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Abstract: Lefamulin was the first systemic pleuromutilin antibiotic approved for intravenous and oral
use in adults with community-acquired bacterial pneumonia based on two phase 3 trials (Lefamulin
Evaluation Against Pneumonia [LEAP]-1 and LEAP-2). This pooled analysis evaluated lefamulin
efficacy and safety in adults with community-acquired bacterial pneumonia caused by atypical
pathogens (Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae). In LEAP-1,
participants received intravenous lefamulin 150 mg every 12 h for 5–7 days or moxifloxacin 400 mg
every 24 h for 7 days, with optional intravenous-to-oral switch. In LEAP-2, participants received
oral lefamulin 600 mg every 12 h for 5 days or moxifloxacin 400 mg every 24 h for 7 days. Primary
outcomes were early clinical response at 96 ± 24 h after first dose and investigator assessment of
clinical response at test of cure (5–10 days after last dose). Atypical pathogens were identified in 25.0%
(91/364) of lefamulin-treated patients and 25.2% (87/345) of moxifloxacin-treated patients; most
were identified by ≥1 standard diagnostic modality (M. pneumoniae 71.2% [52/73]; L. pneumophila
96.9% [63/65]; C. pneumoniae 79.3% [46/58]); the most common standard diagnostic modality was
serology. In terms of disease severity, more than 90% of patients had CURB-65 (confusion of new
onset, blood urea nitrogen > 19 mg/dL, respiratory rate ≥ 30 breaths/min, blood pressure <90 mm
Hg systolic or ≤60 mm Hg diastolic, and age ≥ 65 years) scores of 0–2; approximately 50% of patients
had PORT (Pneumonia Outcomes Research Team) risk class of III, and the remaining patients were
more likely to have PORT risk class of II or IV versus V. In patients with atypical pathogens, early
clinical response (lefamulin 84.4–96.6%; moxifloxacin 90.3–96.8%) and investigator assessment of
clinical response at test of cure (lefamulin 74.1–89.7%; moxifloxacin 74.2–97.1%) were high and similar
between arms. Treatment-emergent adverse event rates were similar in the lefamulin (34.1% [31/91])
and moxifloxacin (32.2% [28/87]) groups. Limitations to this analysis include its post hoc nature, the
small numbers of patients infected with atypical pathogens, the possibility of PCR-based diagnostic
methods to identify non-etiologically relevant pathogens, and the possibility that these findings
may not be generalizable to all patients. Lefamulin as short-course empiric monotherapy, including
5-day oral therapy, was well tolerated in adults with community-acquired bacterial pneumonia and
demonstrated high clinical response rates against atypical pathogens.

Keywords: atypical pathogens; lefamulin; community-acquired bacterial pneumonia; Mycoplasma
pneumoniae; Chlamydia pneumoniae; Legionella pneumophila
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1. Introduction

Pneumonia is associated with substantial morbidity, mortality, and economic bur-
den [1–3] and is among the leading causes of infection-related deaths and hospitalizations
in the United States [4,5]. Among adults with pneumonia, approximately 14% of infec-
tions worldwide are caused by the atypical pathogens Mycoplasma pneumoniae, Chlamydia
pneumoniae, and Legionella pneumophila [6], and the proportion of pneumonia caused by
these pathogens has increased over the last 15 years [7]. However, wide heterogeneity
across countries has been observed in the estimated prevalence of atypical pathogens,
which has been attributed to a lack of standardization in diagnostic testing [8]. Differences
among countries include diagnostic approach, testing frequency, and a deficiency in widely
available, specific, validated microbiologic tests [7,8]. This variance in testing for atypical
pathogens may result in underdiagnoses and underreporting, which obscures the epi-
demiologic burden of atypical pathogens in pneumonia and could result in inappropriate
antibiotic choice (e.g., beta-lactams) [6–10].

Pneumonia caused by atypical pathogens is typically mild to moderate in severity [10–13].
However, at least 25% of patients with atypical pathogens require hospitalization (asso-
ciated with a 5.1% mortality rate), and nearly 1% are admitted to the intensive care unit
(ICU) [10,14], primarily because of acute respiratory failure (associated with an 11% mor-
tality rate) [12]. Of the atypical pathogens, M. pneumoniae is generally the most frequently
isolated causative pathogen [7,14] and is associated with substantial morbidity and mortal-
ity, especially in the elderly [10]. An Israeli retrospective study of hospitalizations reported
that nearly 40% of patients aged >65 years who tested positive for M. pneumoniae were
admitted to the ICU, with a 46.4% mortality rate [10]. Although L. pneumophila is less
frequently isolated compared with the other atypical pathogens [7,14], it is associated with
the highest pneumonia severity and the quickest illness onset [7,11,15]. More-over, in the
United States, a nearly 9-fold increase has been observed in cases of pneumonia caused by
L. pneumophila between 2000 and 2018 [16].

