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Abstract: Minimal inhibitory concentration-based pharmacokinetic/pharmacodynamic (PK/PD)
indices are commonly applied to antibiotic dosing optimisation, but their informative value is limited,
as they do not account for bacterial growth dynamics over time. We aimed to comprehensively
characterise the exposure—effect relationship of levofloxacin against Escherichia coli and quantify strain-
specific characteristics applying novel PK/PD parameters. In vitro infection model experiments
were leveraged to explore the exposure—effect relationship of three clinical Escherichia coli isolates,
harbouring different genomic fluoroquinolone resistance mechanisms, under constant levofloxacin
concentrations or human concentration-time profiles (<76 h). As an exposure metric, the ‘cumulative
area under the levofloxacin—concentration time curve” was determined. The antibiotic effect was
assessed as the ‘cumulative area between the growth control and the bacterial-killing and -regrowth
curve’. PK/PD modelling was applied to characterise the exposure—effect relationship and derive
novel PK/PD parameters. A sigmoidal Emax model with an inhibition term best characterised
the exposure—effect relationship and allowed for discrimination between two isolates sharing the
same MIC value. Strain- and exposure-pattern-dependent differences were captured by the PK/PD
parameters and elucidated the contribution of phenotypic adaptation to bacterial regrowth. The
novel exposure and effect metrics and derived PK/PD parameters allowed for comprehensive
characterisation of the isolates and could be applied to overcome the limitations of the MIC in clinical
antibiotic dosing decisions, drug research and preclinical development.

Keywords: pharmacokinetic/pharmacodynamic parameters; in vitro infection model; Escherichia coli;

levofloxacin; antibiotic resistance; minimal inhibitory concentration

1. Introduction

Dosing optimisation is an important strategy to tackle the global threat of antimicro-
bial resistance and is commonly based on pharmacokinetic/pharmacodynamic (PK/PD)
indices, which relate an exposure metric of an antibiotic, e.g., Cmax or AUC, to an effect
metric, the minimal inhibitory concentration (MIC) of the pathogen [1-3]. Limitations of the
MIC value in predicting in vivo susceptibility of pathogens are well known: 2-fold dilution
series of antibiotic concentrations are conventionally used, with visual evaluation after
16-20 h of incubation under standardised conditions [4]. Hence, the MIC does not account
for bacterial growth dynamics over time, evaluation by the unaided eye is subjective and
uncertainty of MIC determinations, comprising biological and technical uncertainty, is thus
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high [5-7]. Moreover, MIC values of a bacterial wild-type population usually cover 3-5
two-fold dilutions [8] and hence, clinical decision-making, guided by MIC-based PK/PD
indices, entails a risk of inappropriate categorisation of the bacterial strain. Consequently,
choice of an inefficacious antibiotic and dosing regimen can result in treatment failure.
Further, MIC-guided preclinical research and development potentially misses important
characteristics of the growth and kill behaviour of a bacterial strain under antibiotic ex-
posure, which can be elucidated using time-kill curve experiments [9]. Complementarily,
whole-genome sequencing (WGS) has evolved to predict the susceptibility of a bacterial
strain from its genome, but it still lacks harmonisation, quality standards and clinical
implications of detected genomic resistance mechanisms [10]. Phenotypic susceptibility
reflects a complex interplay between chromosomal and acquired resistance mechanisms
and phenotypic adaptation, such as the so-called SOS response and persister cell formation
under antibiotic exposure [11,12]. Emergence of persisting bacterial subpopulations is not
represented in the unchanged MIC value of these phenotypically adapted bacteria [13].
Yet, prediction of phenotypic resistance based on genotyping has not been established [14].

To comprehensively characterise the PK/PD relationship of an antibiotic and a
pathogen, the European Medicines Agency suggests time-kill curve experiments utilising
in vitro models in preclinical studies [15]. Under antibiotic exposure, serial bacterial concen-
trations are determined to assess the antibiotic effect, that is the growth, kill and regrowth
behaviour, over time [9,16,17]. Thereby, the effect of multiple antibiotic concentration-time
profiles (C(t) profiles) on various bacterial strains can be investigated. Static in vitro infec-
tion models employ constant drug concentrations, while dynamic in vitro infection models
mimic human target-site C(t) profiles resulting from different dosing regimens and routes
of administration [17]. Various PK/PD metrics derived from in vitro infection models have
been proposed [1,18], but preclinical evaluation of novel drug candidates and identification
of PK/PD targets mostly rely on MIC-based PK/PD indices, for example fAUC/MIC [19].
Like the MIC, these PK/PD metrics do not account for the bacterialkilling and regrowth
curve over time or the shape of the antibiotic C(t) profile.

