–854. [Google Scholar] [CrossRef]

	



Mekonnen, S.A.; Lam, T.J.G.M.; Hoekstra, J.; Rutten, V.P.M.G.; Tessema, T.S.; Broens, E.M.; Riesebos, A.E.; Spaninks, M.P.; Koop, G. Characterization of Staphylococcus aureus isolated from milk samples of dairy cows in small holder farms of North-Western Ethiopia. BMC Vet. Res. 2018, 14, 246. [Google Scholar] [CrossRef]

	



Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J. Dairy Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef]

	



Liu, H.; Li, S.; Meng, L.; Dong, L.; Zhao, S.; Lan, X.; Wang, J.; Zheng, N. Prevalence, antimicrobial susceptibility, and molecular characterization of Staphylococcus aureus isolated from dairy herds in northern China. J. Dairy Sci. 2017, 100, 8796–8803. [Google Scholar] [CrossRef]

	



Käppeli, N.; Morach, M.; Corti, S.; Eicher, C.; Stephan, R.; Johler, S. Staphylococcus aureus related to bovine mastitis in Switzerland: Clonal diversity, virulence gene profiles, and antimicrobial resistance of isolates collected throughout 2017. J. Dairy Sci. 2019, 102, 3274–3281. [Google Scholar] [CrossRef]

	



Monistero, V.; Barberio, A.; Biscarini, F.; Cremonesi, P.; Castiglioni, B.; Graber, H.; Bottini, E.; Ceballos-Marquez, A.; Kroemker, V.; Petzer, I.; et al. Different distribution of antimicrobial resistance genes and virulence profiles of Staphylococcus aureus strains isolated from clinical mastitis in six countries. J. Dairy Sci. 2020, 103, 3431–3446. [Google Scholar] [CrossRef]

	



Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther. 2002, 24, 385–390. [Google Scholar] [CrossRef]

	



Boireau, C.; Cazeau, G.; Jarrige, N.; Calavas, D.; Madec, J.-Y.; Leblond, A.; Haenni, M.; Gay, É. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006–2016. J. Dairy Sci. 2018, 101, 9451–9462. [Google Scholar] [CrossRef] [PubMed]

	



Moon, J.-S.; Lee, A.-R.; Kang, H.-M.; Lee, E.-S.; Kim, M.-N.; Paik, Y.; Park, Y.; Joo, Y.-S.; Koo, H. Phenotypic and Genetic Antibiogram of Methicillin-Resistant Staphylococci Isolated from Bovine Mastitis in Korea. J. Dairy Sci. 2007, 90, 1176–1185. [Google Scholar] [CrossRef]

	



Schnitt, A.; Tenhagen, B.-A. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog. Dis. 2020, 17, 585–596. [Google Scholar] [CrossRef]

	



Kalayu, A.A.; Woldetsadik, D.A.; Woldeamanuel, Y.; Wang, S.-H.; Gebreyes, W.A.; Teferi, T. Burden and antimicrobial resistance of S. aureus in dairy farms in Mekelle, Northern Ethiopia. BMC Vet. Res. 2020, 16, 20–28. [Google Scholar] [CrossRef] [PubMed]

	



Kemal, K.E.; Tesfaye, S.; Ashanafi, S.; Muhammadhussien, A.F. Prevalence, risk factors and multidrug resistance profile of Staphylococcus aureus isolated from bovine mastitis in selected dairy farms in and around Asella town, Arsi Zone, South Eastern Ethiopia. Afr. J. Microbiol. Res. 2017, 11, 1632–1642. [Google Scholar] [CrossRef]

	



The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and Zone Diameters. Version 11.0. 2021. Available online: http://www.eucast.org (accessed on 7 May 2021).