The recommended antibiotics for treating community-acquired bacterial pneumo-
nia (CABP) caused by atypical pathogens are macrolides and fluoroquinolones [17,18].
However, strains of L. pneumophila have been isolated with mutations that reduce its suscep-
tibility to macrolides and to fluoroquinolones such as ciprofloxacin [19–21]. A worldwide
emergence of macrolide-resistant M. pneumoniae has also been observed. Macrolide resis-
tance rates of 2–20% have been reported in Europe [22–25], and rates as high as 92% have
been observed in Asia [26]. Studies in the United States have identified macrolide resistance
in 10–13% of M. pneumoniae samples overall [27,28], and a more recent US surveillance
study reported macrolide resistance in 7.5% of M. pneumoniae specimens overall, with rates
of resistant isolates in some regions exceeding 20% [29]. Increasing antibiotic resistance in
atypical pathogens, as well as the adverse event profile of macrolides and fluoroquinolones,
underscores the need for new antibiotics with novel mechanisms of action for the treatment
of CABP [30–32].

Lefamulin, the first systemic pleuromutilin antimicrobial approved for intravenous
(IV) and oral use in adults with CABP [33], inhibits bacterial protein synthesis and has
demonstrated potent in vitro and in vivo activity against typical (e.g., Streptococcus pneumo-
niae, Staphylococcus aureus, Haemophilus influenzae) and atypical CABP pathogens, including
those resistant to other major antibiotic classes [33–38]. Lefamulin has been shown to
accumulate in macrophages at clinically relevant extracellular concentrations [38], which
may explain its in vitro activity against intracellular pathogens such as C. pneumoniae,
L. pneumophila, and M. pneumoniae [36,38,39]. In the phase 3 Lefamulin Evaluation Against
Pneumonia (LEAP)-1 and LEAP-2 trials, lefamulin was noninferior to the standard of care,
moxifloxacin, in adults with CABP [40,41]. In this pooled post hoc analysis of the LEAP-1
and LEAP-2 trials, we assessed the efficacy and safety of lefamulin versus moxifloxacin in
adults with CABP caused by atypical respiratory pathogens.
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2. Results
2.1. Patients

The pooled intent-to-treat (ITT) population (all randomized patients) included 1289 pa-
tients (lefamulin n = 646; moxifloxacin n = 643). Within the overall pooled microbiological
ITT (microITT) population (lefamulin n = 364; moxifloxacin n = 345), atypical pathogens
were identified in 91 patients (25.0%) treated with lefamulin and 87 (25.2%) treated with
moxifloxacin. Patient demographics and baseline characteristics in this subgroup (Table 1)
and in subgroups for each individual atypical pathogen (see Supplementary Materials,
Table S1) were generally similar to those of the overall ITT population [42]. In terms of
disease severity, more than 90% of patients had CURB-65 (confusion of new onset, blood
urea nitrogen > 19 mg/dL, respiratory rate ≥ 30 breaths/min, blood pressure < 90 mm Hg
systolic or ≤60 mm Hg diastolic, and age ≥ 65 years) scores of 0–2 (Table 1); approximately
50% of patients had PORT (Pneumonia Outcomes Research Team) risk class of III, and the
remaining patients were more likely to have PORT risk class of II or IV versus V.