Aiming to take full advantage of static and dynamic in vitro infection models, the
fluoroquinolone levofloxacin (LVX) and the pathogen Escherichia coli (E. coli) were chosen
as the model compound and organism, as fluoroquinolone resistance in extra-intestinal
pathogenic E. coli is alarming [20]. LVX is a critically important antibiotic, indicated
for severe infections, such as nosocomial pneumonia and pyelonephritis [21,22]. Both
Crax/MIC ratio and AUC/MIC ratio are discussed as PK/PD indices best predicting
LVX efficacy [23-28]. The European Committee on Antimicrobial Susceptibility Testing
(EUCAST) refers to a target fAUC/MIC ratio of 72 for clinical efficacy in the current
rationale for clinical breakpoints [19]. Based on a neutropenic mouse thigh model, a
fAUC/MIC target value of 35.6 has been determined for bacteriostasis, 67.4 for 1-logj
reduction and 140 for 2-logjo reduction of bacterial load. In the present study, we aimed to
discriminate the exposure—effect relationship of LVX resistant E. coli strains, going beyond
the typically applied PD targets and exploiting the full bacterial growth, kill and regrowth
trajectory. The study focused on moderately resistant strains, aiming to quantitatively
discriminate the extent of observed initial reduction and regrowth of bacterial populations
under LXV exposure.

Fluoroquinolone resistance mechanisms encompass mutations in the quinolone-
resistance-determining regions (QRDR) of the target enzyme encoding genes gyrA and
parC, and plasmid-mediated quinolone resistance, especially plasmids encoding for Qnr
proteins [29-32]. Furthermore, altered membrane function affecting drug permeation con-
tributes to reduced fluoroquinolone susceptibility, e.g., decreased expression of porin
diffusion channels in Gram-negative bacteria or increased expression of efflux trans-
porters [29,30]. The impact of genomic fluoroquinolone resistance mechanisms on pheno-
typic resistance is relatively well investigated [10,31,32], but clinical implications regarding
fluoroquinolone dosing are missing.
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This study aimed to comprehensively characterise the exposure—effect relationship
of LVX against E. coli based on static and dynamic in vitro infection model experiments.
Bacterial growth and kill behaviour over time as a consequence of the full antibiotic C(t)
trajectory was quantified by novel PK/PD metrics and discussed in the light of the genomic
characteristics of clinical E. coli isolates.

2. Results
2.1. Characterisation of Bacterial Strains

Three clinical E. coli isolates were identified as sequence types (STs) 58, ST88 and ST167.
Mutations in QRDR and acquired fluoroquinolone resistance genes were identical before
and after exposure in static and dynamic in vitro infection model experiments (Table 1).
MIC values classified the three isolates as LV X-resistant according to EUCAST [33].

Table 1. Sequence types, mutations in quinolone-resistance-determining regions, acquired fluoroquinolone resistance

mechanisms and levofloxacin minimal inhibitory concentrations of three investigated Escherichia coli isolates, before and

after levofloxacin exposure, in in vitro infection model experiments.

Sequence Type Mutations in QRDR Acqui.red Minimal Inhibitory
Fluoroquinolone Concentration (mg/L)
8gyrA parC Resistance
58 Ser-83—Leu WT - 8
88 Ser-83—Leu WT qnrS1 2
167 ::;'_8837:%; Ser-80—le . 8

QRDR: quinolone-resistance-determining regions; gyrA and parC: genes encoding for subunits of bacterial gyrase and topoisomerase IV;
Ser: serine; Leu: leucine; Asp: aspartic acid; Ile: isoleucine; Asn: asparagine; WT wild type; qgnrS1: quinolone resistance plasmid S1; “—"
indicates replacement of amino acid.

2.2. In Vitro Infection Model Experiments

All E. coli isolates displayed a strain-specific initial reduction of bacterial concentra-
tions, followed by regrowth under exposure to LVX concentrations < 2-fold the MIC of the
isolate in static in vitro infection model experiments [34].

In the dynamic in vitro infection model, LVX C(t) profiles resulting from a 750 mg,
90 min intravenous (i.v.) infusion in humans were successfully mimicked based on a two-
compartment PK model [35]. Experimentally mimicked LVX C(t) profiles were comparable
between the strains and did not show a trend towards lower or higher exposure for any of
the isolates, but initial killing and regrowth within 24 h were observed with a strain-specific
extent, even for two isolates sharing the same MIC value of 8 mg/L (ST58 and ST167) [34].

2.3. Pharmacokinetic/Pharmacodynamic Metrics

Exposure was quantified by the cumulative area under the LVX-C(t) curve (cumAUC),
which increased linearly over time for static IVIM experiments (Supplementary Figure S1,
bottom). Differently, for the dynamic exposure pattern, steeply increasing LVX concentrations
in the beginning, and decreasing LVX concentrations in the terminal part of a C(t) profile were
represented in a sigmoidal LVX cumAUC-time trajectory (Figure S1, top). Maximum LVX
cumAUC(t) values, reached at the end of each experiment, were approximately 7-fold higher
for static compared to dynamic exposure (1536 vs. 216 mg-h-L~1, respectively).