	



Kim, S.-J.; Moon, D.C.; Park, S.-C.; Kang, H.Y.; Na, S.H.; Lim, S.-K. Antimicrobial resistance and genetic characterization of coagulase-negative staphylococci from bovine mastitis milk samples in Korea. J. Dairy Sci. 2019, 102, 11439–11448. [Google Scholar] [CrossRef]

	



Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents 2018, 52, 930–935. [Google Scholar] [CrossRef] [PubMed]

	



Kreausukon, K.; Fetsch, A.; Kraushaar, B.; Alt, K.; Müller, K.; Krömker, V.; Zessin, K.-H.; Käsbohrer, A.; Tenhagen, B.-A. Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J. Dairy Sci. 2012, 95, 4382–4388. [Google Scholar] [CrossRef] [PubMed]

	



CLSI. Performance Standards for Antimicrobial Susceptibility Testing: CLSI Supplement M100S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]

	



Scholtzek, A.D.; Hanke, D.; Walther, B.; Eichhorn, I.; Stöckle, S.D.; Klein, K.-S.; Gehlen, H.; Lübke-Becker, A.; Schwarz, S.; Feßler, A.T.; et al. Molecular Characterization of Equine Staphylococcus aureus Isolates Exhibiting Reduced Oxacillin Susceptibility. Toxins 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed]

	



Panchal, V.V.; Griffiths, C.; Mosaei, H.; Bilyk, B.; Sutton, J.A.F.; Carnell, O.T.; Hornby, D.P.; Green, J.; Hobbs, J.K.; Kelley, W.L.; et al. Evolving MRSA: High-level β-lactam resistance in Staphylococcus aureus is associated with RNA Polymerase alterations and fine tuning of gene expression. PLoS Pathog. 2020, 16, e1008672. [Google Scholar] [CrossRef]

	



Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; Van Bunnik, B.A.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef]

	



Muloi, D.; Fèvre, E.M.; Bettridge, J.; Rono, R.; Ong’Are, D.; Hassell, J.M.; Karani, M.K.; Muinde, P.; Van Bunnik, B.; Street, A.; et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J. Glob. Health 2019, 9, 010412. [Google Scholar] [CrossRef]

	



Hamel, M.J.; Feikin, D.R.; Marston, B.; Brooks, J.T.; Greene, C.; Poe, A.; Chiller, T.; Zhou, Z.; Ouma, P.; Ochieng, B.; et al. Does Cotrimoxazole Prophylaxis for the Prevention of HIV-Associated Opportunistic Infections Select for Resistant Pathogens in Kenyan Adults? Am. J. Trop. Med. Hyg. 2008, 79, 320–330. [Google Scholar] [CrossRef]

	



Vali, L.; Dashti, A.A.; Mathew, F.; Udo, E.E. Characterization of Heterogeneous MRSA and MSSA with Reduced Susceptibility to Chlorhexidine in Kuwaiti Hospitals. Front. Microbiol. 2017, 8, 1359. [Google Scholar] [CrossRef]

	



Milheiriço, C.; Portelinha, A.; Krippahl, L.; De Lencastre, H.; Oliveira, D.C. Evidence for a purifying selection acting on the β-lactamase locus in epidemic clones of methicillin-resistant Staphylococcus aureus. BMC Microbiol. 2011, 11, 76. [Google Scholar] [CrossRef]

	



Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New epidemiology of Staphylococcus aureus infection in Africa. Clin. Microbiol. Infect. 2014, 20, 589–596. [Google Scholar] [CrossRef]

	



Dorneles, E.M.S.; Fonseca, M.D.A.M.; de Abreu, J.A.P.; Lage, A.P.; Brito, M.A.V.P.; Pereira, C.R.; Brandão, H.M.; Guimarães, A.S.; Heinemann, M.B. Genetic diversity and antimicrobial resistance inStaphylococcus aureusand coagulase-negativeStaphylococcusisolates from bovine mastitis in Minas Gerais, Brazil. Microbiology 2019, 8, e00736. [Google Scholar] [CrossRef]

	



