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Abstract: Development of processes using green solvents as supercritical fluids (SCFs) depends on the
accuracy of modeling and predicting phase equilibrium which is of considerable importance to exploit
the use of SCF process at the level of pharmaceutical industries. Solid-Fluid equilibrium modeling
is associated to many drawbacks when compressed gas-based models as cubic equations of states
(cEoSs) are used. The unavailability of experimental values of solute’s sublimation pressure presents
one of the major obstacles to the solubility modeling with this type of models, and thus, its estimation
is essential and inevitable. This work is an attempt to address a question regarding “accurate
estimated value” of sublimation pressure of two antibiotics Penicillin G (benzyl penicillin) and
Penicillin V (phenoxymethyl penicillin). Toward that, first, cEoSs are provided as the thermodynamics
modeling framework and fundamental approach. Second, a discussion and a review of some
literature results are given. Third, results are invoked to present a criticism analysis that comes
from the use of modified form of Peng-Robinson (PR) equation of states. Finally, considerable
improvement of modeling results by using a new sublimation pressure is shown.

Keywords: supercritical CO2; Penicillin G; Penicillin V; solubility modeling; sublimation pressure;
equations of state

1. Introduction

Technologies based on SCFs, for which different applications are developed constantly
for foods, dyes, polymers and pharmaceuticals processing, are attracting great interest
because they use nontoxic and green solvent as carbon dioxide (CO2) rather than organic
ones [1–9]. Drugs such as antibiotics are chemical substances for which SCF technology in-
volves appropriate formulation to increase the drug’s efficiency based specially on particle
size, morphology and surface structure [2,10,11]. At present, the oldest and most frequently
used antibiotics are Penicillins [12] which belong to the α-lactam group [13] because they
have in their chemical structure an α-lactam ring fused to a thiazolidine ring [14]. Many
years after their discovery by Fleming, penicillins are still the most effective treatment of
diseases due to bacterial infections as Staphylococus and Syphilis [15–17]. Among them,
the most important on the commercial plan are Penicillin G and Penicillin V [18].

Development of SCF processes for fine particle formation is important and is depen-
dent on: “how much measurement of experimental drug’s solubility in SCFs is accurate”
and its modeling to assure a suitable process design [19,20]. Solubility data in SCF knowl-
edge and their variation under operating temperature and pressure are considered the first
step to assess capabilities of SCF extraction and area criterion to choose a process among
the different that exist. Thus, the phase-equilibrium and thermo-dynamical behavior allow
to find optimal conditions (pressure and temperature) [21]. As an example, in the RESS
process, it is crucial to have a pressure high enough and a temperature sufficiently below
the melting point of the solid drug to warrant solubility in the SCF [14,22]. Many other pro-
cesses exist and details can be found in the literature [23–28]. These processes to measure
experimental solubility data of complex, polar and voluminous substances as Penicillins in
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supercritical CO2 is long and time-consuming, which explains the researchers’ interest in
mathematical modeling. In their reviews, Brenneck and Eckert [29] and Johnston et al. [30]
have discussed globally the analysis and modeling of this special phase equilibrium. To
represent the thermodynamic behavior of these mixtures considered as largely asymmetric,
models frequently applied are cEoSs, because they represent a fundamental tool [31,32].
However, disadvantages associated to this type of equation are many, even when solubility
data are available because it is important(in the majority of cases) to insert other adjustable
parameters [10,33,34]. The results of predicting solubility data in SC CO2 using cEoSs
related to different mixing rules are affected by the estimation of some physical properties
as acentric factors, critical constants and sublimation pressures of the solid drugs [35].
Here, the focus is on the sublimation pressure of Penicillin G and Penicillin V, which is the
principal influencer on solubility and considered as an ad hoc adjustable parameter. To
present this review, the steps aforementioned in the abstract are followed and detailed
gradually.