A novel effect metric was derived based on the area between the growth-control (GC) and
the bacterial-killing and -regrowth curve (ABBC), introduced by Firsov et al. [36]. In our study,
the ABBC was determined cumulatively over time of exposure (cumABBC(t)) and normalised
to the cumulative area under the GC curve at that timepoint (cumAUGC(t)) to account for
growth without antibiotic exposure as baseline and to distinguish between the growth and
kill behaviour of the isolates. The maximum normalised cumABBC(t) was observed at the
timepoint of the minimum bacterial concentrations, before observing regrowth.

In the static in vitro infection model, the maximum normalised effect was similar
for the investigated isolates (ST58 = 0.818, ST88 = 0.852, ST167 = 0.858, Figure S2, right).
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Contrary, under dynamic LVX exposure, the maximum normalised effect quantitatively
demonstrated differences in bacterial growth and kill behaviour of the strains: ST58 = 0.377,
ST167 = 0.627 and ST88 = 0.706 (Figure S2, left). Hence, the normalised cumulative effect
was only 1- to 2-fold higher in the static compared to the dynamic in vitro infection model,
despite the 7-fold higher cumulative exposure.

2.4. Exposure—Effect Relationship

Relating the dynamic PK metric cumAUC(t) to the dynamic PD metric normalised
cumABBC(t), initially sigmoidally increasing exposure—effect curves were observed for
static and dynamic LVX exposure, and regrowth was represented by a decline in the
normalised cumABBC(t) at higher exposure (Figure S3). For the static exposure, this
decline was less pronounced (smaller slope) than for dynamic exposure, probably as a
consequence of the linearly increasing cumAUC(t) for static LVX concentrations, compared
to decreasing incremental LVX AUC in the terminal part of the dynamic C(t) profiles.

A sigmoidal Enax model with an additional inhibition term best characterised the
observed exposure—effect relationship for the three E. coli isolates under static and dynamic
LVX exposure:

cumABBC(t) cumAUC(t)" 1

Effect = = .
cumAUGC(H) — cum AUC +cum AUC(D)" © 1 4 cnalict]

In the PK/PD model, the cumABBC/cumAUGC ratio quantified the antibiotic effect
as a function of time, where cumAUC(t) was the cumulative exposure at the timepoint t, the
parameter cumAUCsg was the cumAUC causing 50% of the maximum effect, (:urnAUCreg
was the cumAUC at which regrowth occurred, and the so-called “Hill factor”(n) quantified
the steepness of the exposure-effect relationship.

Here, the sigmoidally increasing effect in the first part of the exposure—effect course
(Figure 1) was primarily determined by the cum AUC(t) causing 50% of the maximum effect
(cumAUCs5)), with a steeper increase in effect for a lower cumAUCs5, estimate. Bacterial
regrowth, represented by a reverse effect (i.e., decrease in antibiotic effect) at higher
exposure at later time points, was determined by the LVX cumAUC(t) causing regrowth
(cumAUCyeg)—small cumAUC,eg estimates represented regrowth at lower cumulative
LVX exposure, while large cumAUC,.g estimates resulted in a negligible impact of the
inhibition term and therefore reduced the PK/PD model to a simple sigmoidal Emax model
(i.e., only the left part of the equation). For each isolate, cumAUCs5( and the Hill factor (n)
were jointly estimated for static and dynamic exposure, while cumAUC;eg was estimated
separately (cumAUC,eg static, CUMAUC g dynamic)-

Unlike static LVX concentrations, the predicted exposure—effect relationship in the
dynamic experimental setting (Figure 1, dark blue, dark green and red solid lines) reflected
the clinical situation, as dynamic C(t) profiles were mimicked using a PK model developed
based on clinical data [35]. The reversed effect at higher exposure values indicated the
inappropriateness of the approved dosing regimen, discerning between clinical isolates
sharing the same MIC value (ST58 and ST167, dark blue and dark red solid lines).

2.4.1. Stratification per E.coli Strain

The observed differences between the strains in initial bacterial reduction were quan-
tified by their cumAUCs5, estimates, being smallest for ST88, followed by ST167 (almost
2-fold higher), and being largest for ST58 (more than 5-fold higher compared to ST8S,
Table 2), indicating the highest LVX susceptibility for ST88, in line with the lower MIC
value of this isolate (2 mg/L). However, differences in the exposure—effect relationship
between ST58 and ST167 sharing the same MIC value (8 mg/L) were observed—the initial
bacterial reduction was less pronounced for ST58, which was quantified by a more than
3-fold higher cumAUCs5, estimate compared to ST167 (158 vs. 49.4 mg~h-L’1).
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Figure 1. Exposure—effect relationship of levofloxacin against Escherichia coli in static and dynamic in vitro infection
model experiments. Exposure was determined as the cumulative area under the levofloxacin concentration-time curve
(cumAUC(t)); effect was determined as the cumulative area between the growth control and the bacterial killing and
regrowth curve (cumABBC(t)), normalised to the area under the growth control curve (cumAUGC(t)); observations (points
and dashed lines) and predictions (solid lines) were based on the Emax model with inhibition term. Colours: three Escherichia
coli isolates under dynamic (dark green, red and blue) and static (light green, orange and light blue) exposure; upper panel:
exposure—effect relationship per isolate; lower panel: exposure—effect relationship per exposure pattern; ST: sequence type.