Cheng, J.; Qu, W.; Barkema, H.; Nóbrega, D.; Gao, J.; Liu, G.; De Buck, J.; Kastelic, J.; Sun, H.; Han, B. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J. Dairy Sci. 2019, 102, 2416–2426. [Google Scholar] [CrossRef]

	



Locatelli, C.; Cremonesi, P.; Caprioli, A.; Carfora, V.; Ianzano, A.; Barberio, A.; Morandi, S.; Casula, A.; Castiglioni, B.; Bronzo, V.; et al. Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J. Dairy Sci. 2017, 100, 608–619. [Google Scholar] [CrossRef] [PubMed]

	



Yang, F.; Wang, Q.; Wang, X.-R.; Wang, L.; Li, X.-P.; Luo, J.-Y.; Zhang, S.-D.; Li, H.-S. Genetic characterization of antimicrobial resistance in Staphylococcus aureus isolated from bovine mastitis cases in Northwest China. J. Integr. Agric. 2016, 15, 2842–2847. [Google Scholar] [CrossRef]

	



Pekana, A.; Green, E. Antimicrobial Resistance Profiles of Staphylococcus aureus Isolated from Meat Carcasses and Bovine Milk in Abattoirs and Dairy Farms of the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 2223. [Google Scholar] [CrossRef] [PubMed]

	



Gao, J.; Ferreri, M.; Liu, X.Q.; Chen, L.B.; Su, J.L.; Han, B. Development of multiplex polymerase chain reaction assay for rapid detection ofStaphylococcus aureusand selected antibiotic resistance genes in bovine mastitic milk samples. J. Vet. Diagn. Investig. 2011, 23, 894–901. [Google Scholar] [CrossRef]

	



Croes, S.; Deurenberg, R.H.; Boumans, M.-L.L.; Beisser, P.S.; Neef, C.; Stobberingh, E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, 229. [Google Scholar] [CrossRef] [PubMed]

	



Antók, F.I.; Mayrhofer, R.; Marbach, H.; Masengesho, J.C.; Keinprecht, H.; Nyirimbuga, V.; Fischer, O.; Lepuschitz, S.; Ruppitsch, W.; Ehling-Schulz, M.; et al. Characterization of Antibiotic and Biocide Resistance Genes and Virulence Factors of Staphylococcus Species Associated with Bovine Mastitis in Rwanda. Antibiotics 2019, 9, 1. [Google Scholar] [CrossRef]

	



Radostits, O.; Gay, C.; Blood, D.; Hinchcliff, K.; Constable, P.D. Veterinary Medicine: A Text Book of the Disease of Cattle, Sheep, Pigs, Goats and Horses, 9th ed.; W.B. Sounders Company Ltd.: New York, NY, USA, 2007; pp. 430–432. [Google Scholar]

	



National Mastitis Council (NMC). Laboratory Handbook on Bovine Mastitis; Revised Edition; National Mastitis Council Inc.: New Prague, MN, USA, 2017. [Google Scholar]

	



Markey, B.; Leonard, F.; Archambault, M.; Cullinane, A.; Maguire, D. Clinical Veterinary Microbiology, 2nd ed.; Oxford University Press: New York, NY, USA, 2013; pp. 105–120. [Google Scholar]

	



Monday, S.; Beisaw, A.; Feng, P. Identification of Shiga toxigenic Escherichia coli seropathotypes A and B by multiplex PCR. Mol. Cell. Probes 2007, 21, 308–311. [Google Scholar] [CrossRef] [PubMed]

	



Wang, R.F.; Cao, W.W.; Cerniglia, C.E. A universal protocol for PCR detection of 13 species of foodborne pathogens in foods. J Appl Microbiol. 1997, 83, 727–736. [Google Scholar] [CrossRef]

	



Martineau, F.; Picard, F.J.; Grenier, L.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. J. Antimicrob. Chemother. 2000, 46, 527–534. [Google Scholar] [CrossRef] [PubMed]

