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Abstract: Ceftobiprole combines an excellent spectrum for community-acquired pneumonia (CAP)
and hospital-acquired pneumonia (HAP) pathogens, with a low/medium MDR risk, and the β-
lactams’ safety in frail patients admitted to the hospital in internal medicine wards which may be at
high risk of adverse events by anti-MRSA coverage as oxazolidinones or glycopeptides. We aimed
to report the available evidence regarding ceftobiprole use in pneumonia and invasive bacterial
infections, shedding light on ceftobiprole stewardship. The clinical application and real-life experi-
ences of using ceftobiprole for bloodstream infections, including infective endocarditis, are limited
but nevertheless promising. In addition, extended-spectrum ceftobiprole activity, including Entero-
coccus faecalis, Enterobacteriaceae, and Pseudomonas aeruginosa, has theoretical advantages for use as
empirical therapy in bacteremia potentially caused by a broad spectrum of microorganisms, such as
catheter-related bacteremia. In the future, the desirable approach to sepsis and severe infections
will be administered to patients according to their clinical situation, the intrinsic host characteristics,
the susceptibility profile, and local epidemiology, while the “universal antibiotic strategy” will no
longer be adequate.
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1. Introduction

Ceftobiprole medocaril, a fifth-generation extended-spectrum cephalosporin, is en-
dorsed in Europe at a standard dosage of 500 mg intravenously every 8 h for manag-
ing adult community-acquired pneumonia (CAP) [1], non-ventilator-associated hospital-
acquired pneumonia (HAP) [2], and skin and soft-tissue infections (SSTIs) [3,4], including
diabetic foot infections. Ceftobiprole was the first β-lactam antibiotic to show in vitro
activity against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant
S. aureus (VRSA), and penicillin-resistant Streptococcus pneumoniae (PRSP) [5]. It exerts its
antibacterial activity by inhibiting the transpeptidase moiety of penicillin-binding proteins
(PBPs) [6]. More precisely, ceftobiprole’s in vitro activity demonstrates potent binding
against PBPs of Gram-positive bacteria (GPB), including those with decreased β-lactam
sensitivity, such as PBP2x and PBP2bin PRSP and, PBPa, which confers methicillin resis-
tance to S. aureus strains [5,6]. In vitro bactericidal activity against MRSA strains showed
kinetics either similar or superior to those of vancomycin and linezolid [7]. Further-
more, recent findings regarding isolates from ceftobiprole phase III SSTIs and pneumonia
clinical trials showed promising activity on MRSA isolates, including Panton–Valentine-
leukocidin-positive strains, regardless [8] or with a slight variation [9] according to SCCmec
or clone type.
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Ceftobiprole retains activity against a wide spectrum of Gram-negative bacteria (GNB)
and is stable against a wide variety of β-lactamases, being similar to ceftriaxone, cefepime,
and ceftazidime [10]; the class A β-lactamases PC1 staphylococcal penicillinase, TEM,
some SHV types, and the K1 β-lactamase of Klebsiella oxytoca have no lytic enzymatic
action against ceftobiprole. The drug is degraded by both extended-spectrum β-lactamases
(ESBLs) and serine-carbapenemases. Class B, several class C chromosomal AmpC-type β-
lactamases, and some class D β-lactamases have lytic action on ceftobiprole’s structure [5,6].

Since several reports are available regarding bloodstream infections, including infec-
tive endocarditis, we aimed to report the available evidence regarding ceftobiprole use for
the approved indications and potential further indications, shedding light on ceftobiprole
stewardship.