CumAUC,g estimates revealed strain-dependent differences between the exposure
patterns—the cumAUC ¢g static €stimate was smallest for ST88, followed by ST167 (5-
fold higher) and ST58 (9.5-fold higher compared to ST 88), being in line with the order
of the cumAUCs5) estimates. However, the cumAUC, g gynamic €stimate was smallest
for ST58, followed by ST88 and ST167. Comparing the static setting with constant
LVX exposure to the dynamic setting with clinically relevant LVX C(t) profiles, the
cumAUCreg static/ CUMAUC g dynamic ratio indicated the tendency of an isolate to show
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regrowth preferably in the static setting for a ratio < 1 and in the dynamic setting for a
ratio > 1 (Table 2).

Table 2. Parameter estimates and parameter imprecision of a sigmoidal Emax model combined with an inhibition term,

describing the exposure—effect relationship of levofloxacin against three clinical Escherichia coli isolates in static and dynamic

in vitro infection model experiments.

Parameter (unit)

Estimate (RSE, %)

Sequence Type 58 Sequence Type 88 Sequence Type 167
cumAUCsg (mg-h-L~1) 158 (9.45) 28.6 (7.85) 49.4 (7.54)
Hill 1.02 (5.49) 1.25 (5.37) 0.961 (6.62)
cumAUCeg, static (mg-h-L71) 3132 (36.5) 330 (22.9) 1679 (20.3)
cumAUCreg dynamic (mg-h-L~1) 248 (34.6) 373 (34.9) 473 (39.2)
cumAUCreg static/ CUMAUC e dynamic ratio 12.6 0.885 3.55
Proportional residual variability, 4.00 (11.8) 433 (11.7) 3.33(11.3)

% CV

RSE: relative standard error (imprecision of parameter estimates); cumAUCs5,: exposure, determined as cumulative area under the
levofloxacin concentration-time curve, causing 50% of the maximum effect; cumAUCreg static: €xposure causing regrowth in a static in vitro
infection model; cumAUCreg, dynamic: €xposure causing regrowth in a dynamic in vitro infection model; Hill: Hill factor (steepness of
exposure—effect relationship); CV: coefficient of variation.

2.4.2. Stratification for Static and Dynamic Exposure

To further elucidate the impact of the static LVX concentration on the exposure—effect
relationship, parameters were estimated stratified per exposure pattern (static or dynamic
exposure) and MIC-normalised LVX concentration for static exposure (Table S1). For ST58
and ST167, cumAUCs5, estimates were comparable between dynamic exposure and static
exposure to 1-fold MIC, while the cumAUCs5) estimates for 2-fold MIC exposure were
much higher for these isolates. Differently, for ST88, the cumAUCs5( value was 1.6-fold
higher for the dynamic exposure pattern compared to 2-fold MIC exposure (32.2 mg-h-L~!
vs. 19.7 mg-h-L™1). CumAUCeg estimates were beyond the maximum observed exposure
for ST58 and ST167 under static exposure to LVX concentrations of 2-fold MIC (Figure S1,
bottom). Differently, for ST88, cum AUC,eg was 1.5-fold higher under dynamic exposure
compared to static exposure to 2-fold MIC and more than 20-fold higher compared to
static exposure to 1-fold MIC, respectively, indicating a tendency of the isolate to display
regrowth under static rather than under dynamic exposure.

Comparing the predicted maximum effect (Emax), based on parameter estimates for
the three isolates stratified per exposure pattern (static exposure to 1-fold MIC, 2-fold MIC
and dynamic exposure), showed similar Enax values for ST88 under static exposure to
2-fold MIC and dynamic exposure (0.757 vs. 0.696), but requiring almost 2-fold higher
LVX exposure in the dynamic setting (Table S2, Figure 2). For ST58, the maximum effect
under dynamic exposure was much smaller than that from static exposure to 1-fold MIC,
with only 18.6% lower cumulative LVX exposure. At the same time, LVX exposure at the
maximum effect was 4.6-fold higher comparing exposure to 2-fold MIC in the static to the
dynamic setting. For ST167, Enax was smaller in the dynamic setting compared to static
exposure to 1-fold MIC (0.567 vs. 0.650), with a 22.9% smaller exposure at the maximum
effect. Consequently, for ST58 and ST167, insufficient exposure in the dynamic setting
might have contributed more to regrowth compared to ST8S.