Of patients with M pneumoniae, L. pneumophila, and C. pneumoniae, most (71.2% [52/73],
96.9% [63/65], and 79.3% [46/58], respectively) were identified by ≥1 standard diagnostic
modality (i.e., culture, serology, or urinary antigen test), the most common of which was
serology (Figure 1). At baseline, 98 patients (55.1%) had monomicrobial pneumonia, and
80 (44.9%) had polymicrobial pneumonia (Figure 2), of which coinfection with a Gram-
positive pathogen (S. pneumoniae 29.8%; S. aureus 3.4%) was more frequent than with a
Gram-negative pathogen (H. influenzae 11.8%; M. catarrhalis 4.5%) (Table 1). Minimum in-
hibitory concentration (MIC) values for L. pneumophila isolates collected from sputum (n = 2)
were 0.5–1 µg/mL for lefamulin and 0.03 µg/mL for moxifloxacin. For M pneumoniae iso-
lates (n = 17), MIC values were ≤0.001 µg/mL for lefamulin, 0.125 µg/mL for moxifloxacin,
0.06–0.5 µg/mL for doxycycline, and ≤0.001 µg/mL for azithromycin. None of the labora-
tories were able to successfully culture C. pneumoniae.
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Figure 1. Diagnostic modalities for patients with atypical pathogens detected at baseline * (pooled microITT population
[combined treatment groups]); * A patient could have had >1 pathogen identified. Multiple isolates of the same species
from the same patient identified by the same testing modality were counted only once. Patients were only counted once for
each pathogen based on the unique diagnostic modality or combination of diagnostic modalities by which the pathogen
was identified. RT-PCR was performed on OP samples; if RT-PCR was positive for M. pneumoniae, OP samples were used
for isolation of M. pneumoniae and for subsequent susceptibility testing. On some occasions, RT-PCR and culture were
performed in parallel. Inclusion of L. pneumophila as a baseline pathogen from sputum culture did not require an adequate
Gram stain. Culture of C. pneumoniae by the local laboratories was allowed per protocol, but it was not cultured successfully
by any of the laboratories. † Includes sputum RT-PCR, serology, and OP swab PCR; sputum RT-PCR, OP swab PCR, and
OP swab culture; serology, OP swab PCR, and OP swab culture; and sputum RT-PCR, serology, OP swab PCR, and OP
swab culture. ‡ Includes urine UAT, sputum RT-PCR, and serology; and sputum culture, urine UAT, sputum RT-PCR, and
serology. CABP, community-acquired bacterial pneumonia; microITT, microbiological intent to treat; n, number of patients
with the respective baseline pathogen; OP, oropharyngeal; PCR, polymerase chain reaction; RT-PCR, real-time PCR; UAT,
urine antigen testing.
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Table 1. Patient demographic and baseline characteristics.

Parameter

All Patients
(Pooled ITT Population)

Patients with Atypical Pathogens *
(Pooled microITT Population)

Lefamulin
(n = 646)

Moxifloxacin
(n = 643)

Lefamulin
(n = 91)

Moxifloxacin
(n = 87)

Age, y, mean (SD) 58.9 (16.5) 58.5 (15.7) 54.7 (17.8) 55.6 (17.5)
Age ≥ 65 y, n (%) 268 (41.5) 249 (38.7) 28 (30.8) 32 (36.8)

Male, n (%) 377 (58.4) 340 (52.9) 53 (58.2) 49 (56.3)
White, n (%) 513 (79.4) 509 (79.2) 84 (92.3) 74 (85.1)

PORT risk class, † n (%)
I 1 (0.2) 2 (0.3) 0 0
II 183 (28.3) 190 (29.5) 26 (28.6) 21 (24.1)
III 341 (52.8) 334 (51.9) 49 (53.8) 44 (50.6)
IV 116 (18.0) 112 (17.4) 16 (17.6) 22 (25.3)
V 5 (0.8) 5 (0.8) 0 0

CURB-65 score, ‡ n (%)
0–2 610 (94.4) 604 (93.9) 87 (95.6) 80 (92.0)
3–5 36 (5.6) 39 (6.1) 4 (4.4) 7 (8.0)

Minor ATS severity
criteria, § n (%) 85 (13.2) 85 (13.2) 15 (16.5) 9 (10.3)

Modified ATS severity
criteria, || n (%) 53 (8.2) 57 (8.9) 8 (8.8) 7 (8.0)

Multilobar pneumonia, n (%) 170 (26.3) 177 (27.5) 20 (22.0) 17 (19.5)
SIRS, n (%) 621 (96.1) 609 (94.7) 89 (97.8) 82 (94.3)

Bacteremic, n (%) 13 (2.0) 12 (1.9) 0 1 (1.1)
Prior antibiotic use, # n (%) 147 (22.8) 145 (22.6) 28 (30.8) 23 (26.4)

Renal status, ** n (%)
Normal 311 (48.1) 312 (48.5) 56 (61.5) 46 (52.9)

Mild impairment 201 (31.1) 192 (29.9) 25 (27.5) 26 (29.9)
Moderate impairment 125 (19.3) 132 (20.5) 8 (8.8) 15 (17.2)

Severe impairment 7 (1.1) 6 (0.9) 2 (2.2) 0
Missing 2 (0.3) 1 (0.2) 0 0

Medical history, †† n (%)
Smoking history 284 (44.0) 242 (37.6) 35 (38.5) 25 (28.7)