1.1. Ceftobiprole and Pneumonia

Ceftobiprole’s efficacy and safety have been demonstrated through two phase III
trials [1,2]. Nicholson et al. designed a non-inferiority, double-blinded, multicenter, ran-
domized trial where ceftobiprole was compared against ceftriaxone with optional linezolid
(if a high risk of MRSA or ceftriaxone-resistant S. pneumoniae were present) at regular
dosages under extreme CAP [1]. The non-inferiority of ceftobiprole was confirmed in
the previous study and compared to the linezolid combination therapies. The second
(double-blinded, multicenter, and randomized) study compared ceftobiprole medocaril
and ceftazidime combined with linezolid within HAP and ventilator associated pneumonia
(VAP). Awad et al.’s study showed the non-inferiority of ceftobiprole against ceftazidime
plus linezolid, except in patients with VAP [2]. The failure of ceftobiprole to achieve
non-inferiority in VAP subgroups might be related to insufficient sample size and higher
heterogeneity in VAP patients according to demographic, clinical, and microbiological
characteristics.

Furthermore, another significant statistical difference was seen in the subgroup of
those with microbiological evidence of MRSA infection, with 94.7% in the ceftobiprole
group vs. 52.6% in the ceftazidime plus linezolid group, reflecting a discrepancy of 42.1%
(95% CI, 17.5–66.7%). Regarding the secondary efficacy criterion, the rates of microbiologi-
cal eradication were comparable in the ceftobiprole and ceftazidime/linezolid groups at
the management visit’s end for patients who had HAP [2]. Interestingly, the clinical results
were in favor of ceftobiprole in patients having HAP and needing mechanical ventilation
(MV) for less than 48 h [2,10,11].

In severe CAP leading to influenza-associated complications, ceftobiprole can be an
excellent option to ensure that realistic coverage of community-acquired MRSA can be
assured, especially in patients with diabetes, obesity, or chronic obstructive pulmonary
disease (COPD), as well as patients over 65 years of age with pulmonary anomalies or with
underlying malignancies [5,10,11].

In a post hoc review of both phase III trials [1,2], Scheeren et al. [12] evaluated
the consequences for a limited group of high-risk patients with community-acquired
or nosocomial pneumonia, and found ceftobiprole to be compelling relative to other drugs
regarding premature improvement in the treatment of high-risk patients, patients with
severe HAP, and patients with up to ten underlying comorbidities.

Nosocomial pneumonia recommendations [13,14] include rapid empirical antimicro-
bial treatment regimen using a combination of local antibiotic resistance, risk factors and
severity of disease.

If the risk of multi-drug-resistant (MDR) bacterial etiology is low to medium, initial
monotherapy can be used wherever possible [15,16]. Ceftobiprole blends an excellent
spectrum of low- to medium-MDR-risk HAP pathogens with β-lactam protection in vul-
nerable, hospitalized patients at high risk of adverse reactions triggered by anti-MRSA
coverage, such as oxazolidinones or glycopeptides. In addition to the above characteristics,
ceftobiprole is at low risk for the selection of resistant GPB or GNB mutants, and does not
have any significant effect on the stable human intestinal flora.
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Besides the above-mentioned qualities, ceftobiprole has minimal risk for the selection
of resistant mutants in GPB or GNB, and no significant effects on stable human intestinal
flora [17,18].

As of 18 January 2021, the SARS-CoV-2 pandemic has caused 90.5 million cases
and 2.0 million deaths worldwide [19,20]. Data are increasing regarding bacterial co-
infections in the severe disease caused by SARS-CoV-2, but the subject is not yet fully
understood [21,22]. GPB are the most common pathogens that cause community-acquired
pneumonia co-infections in COVID-19 subjects, although there is an increasing ratio of
infections with GNB among hospital-acquired lung superinfections [21–28]. Ceftobiprole
may fit within a monotherapy stewardship intervention in patients with CAP or HAP at
risk for MRSA or Pseudomonas aeruginosa [29], with or without subsequent de-escalation
(Figure 1).

Figure 1. Ceftobiprole stewardship perspective: sparing vs. sparring. Abbreviations: CAP—community-acquired pneumo-
nia; MRSA—methicillin-resistant Staphylococcus aureus; PA—Pseudomonas aeruginosa; HAP—hospital-acquired pneumonia;
CLABSI—central-line associated bloodstream infections; BL/BLI—β-lactams/β-lactam inhibitor; SSTIs—skin and soft
tissue infections.