The separate trajectories of the killing process, described by the Emnax model term, and
the regrowth process, characterised by the inhibition term, demonstrated the changing
impact of the two processes determining the exposure—effect relationship and unveiled the
relation between the two parameters, cumAUCsy and cumAUC;¢g and the full normalised
effect (Figure 3, Table 3).
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Figure 2. Exposure-effect relationship of levofloxacin against Escherichia coli in static and dy-
namic in vitro infection model experiments, stratified per exposure pattern (blue: static, 1-fold MIC;
green: static, 2-fold MIC; red: dynamic); exposure metric: cumulative area under the levofloxacin-
concentration—time profile (cumAUC(t)); effect metric: cumulative area between the growth-control
and the bacterial-killing and -regrowth curve (cumABBC(t)), normalised to the area under the growth-
control curve (cumAUGC(t)); observations (points and dashed lines) and deterministic simulations
(solid lines) based on the Emax model with inhibition term; MIC: minimal inhibitory concentration.
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Figure 3. Predicted effect (solid lines) of levofloxacin over time against three Escherichia coli isolates
(left: sequence type 58, middle: sequence type 88, right: sequence type 167) in in vitro infection
model experiments, based on the Enax model with inhibition term; and predictions based only on the
separate inhibition term (regrowth process, dashed lines) and only on the Enax model term (killing
process, dotted lines); upper panel: predictions for dynamic exposure (red); lower panel: predictions
for static exposure to 1-fold MIC (blue) and 2-fold MIC (green), black horizontal and vertical dashed
lines indicate the intersection between killing and regrowth trajectories, exemplified for sequence
type 58, static 2-fold exposure; vertical red lines indicate three phases of exposure—effect relationship:

A

“killing phase”, “transition phase” and “ regrowth phase”; MIC: minimal inhibitory concentration.
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Table 3. Dominance * of killing and regrowth processes in the three different phases of the effect-time trajectories (see
Figure 3, red vertical lines in lower left panel) of three Escherichia coli isolates under exposure to static levofloxacin (LVX)
concentrations (1- and 2-fold the minimal inhibitory concentration (MIC) of the isolate), based on parameter estimates
stratified per exposure pattern.

Sequence Type 58 Sequence Type 88 Sequence Type 167
Crvx = 1-fold MIC Time (h) Effect Time (h) Effect Time (h) Effect
Dominance of killing process <1.10 <0.0539 <0.80 <0.358 <220 <0.320
(Higher impact of Emax term)
Intersection of killing and regrowth trajectories 133 0.610 8.7 0.630 10.1 0.803
Dominance of regrowth process
> > > > > >
(Higher impact of inhibition term) >90.0 >0.179 >41.0 >0.252 >314 >0.541
Crvx = 2-fold MIC
Dominance of killing process <8.70 <0.560 <5.30 <0.503 <13.1 <0737
(Higher impact of Emax term)
Intersection of killing and regrowth trajectories 26.2 0.863 153 0.866 29.9 0.892
Dominance of regrowth process >60.0 >0.697 >295 >0.732 >66.0 >0.750

(Higher impact of inhibition term)

* Dominance defined as <5% deviation from predicted trajectory based on full model (see Figure 3, red vertical lines in lower left panel).

Three phases of the effect-time trajectories were identified: In the first phase, the killing
process predominantly (up to 95%) determined the effect, illustrated by the overlapping
trajectories of the Epax model term and the full model (Figure 3, coloured dashed and solid
lines). The second phase (transition phase) was determined by the two opposing processes
and comprised the intersection of the killing and the regrowth trajectories (Table 3; Figure 3:
exemplified for ST58 under static exposure to 2-fold MIC, black horizontal and vertical dashed
lines). In the third phase, regrowth predominantly (up to 95%) determined the effect (Figure 3:
overlapping dotted and solid lines). With increasing impact of the inhibition term, the effect
was reduced to a strain-specific extent. Differences between the strains were more pronounced
in the dynamic setting than under static exposure. The predicted Epax was influenced by
both the steepness of the effect—time trajectory and the slope of the inhibition term. Epax
was similar for the isolates under static exposure to LVX concentrations of 2-fold MIC, but
different in the dynamic setting. The predicted effect increased later under exposure to 1-fold
MIC (blue solid lines) compared to 2-fold MIC (green solid lines). Additionally, effect—time
curves were steeper for exposure to static LVX concentrations of 2-fold MIC compared to
1-fold MIC. The impact of the inhibition term, reversing the effect at later time points, was
more pronounced for static exposure to 1-fold MIC compared to 2-fold MIC. Under exposure
to dynamic LVX concentrations, the impact of the inhibition term was most pronounced for
ST58 and smallest for ST8S.