Hypertension 248 (38.4) 253 (39.3) 35 (38.5) 29 (33.3)
Asthma/COPD 119 (18.4) 113 (17.6) 10 (11.0) 10 (11.5)

Diabetes mellitus 80 (12.4) 88 (13.7) 7 (7.7) 12 (13.8)
Baseline pathogen, ‡‡ n (%)

Mycoplasma pneumoniae 39 (6.0) 34 (5.3) 39 (42.9) 34 (39.1)
Legionella pneumophila 34 (5.3) 31 (4.8) 34 (37.4) 31 (35.6)
Chlamydia pneumoniae 27 (4.2) 31 (4.8) 27 (29.7) 31 (35.6)

Streptococcus pneumoniae 216 (33.4) 223 (34.7) 24 (26.4) 29 (33.3)
Haemophilus influenzae 107 (16.6) 105 (16.3) 8 (8.8) 13 (14.9)

Moraxella catarrhalis 46 (7.1) 22 (3.4) 7 (7.7) 1 (1.1)
Staphylococcus aureus 23 (3.6) 10 (1.6) 5 (5.5) 1 (1.1)

ATS, American Thoracic Society; BUN, blood urea nitrogen; CABP, community-acquired bacterial pneumonia; COPD, chronic obstructive
pulmonary disease; CrCl, creatinine clearance; HLT, high-level term; ITT, intent to treat; MedDRA, Medical Dictionary for Regulatory
Activities; microITT, microbiological ITT; NEC, not elsewhere classified; PORT, Pneumonia Outcomes Research Team; SIRS, systemic
inflammatory response syndrome; WBC, white blood cell (count). * Defined as M. pneumoniae, L. pneumophila, and C. pneumoniae. † PORT
risk class calculated programmatically using site data reported in the electronic case report form was not always consistent with the
site-reported PORT risk class used for enrollment/stratification. ‡ Defined as confusion of new onset, BUN > 19 mg/dL, respiratory
rate ≥ 30 breaths/min, systolic blood pressure < 90 mm Hg or diastolic blood pressure ≤ 60 mm Hg, and age ≥ 65 years. § Defined
as baseline presence of ≥3 of the following nine criteria: respiratory rate ≥ 30 breaths/min, O2 saturation < 90% or PaO2 < 60 mm Hg,
BUN ≥ 20 mg/dL, WBC < 4000 cells/mm3, confusion, multilobar infiltrates, platelets < 100,000 cells/mm3, temperature < 36 ◦C, or systolic
blood pressure < 90 mm Hg [17]. || Defined as baseline presence of ≥3 of the following six criteria: respiratory rate ≥ 30 breaths/min,
SpO2/FiO2 < 274 where SpO2/FiO2 = 64 + 0.84 (PaO2/FiO2), BUN ≥ 20 mg/dL, confusion, age ≥ 65 years, or multilobar infiltrates [43].
Defined as baseline presence of ≥2 of the following four criteria: temperature < 36 ◦C or >38 ◦C; heart rate >90 bpm; respiratory rate >
20 breaths/min; and WBC < 4000 cells/mm3, WBC > 12,000 cells/mm3, or immature polymorphonuclear neutrophils > 10%. # Patients
received a single dose of short-acting systemic antibacterial medication ≤ 72 h before randomization; randomization was stratified and
capped such that ≤25% of the total ITT population met these criteria. ** Defined as normal (CrCl ≥ 90 mL/min), mild (CrCl 60– <
90 mL/min), moderate (CrCl 30– < 60 mL/min), and severe (CrCl < 30 mL/min). †† Medical history terms were defined as follows:
hypertension = MedDRA HLT “vascular hypertensive disorders NEC”; asthma/COPD = MedDRA HLT “bronchospasm and obstruction”;
diabetes mellitus = MedDRA HLT “diabetes mellitus (incl subtypes)”. ‡‡ Among the subpopulation of patients with atypical pathogens
(M. pneumoniae, L. pneumophila, C. pneumoniae), all patients had ≥1 atypical pathogen at baseline, with the corresponding infections being
either mono- or polymicrobial. Within those polymicrobial infections that occurred in patients with atypical pathogens, additional baseline
pathogens of S. pneumoniae, H. influenzae, M. catarrhalis, and S. aureus were identified.
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Figure 2. Pathogen distribution for patients with atypical pathogens at baseline * (pooled microITT
population [combined treatment groups]); * A patient could have had >1 pathogen identified. Patients
were only counted once based on their unique pathogen grouping. CABP, community-acquired
bacterial pneumonia; microITT, microbiological intent to treat; n, number of patients with the
respective baseline pathogen.