1.2. Ceftobiprole and Skin and Soft Tissue Infections

Regarding the use of ceftobiprole within SSTIs, three randomized clinical trials [3,4,30]
have confirmed the drug’s usefulness, although a permit to use was subsequently not
issued [31]. In subjects who were suspected of or confirmed to have complicated Gram-
positive SSTIs, Noel et al. published the first phase III, non-inferiority, double-blind,
randomized clinical trial (RCT) at 129 sites worldwide [3]. In patients, either ceftobiprole
at 500 mg for 12 h, or vancomycin at 1 g for 12 h, was randomized [3]. The therapy lasted
7–14 days. Infections of the diabetic foot, bite-wound, and osteomyelitis were removed [3].
The key endpoint of the visit to the test of cure (TOC) was a therapeutic cure (7–14 days after
the treatment) [3]. The margin for non-inferiority was set at 10%. For the Intention-To-Treat
(ITT) population 77.8% (308/397) and 77.5% (300/387) respectively of ceftobiprole-treated
and vancomycin-treated patients (difference 0.3%, 95% CI, −5.5%, and 6.1%) were treated
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with the clinical cure [3]. In the population, 93.3% (263/282) and 93.5% (259/277) of the
ceftobiprole and vancomycin treated patients were clinically cured, (difference −0.2%, 95%
CI, −4.4% to 3.9) respectively [3].

In patients with complex Gram-positive or Gram-negative SSTIs, a second double-
blind RCT comparing ceftobiprole to vancomycin plus ceftazidime was performed [31].
During the TOC visit, the critical endpoint was a therapeutic cure (7–14 days after the
treatment) [4]. The 10% margin for non-inferiority was set [4]. Noel et al. showed that a
clinical cure was reached in the ITT population in 81.9% (448/547) and 80.8% (227/281) of
ceftobiprole and vancomycin plus ceftazidime treatment groups respectively [4]. Clinical
cures were reached in 90.5% (439/485) and 90.2% (220/244) of CE patients treated with
ceftobiprole and vancomycin plus ceftazidime, respectively [31].

Overcash et al. [30] recently published the results for treatment of SSTI with van-
comycin + aztreonam (n = 344) in a novel phase III, double-blind RCT (TARGET trial).
In the ceftobiprole and vancomycin + aztreonam groups respectively, early clinical suc-
cess rates of 91.3% and 88.1%, and non-inferiority were seen [30]. At the TOC visit,
the investigator-assessed clinical performance of both groups was comparable and the
ITT (90.1% vs 89.0%), as well as those scientifically estimated (97.9% vs. 95.2%), showed
non-inferiority [30]. Both treatment groups had similar microbiological results and safety
profiles [30].

1.3. Ceftobiprole and Bacteremia

According to existing recommendations and research, the mainstays of antibiotic
treatment for Gram-positive invasive infections are glycopeptides (e.g., vancomycin and
teicoplanin) and lipoglycopeptides (e.g., daptomycin), and some β-lactam antimicrobials
(e.g., cefazoline) [31–34]. For MRSA, the treatment of bloodstream infections (BSIs) and
infective endocarditis (IE) is only approved for vancomycin and daptomycin [35,36]. One of
the main drawbacks of β-lactams in Staphylococcus aureus bacteremia (SAB) treatments is
the absence of MRSA action [31–34]. Currently, ceftaroline is the only β-lactam antibiotic
used for MRSA bacteremia and this is off-label with insufficient clinical evidence to provide
optimal dose guidance [37,38].