3. Discussion

The novel time-dependent exposure and effect metrics cumAUC(t) and cumAUGC(t)-
normalised cumABBC(t), respectively, were successfully applied to characterise the exposure—
effect relationship of LVX against E. coli in a mechanism-based PK/PD model, based on
experiments in two different in vitro infection models. This large experimental database,
comprising static and dynamic experiments, allowed for distinction between the (re)growth
and kill processes and precise estimation of easily interpretable PK/PD parameters. The
derived PK/PD parameters, cumAUCsy and cumAUC,eg, allowed for comparison and dis-
crimination between the clinical isolates, even when sharing the same MIC value, as well as
between static and dynamic drug exposure. Isolate-specific parameter estimates elucidated
the contribution of genomic resistance and phenotypic adaptation to bacterial regrowth.

Emax models have been widely used to describe the relationship between an antibiotic
concentration and the resulting effect [37—41]. Here, by implementation of cumAUC(t),
the concept was extended by leveraging a metric representing the full exposure-time
trajectory instead of a single C(t). Based on the approach introduced by Firsov et al., we
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went beyond the MIC and introduced novel parameters, capturing the different processes
constituting the antibiotic effect, i.e., killing and regrowth under antibiotic exposure over
time—initially, the sigmoidal Enax model term dominated the exposure—effect relationship,
while the impact of the inhibition term increased at higher cumulative exposure values at
later timepoints. CumAUCs5 represented the sigmoidally increasing effect at low exposure,
i.e., the strain-specific extent of initial bacterial reduction, while cumAUC;.g reflected
the tendency of an isolate to regrow, with lower cumAUC,g estimates for regrowth at
lower exposure.

Mainly dominating the exposure—effect relationship for initially small cumAUC(t)
values, the impact of previous exposure on cumAUCs5; was small compared to the impact
of previous exposure on the regrowth parameter cumAUC,eg. Hence, for the static and
the dynamic exposure pattern, a joint cumAUCs5, value was rather determined by “inher-
ent” characteristics of an isolate being present prior to antibiotic exposure, i.e., genomic
resistance mechanisms. For optimised antibiotic dosing, prevention of bacterial adapta-
tion causing regrowth is equally important. For that purpose, the regrowth parameter
cumAUCreg, providing insights in the cumulative exposure causing regrowth, should be
leveraged. In future, applying cumAUC;g for various bacterial strains can facilitate the def-
inition of a cumAUC,eg value preventing regrowth in vitro as a MIC-independent PK/PD
target. With increasing impact for higher cumulative exposure, cumAUC;g represented
bacterial regrowth mechanisms, being different between static and dynamic exposure.
Stratified predictions for the investigated exposure patterns (static, 1-fold MIC, 2-fold MIC
and dynamic exposure) demonstrated the larger impact of the inhibition term under static
compared to dynamic exposure. The intersection of the killing and regrowth trajectories in-
dicated the time point when regrowth started to dominate the exposure—effect relationship,
which was only reached for ST167 under the dynamic experimental conditions. Hence,
decreasing LVX concentrations might contribute to regrowth in the dynamic exposure
setting, while bacterial adaptation mechanisms, such as persister cell formation, might play
arole in the strain- and exposure-pattern-dependent differences of cumAUC;g estimates
for static exposure. For both experimental settings, no novel genomic resistance mecha-
nisms were detected after LVX exposure (Table 1), indicating that phenotypic adaptation
mechanisms, such as persister formation, might have caused regrowth.

The cumAUCeg static / cumAUCreg,dynamiC ratio quantitatively demonstrated the ten-
dency to preferentially show regrowth under exposure to static LVX concentrations for
ST88. As decreasing antibiotic concentrations were not present under static exposure and
could thus not affect bacterial regrowth, persister cell formation might have contributed
more to regrowth for ST88 compared to the other isolates. This finding indicated the
superiority of continuously high LVX concentrations in the static in vitro infection model
for ST58 and ST167, which can be achieved by prolonged infusion durations in the clin-
ics. Further, the developed PK/PD model can be applied in a clinical setting by linking
cumAUC values of patient-derived C(t) profiles to clinical outcome parameters to derive
PK/PD target values.

Moreover, cumAUCs5 and cumAUC;eg values enabled a more comprehensive char-
acterisation of the exposure—effect relationship compared to MIC-based strategies. A
paradigm shift towards MIC-independent PK/PD targets is highly needed, and hence, the
novel PK/PD parameters present a promising framework for rational antibiotic dosing
strategies, but also for ranking new antibiotics in preclinical research and development,
enabling full exploitation of static and dynamic time-kill curve data.