2.2. Efficacy

Among patients with atypical pathogens at baseline, early clinical response (ECR)
rates in the microITT and microITT-2 populations were high (lefamulin 84.4–96.6%, moxi-
floxacin 90.3–96.8%) and similar between treatment groups (Figure 3), consistent with ECR
rates in the overall pooled microITT (lefamulin 89.3%; moxifloxacin 93.0%) and microITT-2
(lefamulin 90.0%; moxifloxacin 92.8%) populations. Patients with atypical pathogens at
baseline also achieved high investigator assessment of clinical response (IACR) success
rates at the test-of-cure (TOC) visit in the microITT and microITT-2 populations that were
similar between treatment groups (Figure 3) and consistent with findings observed in the
overall pooled populations. ECR and IACR success rates at TOC in the microITT popu-
lation remained high regardless of whether patients had monomicrobial (ECR: lefamulin
90.0%, moxifloxacin 87.5%; IACR: lefamulin 76.5%, moxifloxacin 80.9%) or polymicrobial
(ECR: lefamulin 90.0%, moxifloxacin 97.5%; IACR: lefamulin 90.0%, moxifloxacin 87.5%)
infections. Among patients with atypical pathogens at baseline, microbiological response
of success at TOC in the microITT population, which typically relied on clinical responses,
was comparable between treatment groups and consistent with findings in the microITT-2
population (Figure 4).
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Figure 3. Early clinical response and investigator assessment of clinical response at TOC by analysis population in patients
with (A) Mycoplasma pneumoniae, (B) Legionella pneumophila, or (C) Chlamydia pneumoniae at baseline; CABP, community-
acquired bacterial pneumonia; microITT, microbiological intent to treat; microITT-2, microbiological intent to treat-2; TOC,
test-of-cure visit.
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Figure 4. Microbiological response of success at TOC * in patients with atypical pathogens at baseline in the pooled microITT
and microITT-2 populations; * Microbiological response of success at TOC was defined as either microbiologic eradication
(absence of the baseline causative pathogen from repeat cultures obtained between EOT and TOC) or presumed eradication
(the IACR at TOC was success and culture was not repeated at TOC). Note: see Materials and Methods for definitions of
response. EOT, end of treatment; IACR, investigator assessment of clinical response; microITT, microbiological intent to
treat; microITT-2, microbiological intent to treat-2; TOC, test-of-cure visit.

2.3. Safety

Among patients with atypical pathogens at baseline, treatment-emergent adverse
events (TEAE) rates were generally similar in the lefamulin (34.1% [31/91]) and moxi-
floxacin (32.2% [28/87]) groups (Table 2); most were mild or moderate in severity, with 4.5%
of patients experiencing severe TEAEs. TEAEs rarely led to study drug discontinuation. All
serious TEAEs were unrelated to treatment. Results were consistent with those observed in
the overall pooled safety population and when reported by atypical pathogen (Table S2).
Among patients with atypical pathogens, TEAE system organ classes that occurred in
>5% of patients in the lefamulin group were gastrointestinal disorders; infections and
infestations; investigations; and respiratory, thoracic, and mediastinal disorders. The most
frequently reported individual TEAEs were diarrhea (lefamulin n = 3 [3.3%]; moxifloxacin
n = 2 [2.3%]) and nausea (n = 3 [3.3%]; n = 2 [2.3%]); of these events, most (70%) occurred
in patients from the LEAP 2 study who received oral dosing.
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Table 2. Overall summary of TEAEs.

Patients, n (%)

All Patients (Pooled
Safety Population)

Patients with Atypical Pathogens * at
Baseline (Pooled microITT Population)

Lefamulin
(n = 641)

Moxifloxacin
(n = 641)

Lefamulin
(n = 91)

Moxifloxacin
(n = 87)

Any TEAE † 224 (34.9) 195 (30.4) 31 (34.1) 28 (32.2)
Mild 119 (18.6) 117 (18.3) 16 (17.6) 16 (18.4)

Moderate 78 (12.2) 55 (8.6) 12 (13.2) 7 (8.0)
Severe 27 (4.2) 23 (3.6) 3 (3.3) 5 (5.7)

Related TEAE ‡ 99 (15.4) 68 (10.6) 8 (8.8) 7 (8.0)
Serious TEAE 36 (5.6) 31 (4.8) 6 (6.6) 5 (5.7)

Related serious TEAE 3 (0.5) 2 (0.3) 0 0
TEAE leading to study
drug discontinuation 20 (3.1) 21 (3.3) 0 4 (4.6)