Vancomycin is not as effective as β-lactams against methicillin-susceptible S. aureus
(MSSA) [39–41]. With its bactericidal activity against both MSSA and MRSA, ceftobiprole
has the potential to address this shortcoming [42–44]. The clinical application and real-life
experiences of using ceftobiprole for BSIs are limited but nevertheless promising [45,46].
Phase III trials for CAP, HAP, and SSTIs included a small proportion of Gram-positive
bacteremic patients [1–4]. By extrapolating clinical data directly from phase III trials [1–4],
Rello et al. [46] developed two interesting pooled analyses—a test of cure and mortality—
for ceftobiprole versus comparators (e.g., vancomycin, linezolid, and ceftazidime) in BSIs
caused by Staphylococcus spp. All BSI episodes had as origin either SSTIs or pneumonia
and therefore ceftobiprole was used within approved boundaries [46]. The clinical cure
rate of the ceftobiprole group (48.9%, 22/45 patients) in the TOC analysis was comparable
to that of the comparators (44.0%, 22/50) for staphylococcal bacteremia, specifically the
subgroups of coagulase-negative staphylococci (CoNS) (45.5% vs. 45.5%), MSSA (44.4% vs.
46.7%), and MRSA (55.6% vs. 22.2%) [45,46]. Furthermore, the ceftobiprole group showed
better results for the 30-day all-cause mortality than its comparators; mortality in the
ceftobiprole group was 8.9% (4/45) versus 16.0% (8/50) in the comparators group [45,46].
It is worth noting that the mortality rate for MRSA bacteremic patients was around 0% in
the ceftobiprole group versus 22.2% in the comparator cohorts [45,46].

Recently, Durante-Mangoni et al. [47] reported ceftobiprole use in their case series
of BSI in 10 patients (34.5%), including three with infective endocarditis (10.3%) and two
with skin and skin structure infection (6.9%). The majority of BSIs were due to MRSA
(35%) and coagulase-negative staphylococci (35%, mostly methicillin-resistant CoNS) with
high severity at presentation (58.6% and 13.8% sepsis and septic shock, respectively) [47].
Nevertheless, the BSI cohort (n = 10) by Durante-Mangoni and colleagues presented four
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failures (three bacteremia and one IE) [47]. We are waiting hopefully for interesting data
from some ongoing studies regarding SAB. Recruitment for the first randomized, double-
blind, multicenter study comparing ceftobiprole medocaril to daptomycin in the treatment
of SAB (ERADICATE trial, https://clinicaltrials.gov/ct2/show/NCT03138733) began in
August 2018 [48]. The ERADICATE trial would establish the efficacy and safety of this
novel cephalosporin compared to daptomycin (6 mg/kg with or without aztreonam in the
treatment of Staphylococcus aureus bacteremia, including IE) [48]. The target completion
of this study is in the second half of 2021 [48]. In addition, extended-spectrum ceftobip-
role activity, including Enterococcus faecalis, Enterobacteriaceae, and Pseudomonas aeruginosa,
has theoretical advantages for use as empirical therapy in bacteremia potentially caused by
a broad spectrum of microorganisms, such as catheter-related bacteremia [45,46].

1.4. Ceftobiprole and Infective Endocarditis

IE is a severe disease with high morbidity and mortality. In the last few decades,
the outcome of IE has not significantly improved [49,50]. Staphylococcus aureus and other
Gram-positive bacteria are the most frequent aetiologic agents; Gram-negative bacteria
account for just 4–6% of cases, and they are generally associated with poor outcomes [51,52].

Since it became available, particular interest has been focused on ceftobiprole be-
yond the approved indications and, in particular, on IE, probably because of (i) its broad-
spectrum activity, including Gram-positive and Gram-negative bacteria, especially both
MSSA and MRSA; (ii) its bactericidal activity; and (iii) its high tolerability [5]. Animal
models of IE treated with ceftobiprole have provided promising results despite being
limited mostly to staphylococcal IE. In rats with experimental endocarditis due to two dif-
ferent strains of MRSA, ceftobiprole was able to sterilize >90% of cardiac vegetations [53].
Furthermore, in a rabbit model of MRSA experimental endocarditis, ceftobiprole was
compared to vancomycin, linezolid, and daptomycin, and it was described as superior in
reducing the microbial burden in aortic valve vegetations [54]. When administered in a
combination regimen, ceftobiprole and vancomycin showed a synergistic effect against
MRSA and glycopeptide-intermediate S. aureus [55], even at reduced dosages [56].