	



Pyatov, V.; Vrtková, I.; Knoll, A. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic. Acta Vet. Brno 2017, 86, 167–174. [Google Scholar] [CrossRef]

	



Pérez-Serrano, R.M.; Domínguez-Pérez, R.A.; Ayala-Herrera, J.L.; Luna-Jaramillo, A.E.; De Larrea, G.Z.-L.; Solís-Sainz, J.C.; García-Solís, P.; Loyola-Rodríguez, J.P. Dental plaque microbiota of pet owners and their dogs as a shared source and reservoir of antimicrobial resistance genes. J. Glob. Antimicrob. Resist. 2020, 21, 285–290. [Google Scholar] [CrossRef] [PubMed]

	



Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]

	



Schaumburg, F.; Pauly, M.; Schubert, G.; Shittu, A.; Tong, S.; Leendertz, F.; Peters, G.; Becker, K. Characterization of a Novel Thermostable Nuclease Homolog (NucM) in a Highly Divergent Staphylococcus aureus Clade. J. Clin. Microbiol. 2014, 52, 4036–4038. [Google Scholar] [CrossRef]

	



SnapGene® Software (from Insightful Science). Available online: https://www.snapgene.com/ (accessed on 1 December 2020).

	



NCBI/PubMed, NCBI/PMC. Available online: https://www.ncbi.nlm.nih.gov (accessed on 1 December 2020).








[image: Table] 





Table 1. Antibiotic susceptibility patterns of 183 staphylococci isolated from mastitic cow milk in two counties, Kenya.
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Antibiotic Class

	
Disk Concentration

(µg)

	
Disc Diffusion

Interpretive Criteria (mm)

	
S. aureus

	
CoNS






	

	

	
S 1

	
R 2

	
Rn (%)

	
Rn (%)




	
β-lactams

	

	

	

	

	




	
Cefoxitin

	
30

	
≥22

	
≤21

	
23 (25)

	
10 (10.8)




	
Ampicillin

	
25

	
≥29

	
≤28

	
65 (71.4)

	
53 (57.6)




	
Aminoglycosides

	

	

	

	

	




	
Gentamicin

	
10

	
≥15

	
≤12

	
6 (6)

	
4 (4.3)




	
Streptomycin

	
10

	
≥15

	
≤12

	
23 (21)

	
18 (20)




	
Fluoroquinolones

	

	

	

	

	




	
Ciprofloxacin

	
5

	
≥21

	
≤15

	
3 (3.2)

	
3 (3)




	
Norfloxacin

	
10

	
≥17

	
≤12

	
4 (4.3)

	
3 (3)




	
Tetracycline

	

	

	

	

	




	
Tetracycline

	
30

	
≥19

	
≤14

	
23 (21)

	
21 (22.8)




	
Folate pathway inhibitors

	

	

	




	
Trimethoprim–sulfamethoxazole

	
23.75/1.25

	
≥1

	
≥10

	
17 (17.5)

	
16 (17.3)




	
Macrolides

	




	
Erythromycin

	
15

	
≥18

	
≤13

	
23 (25.2)

	
14 (15.2)




	
Phenicols

	

	

	

	

	




	
Chloramphenicol

	
10

	
≥18

	
≤12

	
8 (8.7)

	
7 (7.6)








1 sensitive; 2 resistant. Disc diffusion interpretive criteria for cefoxitin in CoNS was performed based on EUCAST 2021 (S ≥ 25, R < 25) and the rest according to CLSI M100 2016.