TEAE leading to death
(over entire study duration) 11 (1.7) 8 (1.2) 1 (1.1) § 0

28d all-cause mortality—deceased at Day 28 || 8 (1.2) 7 (1.1) 0 0
TEAEs by SOC in ≥5% of patients in any

treatment group
Gastrointestinal disorders 84 (13.1) 65 (10.1) 7 (7.7) 7 (8.0)
Infections and infestations 47 (7.3) 40 (6.2) 7 (7.7) 7 (8.0)

Investigations 31 (4.8) 26 (4.1) 5 (5.5) 4 (4.6)
Respiratory, thoracic,

and mediastinal disorders 29 (4.5) 28 (4.4) 5 (5.5) 2 (2.3)

COPD, chronic obstructive pulmonary disease; MedDRA, Medical Dictionary for Regulatory Activities; microITT, microbiological intent to
treat; PORT, Pneumonia Outcomes Research Team; PT, preferred term; SOC, system organ class; TEAE, treatment-emergent adverse event.
* Defined as M. pneumoniae, L. pneumophila, and C. pneumoniae. † TEAEs started or worsened during or after first study drug administration
(an adverse event with an unknown start date or partial date was categorized as a TEAE); patients with multiple events in a given category
were only counted once. ‡ TEAEs that were “Definitely”, “Probably”, or “Possibly” related to the study drug. If the TEAE relationship was
missing, it was treated as “Related”. § One patient (aged 70 years; PORT risk class II; moderate renal impairment [creatinine clearance 30 to
<60 mL/min] at baseline; history of hypertension and COPD; baseline pathogens Haemophilus influenzae, Haemophilus parainfluenzae, and
Mycoplasma pneumoniae) in the lefamulin group had a TEAE leading to death after study day 28; the patient died on study day 271 from
acute myeloid leukemia (first reported on study day 269). || Assessed in the intent-to-treat population (lefamulin n = 646; moxifloxacin
n = 643); details of deaths have been reported elsewhere [40,41]. Although a patient may have had >1 TEAE, the patient was counted only
once within an SOC category and once within a PT category. The same patient may have contributed ≥2 PTs in the same SOC category, but
the patient was only counted once toward that SOC category. Adverse events were coded using MedDRA version 20.0 (MedDRA MSSO,
Herndon, VA, USA).

3. Discussion

In patients with CABP due to atypical pathogens, oral and IV lefamulin as a short-
course empiric monotherapy, including as a 5-day therapy, were well tolerated and associ-
ated with high clinical response rates (ECR, IACR success, and microbiological response
of success). Efficacy and safety results in patients with atypical pathogens were similar in
both populations analyzed (microITT and microITT-2) and when assessed by each atypical
pathogen. The results were consistent with those of the overall study population, par-
ticularly among patients with atypical pathogens and medical history factors that often
complicate disease management and may increase morbidity and mortality, including age
≥65 years or history of smoking, asthma/COPD, or diabetes [44–46].

Atypical pathogens are increasingly being recognized as a global public health prob-
lem [7,45]; however, testing for atypical pathogens in patients with CABP is not standard-
ized, and widespread differences exist in testing frequency and diagnostic approach [8].
Even standard validated diagnostic assays, such as urine antigen testing for Legionella may
not be routinely used [8]. In this post hoc pooled analysis of a subset of patients with
CABP caused by atypical pathogens (n = 178), most atypical pathogens were identified
by ≥1 standard diagnostic modality, and 45% of patients had polymicrobial pneumonia.
However, in clinical practice, the use of multiple diagnostic modalities may not always be
feasible (e.g., financial limitations) [8].
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Difficulties in accurately identifying CABP-causing pathogens in the real-world set-
ting and the presence of polymicrobial infections in adults with CABP underscore the
importance of selecting an appropriate empirical antibiotic that effectively and safely treats
both typical and atypical pathogens [47,48]. Evidence suggests that providing empiric
antibiotic coverage for atypical pathogens may improve clinical outcomes and reduce
economic burden. In a meta-analysis of five randomized controlled trials (n = 2011), the
clinical failure rate among hospitalized patients with community-acquired pneumonia
was significantly lower in patients who did versus did not receive such coverage (relative
risk [95% confidence interval], 0.85 [0.73–0.99]; p = 0.037) [49]. Similarly, results of a mul-
ticenter, population-based, retrospective cohort study of 827 hospitalized patients with
community-acquired pneumonia showed significant (all p < 0.01) benefits with respect
to all-cause mortality in patients with (0.9%) versus without (4.9%) atypical coverage, as
well as for mean length of stay (10.2 versus 11.6 days, respectively), total hospital cost
(USD 1173 versus USD 1511, respectively), and direct antibiotic cost (USD 426 versus USD
503, respectively) [50]. Lefamulin has previously demonstrated potent in vitro activity
against the most common typical and atypical CABP pathogens, including drug-resistant
strains [34–36,51]. The current post hoc pooled analysis further demonstrates that lefamulin
provides efficacy and safety generally similar to that of the respiratory fluoroquinolone,
moxifloxacin, in patients with CABP caused by atypical pathogens.