Unfortunately, clinical experience in this field is still scarce, and most of the available
data come from in vitro studies and animal models, besides the previously reported data
from Durante-Mangoni et al. [47]. Since 2007, ceftobiprole has been described as bactericidal
against both MSSA and MRSA isolates from patients with IE [56]. More recently, Rodriguez-
Garcia et al. [57] analyzed the susceptibility to ceftobiprole of 77 strains of Gram-positive
bacteria recovered from patients with IE. All 40 staphylococcal isolates (11 MSSA, 7 MRSA,
8 methicillin-susceptible coagulase-negative staphylococci, and 14 methicillin-resistant
CoNS) were susceptible to ceftobiprole, and 18/18 streptococci had an MIC of about
0.125 µg/mL. Moreover, ceftobiprole showed good results against Enterococcus faecalis
(MIC90 0.5 µg/mL) [58].

Clinical data from human cases of IE treated with ceftobiprole are still scarce, limited
to a few case reports and a small case series. The first case involved a hematopoietic stem
cell transplanted patient who was diagnosed with an infection of the prosthesis of the as-
cending aorta and aortic valve due to methicillin-resistant Staphylococcus epidermidis, treated
with long-course ceftobiprole monotherapy with clinical and microbiological success [59].
A second case was described in a case series by Mahmoud et al. [60] in which a 74-year-
old man with MRSA native mitral valve endocarditis was treated with a 76-day course
of ceftobiprole reported a follow-up negative for both endocarditis and microbiological
culture. Recently, Tascini et al. [61] published a multicenter case series of 12 patients with
IE treated with ceftobiprole, including a case previously described by Oltolini et al. [62].
All the patients were diagnosed with staphylococcal IE and 8/12 had IE in prosthetic
valves. Ceftobiprole was initiated after the failure of the previous antibiotic regimens in
9/12 patients; three patients, in particular, had persistently positive blood cultures, which
became rapidly negative after ceftobiprole administration. In just one case, ceftobiprole
was administered as monotherapy. The remaining 11 patients that featured all S. aureus

https://clinicaltrials.gov/ct2/show/NCT03138733
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strains were treated with a combination of ceftobiprole and daptomycin that was previ-
ously shown to be synergistic in vitro [63]. The cure rate was 83% (10/12); two patients
had poor outcomes as a result of fatal arrhythmias. It is of note that the blood cultures of
both patients were negative before the exitus.

Ultimately, ceftobiprole is an intriguing possibility for the treatment of endocarditis,
especially in combination with daptomycin, but further evidence is needed both from
human studies and in vivo and in vitro studies, which should also consider streptococcal
and enterococcal etiologies. New data about ceftobiprole versus daptomycin in S. aureus
bacteremia will be provided by the ongoing trial NCT03138733 [48], which also includes
right-sided IE. Meanwhile, the evidence is growing for bacteremia and endocarditis, special
interest may be given to ceftobiprole use in the setting of possible or probable Central-
Venous Catheter (CVC)-associated BSI [63,64].

2. Discussion

Cephalosporins have evolved greatly in the past decade through the creation of
new-generation molecules with wide spectrum activity. Ceftobiprole medocaril has been
approved for the treatment of adult CAP and HAP (excluding ventilator-acquired pneu-
monia) in 12 European countries, as well as Canada and Switzerland.

Initial empiric monotherapy with ceftobiprole in pneumonia can be put to use wher-
ever possible in cases of low to medium risk of the growth of MDR bacteria [15,16,29].
Ceftobiprole blends an excellent spectrum for HAP pathogens with low to medium MDR
risk with β-lactam safety in frail hospital inpatients, who may be at significant risk of
adverse effects triggered by MRSA and anti-MRSA coverage, including oxazolidinones
or glycopeptides [15,16,29]. Moreover, in severe adult CAP and post-influenza bacterial
pneumonia or COVID-19 pulmonary superinfections, this novel cephalosporin may be a
suitable option, notably in subjects at risk for MRSA or P. aeruginosa isolates [15,16,29].