Several studies investigated the impact of gyrA and parC mutations and gnr plasmids
on phenotypic fluoroquinolone resistance, linking the level of phenotypic resistance to
genomic properties of the investigated isolates solely with respect to MIC values [29-32].
In general, the MIC values were higher for a higher number of QRDR mutations. LVX
resistance at MIC > 8 mg/L has been observed in E. coli, if more than one gyrA mutation
or an additional parC mutation was detected, while a single gyrA mutation normally
causes LVX resistance at a low level (0.25 mg/L < MIC < 8 mg/L) [32]. Plasmid-mediated
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quinolone resistance alone usually is not capable of elevating LVX MIC above the clinical
resistance breakpoint of MIC > 1 mg/L [30-32].

In the current study, LVX resistance quantified by the novel PK/PD parameters
cumAUCs5) and cumAUC,g indicated the highest susceptibility for ST88, followed by
ST167 and the highest level of resistance for ST58. The higher number of mutations of
ST167 partly explained this finding, indicating lower susceptibility compared to ST88
with one gyrA mutation and gnrS plasmids (Table 1). The elevated resistance level of
ST58 was unexpected with regard to the single gyrA mutation of the isolate, indicating
that phenotypic adaptation mechanisms, such as persister cell formation, might have
contributed. Furthermore, fitness costs due to the higher number of mutations harboured
by ST167 compared to ST58 and ST88 might have contributed to delayed regrowth of the
isolate [42].

As for all in vitro approaches, the direct transferability of the presented results to
the in vivo situation is limited and serves as a first basis, as not all relevant processes
are represented in the experimental setup. Importantly, the contribution of the human
immune system to bacterial killing was not captured in the applied in vitro infection
models [43]. Furthermore, the method used for bacterial quantification did not detect
non-cultivable persister cells. Thus, experiments to further elucidate the contribution of
bacterial adaptation mechanisms to regrowth are highly warranted. Yet, in vitro approaches
allow for systematic investigations under standardised conditions. The benefit of the
suggested PK/PD metrics and derived PK/PD parameters was presented for LVX as a
model compound and a limited number of three clinical E. coli isolates. To assess their
external validity, these metrics should be applied to a larger number of bacterial species
and antibiotics. In particular, applicability of the parameters for antibiotics with a time-
dependent PK/PD relationship, such as beta-lactam antibiotics, should be explored.

4. Materials and Methods
4.1. Characterisation of Bacterial Strains
4.1.1. Genotypic Resistance

Three fluoroquinolone-resistant clinical E. coli isolates, obtained from Charité Univer-
sity Medicine Berlin, were investigated. Genomic resistance mechanisms of the isolates
were determined prior to LVX exposure and after representative experiments (1 = 1 per
isolate and experimental setting). Single bacterial colonies were scratched from freshly
prepared overnight cultures on Columbia agar (Carl Roth GmbH, Karlsruhe, Germany) to
ensure a genetically homogenous E. coli population. After overnight incubation in CAMHB
(Oxoid GmbH, Wesel, Germany), bacterial DNA was extracted using a bacterial DNA
extraction kit (GF-1, GeneOn®, Ludwigshafen, Germany). WGS was performed using
the Tllumina® technology. The STs were determined and relevant QRDR mutations and
acquired resistance genes were identified by applying multilocus sequence typing (MLST),
utilising ResFinder 3.2, and the MLST-2.0 online tool, (Center for Genomic Epidemiology,
Lyngby, Denmark), respectively [44,45].

4.1.2. Antimicrobial Susceptibility Testing

For MIC determination of LVX against the investigated isolates, the broth microdi-
lution method according to CLSI was applied [4]. Using CAMHB as growth medium,
the assay was carried out twice for each isolate (n = 6 replicates per experiment and
LVX concentration).

4.2. In Vitro Infection Model Experiments

To investigate bacterial growth and kill behaviour of E. coli over time under LVX
exposure, static and dynamic time—kill curve experiments were performed as described
previously [34]. In short, in the static in vitro infection model, exponential E. coli cultures
were exposed to static LVX concentrations between 0.25- and 8-fold their MIC value for
1-3 days. In the dynamic in vitro infection model, LVX C(t) profiles resulting from a 750 mg,
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90 min i.v. infusion in humans were mimicked using a continuous dilution model, which
was developed based on Léwdin et al. [46]. Overall, 43 static and 12 dynamic replicates of
IVIM experiments were included in the analysis.

4.3. Pharmacokinetic/Pharmacodynamic Metrics

CumAUC was chosen as exposure metric accounting for both time of exposure and
the shape of the C(t) profile, aiming to characterise the exposure—effect relationship of LVX
against the E. coli isolates. CumAUC was determined as a function of time (cumAUC(t)),
with time starting from 0 (LVX administration) to the end of the experiment. For the static
in vitro infection model, cumAUC(t) was calculated based on nominal LVX concentrations.

CumABBC was determined by calculating the ABBC cumulatively over time, as cum-
ABBC(t), realised by computing the difference between the cumABBC and the cumAUGC.
To account for the changing growth dynamics of unexposed bacteria, cumABBC(t) was
normalised to cumAUGC(t), representing disease progression without antibiotic treatment
(Figure 4). Thereby, the effect metric was transformed to a scale between 0 (natural growth
without antibiotic effect) and 1 (bacterial eradication). All cumulative areas were deter-
mined by trapezoidal integration with linear interpolation using the ‘cumtrapz’ function
(R package ‘pracma’, R Foundation for Statistical Computing, Vienna, Austria).