2. Modeling and Thermodynamic Basis

In binary systems, the phase equilibrium state can be described by intensive variables
as: the pressure P, the temperature T and mole fractions of the components (y1, y2). Equi-
librium is reached when chemical potentials of the i components (µi) are equal at different
phases according to Gibbs’ law [36]. Moreover, chemical potential’s equality is transformed
into a fugacity ( fi) equality [37–39]. In case of a binary mixture consisting of an SCF phase
and solid phase, the equality at equilibrium for the solute (2) is written as follows:

f S
2 = f SF

2 (1)

where f2 denotes fugacity of solid solute in the solid phase (S) and in the supercritical fluid
phase (SF), respectively. As the solid phase is considered to be pure, we have equality
f S
2 = f oS

2 , where f oS
2 is the fugacity of the pur solid solute and is given by Equation (2):

f os
2 = Psub

2 ϕsub
2 exp

[∫ P

Psub
2

(
vs

2
RT

)
dP
]

(2)

where Psub
2 is a solid solute’s sublimation pressure at system temperature, vs

2 is its molar
volume and ϕsub

2 is its fugacity coefficient at temperature T and at pressure Psub
2 and is

equal to 1. Integrating Equation (2) leads to:

f os
2 = Psub

2 exp

[
vs

2
P− Psub

2
RT

]
(3)

The fugacity of the solid solute in SCF phase is given by:

f SF
2 = y2 ϕSF

2 P (4)

where y2 is molar fraction of the solid solute in SCF phase and represents its solubility,
since ϕSF

2 is its fugacity coefficient and is given by the thermodynamical expression below:

ln ϕSF
2 =

1
RT

∫ ∞

V

[(
∂P
∂n2

)
T,V,n1

− RT
V

]
dV − ln Z (5)

where R is the gas constant, V is the total volume and Z is the compressibility factor(
Z = PV

RT

)
.
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Combining Equations (1), (3) and (4) gives:

y2 =

(
Psub

2
P

)
exp

(
vs

2
RT

(
P− Psub

2

))
ϕSF

2
(6)

After considering that the operating pressure is much higher than Psub
2 , the above

equation is reduced to Equation (7):

y2 =
Psub

2

PϕSF
2

exp

(
vS

2 P
RT

)
(7)

The molar solubility y2 is obtained by the compressed gas model given by Prausnitz
et al. [36].

Penicillins’ properties
(

vS
2 , Psub

2

)
and cEoS with specific mixing rules are required to

calculate y2 from Equation (7). The fugacity coefficient ϕSF
2 is the property obtained from

thermodynamics-based model, which is differently to the solute’s properties which have to
be estimated from other independent information.

This work is interested in the way adopted by Gordillo et al. [40] to estimate Psub
2 .

Researchers considered it as a “second adjustable parameter” [41] to be calculated as k12
by minimizing the absolute average relative deviations (AARD′s) between experimental
(yex

2 ) and calculated (yca
2 ) drug’s solubility, which is defined by Equation (8):

AARD(%) =
100
N

N

∑
i=1

(∣∣yex
2 − yca

2

∣∣
ye

2

)
; N : number o f data points (8)

3. cEoSs Needed

Here are given the three cubic equations of states needed in the presentation of this
work:

• Redlich-Kwong (RK cEoS):

P =
RT

(v− b)
− aα(T)

v(v + b)
; α(T) =

1√
T

(9)

• Soave-Redlich-Kwong (SRK cEoS):

P = RT
(v−b) −

a α(Tr ,ω)
v(v+b) ; α(Tr, ω) =

[
1 + s

(
1−
√

Tr
)]2; Tr =

T
Tc

;

s = 0.48 + 1.574ω− 0.176ω2
(10)

• Peng-Robinson (PR cEoS):

P =
RT

v− b
− a

v(v + b) + b(v− b)
(ationsneeded) (11)

where ω is the acentric factor and Tc and Tr are the critical and reduced temperatures,
respectively. The conventional mixing rules of van der Waals and combination mixing
rules of Lorentz-Berthelot are given below [40]:

a = ∑
i

∑
j

yiyjaij ; b = ∑
i

yibi (12)
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
aij = 0.42748

R2T2,5
Cij

PCij
; TCij =

(
1− kij

)√
TCi TCj

PCij =
ZCij

RTCij
VCij

; ZCij =
ZCi

+ZCj
2 ; VCij =

(
V1/3

Ci
+V1/3

Cj
2

)2 (13)

4. Review and Discussion of Literature Results

From the aforementioned equations, it is clear that there is one direct regressing
parameter (kij), and that properties of solutes (Penicillins) are needed to estimate the
solubility y2.