[image: Table] 





Table 2. Antimicrobial resistance pattern of MRSA and MSSA isolated from mastitic cows in two counties, Kenya (n = 91).
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Antimicrobial Agents

	
MRSA 1 (n = 23)

	
MSSA 2 (n = 68)

	
p-Value 3




	

	
Rn 4 (%)

	
Rn (%)

	






	
Cefoxitin

	
23 (100)

	
0 (0)

	
0.001




	
Ampicillin

	
23 (100)

	
45 (66.2)

	
0.001




	
Gentamicin

	
5 (26)

	
1 (1.4)

	
0.04




	
Norfloxacin

	
3 (13)

	
1 (1.4)

	
0.04




	
Streptomycin

	
9 (39)

	
12 (17.6)

	
0.03




	
Ciprofloxacin

	
1 (4)

	
2 (2.9)

	
0.58




	
Trimethoprim–Sulfamethoxazole

	
7 (30)

	
10 (14.7)

	
0.06




	
Tetracycline

	
11 (48)

	
10 (14.7)

	
0.006




	
Erythromycin

	
12 (52)

	
12 (17.6)

	
0.001




	
Chloramphenicol

	
6 (26)

	
2 (2.9)

	
0.001








1 Methicillin-resistant Staphylococcus aureus; 2 Methicillin-sensitive Staphylococcus aureus; 3 p-value refers to differences between MRSA and MSSA isolates resistant to the respective antimicrobial drug; 4 Resistance.
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Table 3. Antimicrobial resistance genes to various antibiotics among the staphylococci isolates from bovine mastitis in two counties in Kenya.
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Species

	
β-Lactams

	
Tetracycline

	
Streptomycin

	
Erythromycin






	

	
1 No. R

	
blaZ

Rn (%)

	
No. R

	
tetM

Rn (%)

	
tetK

Rn (%)

	
No. R

	
strB

Rn (%)

	
No. R

	
msrA

Rn (%)

	
ermB

Rn (%)

	
ermC

Rn (%)




	
S. aureus

	
79

	
35 (41.1)

	
23

	
4 (17.3)

	
-

	
23

	
6 (26)

	
23

	
5 (21.7)

	
4 (17.3)

	
-




	
CoNS

	
73

	
55 (65.4)

	
21

	
3 (14.2)

	
3 (14.2)

	
18

	
9 (50)

	
14

	
4 (28.5)

	
4 (28.5)

	
1 (4.3)




	
Total

	
152

	
90 (59.2)

	
43

	
7 (16.2)

	
3 (6.9)

	
42

	
15 (35.7)

	
37

	
9 (24.3)

	
8 (21.6)

	
1 (2.7)








1 Number of phenotypic-resistant isolates in each category.
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Table 4. Details of primers and annealing temperatures used to detect antibiotic resistance genes in the study.
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Target Gene

	
Primer Sequence (5′-3′)

	
Annealing

Temperature (°C)

	
Amplicon Size (bp)

	
Reference






	
nuc

	
F-GCGATTGATGGTGATACGGTT

	
50

	
276

	
[71]




	
R-CAAGCCTTGACGAACTAAAGC




	
blaZ

	
F-ACTTCAACA CCTGCTGCTTTC

	
54

	
173

	
[72]




	
R-TGACCACTTTTATCAGCAACC




	
strB

	
F-CGGTCGTGAGAACAATCTGA

	
60

	
313

	
[73]




	
R-ATGATGCAGGATCGCCATGTA




	
ermB

	
F-ACGACGAAACTGGCTAA

	
55

	
409

	
[64]




	
R-TGGTATGGCGGGTAA




	
msrA

	
F-AAGGCTTGTCCGCAATACAC

	
60

	
320

	
[73]




	
R-CCATTACCCCCAATAAGTGC




	
tetM

	
F-GTCCGTCTGAACTTTGCGGA

	
59

	
662

	
[26]




	
R-GCGGCACTTCGATGTGAATG




	
tetK

	
F-TTAGGTGAAGGGTTAGGTCC

	
59

	
718

	
[26]




	
R-GCAAACTCATTCCAGAAGCA




	
ermC

	
F-AATCGGCTCAGGAAAAGG

	
55

	
562

	
[74]




	
R-ATCGTCAATTCCTGCATG








F—forward; R—reverse.
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