Three randomized clinical trials stated that ceftobiprole was helpful in SSTI patients,
although a permit to use was subsequently not issued in all countries [30–33]. Recent
findings from ceftobiprole in the first two phase III RCTs on SSTIs also showed a promising
activity on Panton–Valentine-leukocidin-positive strains, regardless of SCCmec or clone
type [8,9].

In addition, little is known regarding the penetration of cerebrospinal fluid (CSF)
for ceftobiprole. Stucki et al. [65] found that ceftobiprole penetration was approximately
16% in inflamed meninges, compared to approximately 2% in uninflamed meninges in a
model for rabbit meningitis. In primary meningitis caused by S. pneumoniae (including
strains resistant to penicillin and ceftriaxone) and the secondary post-operatory meningitis
that requires both Gram-positive and Gram-negative coverage, ceftobiprole may be a
beneficial option.

The clinical application and real-life experiences of using ceftobiprole for BSIs are lim-
ited but nevertheless promising. However, so far data on ceftobiprole in bacteremia patients
should be interpreted with caution, and a multi-level assessment from microbiological,
pharmacological, clinical, and economic perspectives should be pursued, with considera-
tion for the future of antimicrobial stewardship in BSIs [45–49].

The in vitro microbiological susceptibilities of ceftobiprole are altogether quite promis-
ing, although the literature shows variability in the susceptibility rates among diverse
Gram-negative and -positive strains from various countries and cohorts [45–49]. This vari-
ability makes it crucial to know their epidemiology, particularly in multi-drug-resistant
organisms with limited treatment options.

In addition to these favorable MICs, more pharmacological data are needed to assess
the best dosage in critically ill patients to avoid administering subtherapeutic drug levels.
These new compounds theoretically permit a sparing approach in various antimicrobial
classes, such as glycopeptides, lipoglycopeptides, and aminoglycosides, as well as in en-
dovascular infections and bacteremia, and they favor molecules with a good safety profile
(Figure 1). The increasing data on ceftobiprole will enable a shift in the management of



Antibiotics 2021, 10, 170 7 of 11

MRSA and endovascular bacteremia [45,46]. These molecules can also be used in therapeu-
tic combinations, given that combination therapy is effective in particular circumstances.
Two different types of antibiotics with one pathogen activity can mainly be used to facilitate
the clearance of pathogens and to make sure the pathogen is susceptible to empiric ther-
apy [66–68]. Monotherapy, however, decreases the risks of antibiotic pressure, the incidence
of new infections, antimicrobial antagonism, toxicity, and costs [68,69]. Combination antibi-
otic treatment was recommended in the 2016 Surviving Sepsis Campaign Guidelines for the
primary management of septic shock to ensure appropriate empiric antibiotic coverage in
a situation where MDR pathogens are at great risk [69,70]. However, several other studies
have found little benefit to a combination treatment and some analyses have shown that
patients who undergo combination therapy have an increased risk of side effects [70,71].
In the future, patients will be treated in accordance with their clinical conditions, inherent
host features, susceptibility profile, and local epidemiology, as the “universal antibiotic
strategy” is no longer appropriate in the desirable approach to serious infection.

3. Materials and Methods

A literature search was conducted using the PubMed database and the Cochrane
library. The search terms utilized for the literature search were “bloodstream infections”,
“pneumonia”, “infective endocarditis”, “Ceftobiprole”, and “COVID”. The MeSH terms
were (“Ceftobiprole” [All Fields] AND “bloodstream infections” [All Fields]) OR (“Cefto-
biprole” [All Fields] AND “infective endocarditis” [All Fields] OR “Ceftobiprole” [All
Fields] AND “pneumonia” [All Fields]). A search period of 1 January 2002 to 1 December
2020 was selected, allowing the researchers to narratively review studies from different
decades (Figure 2). Forty-eight articles were found that support the clinical efficacy of
ceftobiprole in the treatment of GPB and GNB infections.

Figure 2. Literature narrative review flowchart.
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