This analysis was limited by the relatively low number of LEAP-1 and LEAP-2 patients
with CABP caused by atypical respiratory pathogens (approximately 14% of the overall
pooled study population), although this observation was generally consistent with previous
estimates for atypical pathogens in patients with CABP [6]. A strength of this analysis was
the use of a wide variety of diagnostic modalities, including standard detection methods
such as serology, culture, and urine antigen testing as well as newer methodologies such as
real-time qualitative polymerase chain reaction (RT-PCR), to ensure a sufficient population
for analysis. The use of PCR-based diagnostic modalities has the potential to identify
pathogens that are not etiologically or clinically relevant to a patient’s diagnosis. However,
our results indicate that clinical response rates were high and similar between treatment
groups regardless of whether the analysis population included (microITT population)
or excluded (microITT-2 population) patients with baseline pathogens identified using
PCR only. The LEAP-1 and LEAP-2 studies were not powered to detect statistically
significant differences regarding atypical pathogens, and the results presented herein
should be interpreted as exploratory descriptive analyses. Finally, these findings may not
be generalizable to all patients with CABP caused by atypical pathogens, as the enrollment
criteria for the LEAP-1 and LEAP-2 trials may have excluded some patients who would
typically be seen in clinical practice. Most patients had CURB-65 scores of 0–2, reflective of
mild to moderate disease, potentially limiting generalizability of the results to patients with
more severe disease. However, approximately two-thirds of the patients had a PORT risk
class of III or greater and one-quarter had multilobar pneumonia, suggesting that patients
with severe pneumonia may have been reasonably represented by the study population.

4. Materials and Methods

Methods for the LEAP-1 (NCT02559310) and LEAP-2 (NCT02813694) multicenter, random-
ized, double-blind, double-dummy, phase 3 trials were previously described [40–42,52–55]
and are briefly summarized here.

4.1. Study Design and Participants

In LEAP-1, patients were randomized (1:1) to receive IV lefamulin 150 mg every
12 h (q12h) or IV moxifloxacin 400 mg every 24 h (q24h; with alternating placebo doses
to maintain blinding). Patients could switch to oral therapy (lefamulin 600 mg q12h
or moxifloxacin 400 mg q24h) after 6 IV doses of study drug (approximately 3 days) if
predefined improvement criteria were met. Treatment duration ranged from 5–10 days.
In the initial study protocol, many patients received 5 days of lefamulin or 7 days of
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moxifloxacin, but patients with CABP due to L. pneumophila received 10 days of active
treatment. A protocol amendment modified the treatment duration to 7 days for most
patients in both groups, including those with CABP due to L. pneumophila. In LEAP-2,
patients were randomized (1:1) to receive oral lefamulin 600 mg q12h for 5 days or oral
moxifloxacin 400 mg q24h for 7 days (with matching oral placebo to maintain blinding).

Patients were included if they were aged ≥18 years with radiographically diagnosed
pneumonia, PORT risk class III–V (LEAP-1, ≥25% PORT risk class IV/V) or II–IV (LEAP-2,
≥50% PORT risk class III/IV), acute onset of ≥3 CABP symptoms, ≥2 vital sign abnormal-
ities, and ≥1 other clinical sign or laboratory finding of CABP. Exclusion criteria included
≥2 days of hospitalization within 90 days before symptom onset, receipt of >1 dose of a
short-acting (dosing interval more frequent than q24h) oral or IV antibacterial for CABP
within 72 h before randomization, severe immunosuppression, significant hepatic disease,
creatinine clearance ≤ 30 mL/min, and being at risk of major cardiac events or dysfunction.

Before study initiation, centers obtained study approval from their respective ethics
committees or institutional review boards [42]; all patients provided written informed
consent. Trials were compliant with the ethical principles of the Declaration of Helsinki,
Good Clinical Practice guidelines, and local laws and regulations.