} cumABBC(t)

cumAUGC(t)

== Growth control
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Bacterial concentration [logo(CFU/mL)]
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Figure 4. Illustration of novel pharmacodynamic metric, cumABBC(t), to quantify the antibiotic effect based on in vitro
infection model experiments, exemplified for two sampling time points at 4 h (left) with cumABBC(4 h), and at 20 h (right)
with cumABBC(20 h); solid vertical line: sampling time point of assessment; dashed vertical lines: intermediate sampling
time points; cumABBC(t): cumulative area between growth-control and bacterial-killing and -regrowth curve as function of
time (dark grey area); cumAUGC(t): cumulative area under the growth-control curve as function of time (sum of light +

dark grey area).

4.4. Exposure—effect Relationship
4.4.1. Stratification per E. coli Strain

The novel dynamic PK/PD metrics were applied to graphically explore the exposure-
effect relationship of LVX against E. coli in the static and dynamic in vitro infection model.
Based on these, a PK/PD model was developed to derive parameters characterising the
exposure—effect relationship. Different mathematical implementations, e.g., ordinary and
sigmoidal Epnax models combined with different inhibition terms, linking cumAUC(t) to
cumAUGC(t)-normalised cumABBC(t), were investigated. Nonlinear regression (‘optim’
function, R package ‘deSolve’ R Foundation for Statistical Computing, Vienna, Austria)
was performed applying the Nelder-Mead and the conjugate gradient algorithm in two
consecutive steps of the minimisation process. Models were compared based on precision
of parameter estimates, extent of proportional residual variability and Akaike information
criterion [47]. Isolate-specific PK/PD parameters were estimated.

4.4.2. Stratification for Static and Dynamic Exposure

To explore the nature of the exposure—effect relationship further, parameter estimation
was performed stratifying per MIC-normalised LVX exposure (for static, 1-fold MIC and



Antibiotics 2021, 10, 615

12 of 14

2-fold MIC, and dynamic exposure pattern). Deterministic simulations were performed for
each strain and exposure pattern, the maximum predicted effect (Emax) and the correspond-
ing cumulative LVX exposure (cumAUC(t)) were determined. The property of an isolate to
regrow preferentially under exposure to dynamic Cp gy was quantified by the ratio between
the cumAUC value causing regrowth under static LVX exposure (cumAUC g static) and the
cumAUC value causing regrowth under dynamic LVX exposure (cumAUC g dynamic) for
each strain. The contribution of the two model parameters, cumAUCsy and cumAUC;eg, to
the effect—time trajectories was assessed graphically by plotting the Epax model and the
inhibition term separately as a function of time for the three isolates and exposure patterns
(static, 1-fold MIC and 2-fold MIC, and dynamic exposure). The time and exposure of
increasing impact of the inhibition term was determined as >5% deviation between the
trajectory of the Emax model term and the full model (Table 3, Figure 3, red vertical lines).
The time point of full dominance of the inhibition term was defined as <5% deviation
between the full model and the inhibition term.

5. Conclusions

In this study, a large experimental database, comprising static and dynamic in vitro
infection model experiments, was analysed with in silico PK/PD modelling, leading to
novel antibiotic exposure and effect metrics. Differences between static and dynamic expo-
sure regarding the exposure—effect relationship, quantified by derived PK/PD parameters,
highlighted the limitations of the static in vitro infection model to appropriately reflect the
in vivo setting. In dynamic in vitro infection model experiments, regrowth of the investi-
gated clinical isolates was observed under exposure to clinically relevant LVX C(t) profiles,
indicating the inappropriateness of the approved dosing regimen. The applied PK/PD
parameters allowed for discrimination between two isolates sharing the same MIC, but
different genomic characteristics. Comparing the exposure—effect relationship of different
exposure patterns demonstrated the relevance of the shape of the antibiotic C(t) profile.
The introduced PK/PD metrics and PK/PD parameters present a promising framework
for ranking new antibiotics in drug research and development, to more comprehensively
characterise PK/PD relationships, investigate the adequateness of proposed or established
dosing regimens and overcome the limitations of the MIC.
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.3390/ antibiotics10060615/s1, Figure S1: Levofloxacin exposure metric, Figure S2: Antibiotic effect of
levofloxacin against Escherichia coli, Figure S3: Exposure-effect relationship of levofloxacin against
Escherichia coli in static and dynamic in vitro infection model experiments, Table S1: Parameter
estimates and parameter imprecision of a sigmoidal Emax model combined with an inhibition term,
Table S2: Antibiotic exposure at predicted maximum effect.
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