4.2. Microbiological Assessments

Baseline atypical pathogens were identified from specimens collected within 24 h of
the first dose of study drug. Diagnostic modalities varied by pathogen, and full details have
been published previously [55]. Briefly, M. pneumoniae was identified by serology (≥4-fold
increase in M. pneumoniae immunoglobulin [Ig] G serum antibody titer to ≥1:160 between
baseline sample and convalescent sample collected at late follow-up visit (30 ± 3 days
after first study drug dose) using M. pneumoniae antigen substrate slides and immunofluo-
rescent antibody reagents [MBL Bion, Woburn, MA, USA]), culture from oropharyngeal
specimens [56], and RT-PCR positive for the community-acquired respiratory distress
syndrome toxin gene (mpn372) in sputum [57,58] or for the repMp1 gene in oropharyngeal
specimens [59,60]. L. pneumophila was identified by serology (≥4-fold increase in antibody
titer to ≥1:128 by L. pneumophila group 1–6 indirect fluorescent antibody assay [Zeus Scien-
tific, Branchburg, NJ, USA]), rapid urine antigen testing (BinaxNOW®; Legionella Urinary
Antigen Card Abbott Diagnostics Scarborough, Inc., Scarborough, ME, USA), sputum
culture, or RT-PCR positive for the ssrA gene in sputum [57]. C. pneumoniae was identified
by serology (≥4-fold increase in IgG serum antibody titer using Chlamydia MIF IgG sero-
logic tests [FOCUS Diagnostics, Cypress, CA, USA] between baseline and convalescent
samples) or RT-PCR positive for the argR gene in sputum [57]. Susceptibility testing was
performed by broth microdilution according to the Clinical and Laboratory Standards
Institute and the European Committee on Antimicrobial Susceptibility Testing [61,62].
Confirmatory identification and susceptibility testing of isolates, urine antigen testing,
serology, and RT-PCR were performed by a central laboratory (Covance Central Laboratory
Services, Indianapolis, IN, USA) and specialized laboratories (for RT-PCR of sputum: Ac-
celerō® Bioanalytics GmbH, Berlin, Germany; for all other specialized testing: University
of Alabama at Birmingham Diagnostic Mycoplasma Laboratory, Birmingham, AL, USA
[M. pneumoniae]; Special Pathogens Laboratory, The Legionella Experts®, Pittsburgh, PA,
USA [L. pneumophila]).

4.3. Efficacy Assessments

Only patients with baseline atypical pathogens were included in the analyses de-
scribed herein. Within this patient subgroup, efficacy analyses are presented for the mi-
crobiological intent-to-treat (microITT) population (randomized patients with ≥1 baseline
CABP-causing pathogen) and the microITT-2 population (randomized patients with ≥1
baseline CABP-causing pathogen detected by a method other than PCR). ECR was assessed
at 96 ± 24 h after the first study drug dose. Responders were patients who were alive,
showed improvement in ≥2 CABP baseline symptoms, had no worsening of any CABP
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baseline symptom, and did not receive a nonstudy antibiotic for the treatment of CABP.
IACR was assessed at the TOC visit, which was 5–10 days after the last study drug dose.
IACR success required resolution or improvement of baseline CABP signs/symptoms such
that no additional antibacterial therapy was administered for the current episode of CABP.
Microbiological response of success at TOC required either microbiologic eradication (ab-
sence of the baseline causative pathogen from repeat cultures obtained between end of
treatment [within 2 days after the last study drug dose] and TOC) or presumed eradication
(i.e., IACR at TOC was success and culture was not repeated at TOC). TEAEs, defined as
any event that started or worsened during or after first study drug dose, were presented
for the safety population (all randomized patients who received any amount of study drug)
and the microITT population.

4.4. Statistical Analyses

For this post hoc pooled analysis, descriptive statistics were generated to characterize
patient demographics, baseline clinical characteristics, and efficacy and safety outcomes in
the subpopulation of patients with baseline atypical pathogens from LEAP-1 and LEAP-2.
These results were interpreted as exploratory descriptive analyses; therefore, no inferential
testing was conducted.

5. Conclusions

In conclusion, lefamulin was well tolerated and led to high clinical response rates
in adults with CABP caused by atypical pathogens, including when given as 5-day oral
therapy, regardless of complications such as age or comorbidity. This post hoc analysis
suggests that lefamulin may provide a new empiric IV and oral monotherapy alternative
to fluoroquinolones and macrolides in patients with CABP caused by atypical pathogens.

Supplementary Materials: The following supplementary materials are available online at
https://www.mdpi.com/article/10.3390/antibiotics10121489/s1, Table S1: Patient demographic
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pathogen.
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