4.1. Penicillin G

For Penicillin G, Gordillo et al. [40] used two equations of states Redlich-Kwong
(RK cEoS) [42] and Soave-Redlich-Kwong (SRK cEoS) [43] with the Lorentz-Berthelot
combination mixing rule given by Equation (9). They have measured molar volume vS

2
experimentally and obtained 0.2261 lmol−1 as value, and used different group contribution
methods GCM to estimate acentric factor and critical coordinates, and considered Psub

2 as a
“second adjustable” parameter.

Gordillo et al. used the experimental solubility data of Penicillin G in SC CO2, to obtain
an estimated Psub

2 by regression with RK cEoS and SRK cEoS. Table 1 presents their results.

Table 1. Psub
2 regressed by RK and SRK EoS for Penicillin G-CO2 and error percentage.

T (K) Psub
2 (Bar)
RK [40]

AARD (%)
[40]

Psub
2 (Bar)

SRK [40]
AARD (%)

[40] Error[ |(Psub
2 −SRK)−(Psub

2 −RK)|
(Psub

2 −SRK)
]

313.15 3.55× 10−12 23 2.82× 10−12 21 26%

323.15 2.24× 10−11 23 4.57× 10−11 21 51%

333.15 1.44× 10−10 23 3.09× 10−9 21 95%

In systems involving SCFs, a model’s ability and success are evaluated by the (AARD)
approach [44], since it is the assessment most widely used [39,45]. Table 1 shows an AARD
of 21% and 23%, which reflect the globally an acceptable correlation results of RK and
SRK cEoSs, respectively. However, quantitative analysis of the error percentage indicates
considerable difference between different obtained values of Psub

2 .

4.2. Penicillin V

For Penicillin V, Ko et al. [46] have used the equation of state of Peng-Robinson (PR
cEoS) given by Equation (7) and conventional mixing rules of van der Waals. For the
molar volume, they used a value of 213 cm3/mole estimated by a group contribution
method. However, later in 1993, Vafai and co-workers [47] calculated the molar volume
experimentally and published a value of 243.2 cm3/mole, which entails a 12% error on
the molar volume value. For the acentric factor and critical constants, they used group
contribution methods GCM. For sublimation pressure, they used two values (Table 2): the
first value is estimated by a modified Clausius-Clapeyron equation and the second value is
obtained by regressing experimental solubilities by PR cEoS, as done by Gordillo et al. The
regression results for Penicillin V data obtained by Ko et al. are displayed in Table 2. The
deviations obtained are generally large but very close (same order of magnitude) for the
two cases although the sublimation pressures are different from one case to another. Their
difference is presented as an error percentage, and as we can see thisis considerably large.
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Table 2. Psub
2 estimated by two equations for Penicillin V-CO2 and error percentage.

T(K) Psub
2 (Bar)

Clausius [46]
AARD

(%)
Psub

2 (Bar)
PR [46]

AARD
(%) Error[ |(Psub

2 −PR)−(Psub
2 −Clausius)|

(Psub
2 −PR)

]

314.85 5.53× 10−10 37.85 1.15× 10−10 36.23 381%

324.85 1.54× 10−9 42.46 9.10× 10−9 40.25 83%

334.85 3.83× 10−9 54.38 3.93× 10−7 41.30 99%

For the two binary systems (Penicillin G–CO2) and (Penicillin V–CO2), deviations of
AARD are relatively large and very pointed at high temperatures (333.15 K and 334.85 K).
However, the question is what is the reliable value of sublimation pressure as long as the
deviations AARD are close?

To address this question, an attempt based on the use of the modified form of PR
cEoS [48,49] is presented.

5. Schmitt and Reid Modified PR cEoS

Using cubic equations of states in a “traditional manner” requires a solute’s critical
properties and acentric factor, which are generally unavailable for large chemicals with
complex structures such as Penicillins [50].

The problem gets complicated when some methods applied to small molecules are
used for their estimation which introduces considerable additional errors in many cases
and affects considerably the capabilities of the considered cEoS because uncertainty in
the calculation contributes considerably to the inaccurate use of the cEoS, since estimated
values are regarded as pseudo-properties [31,37,51].

To estimate the critical properties of Penicillin G, Gordillo et al. [10] used different
group contribution methods (GCM) together with different cEoSs and mixing rules. They
obtained different values from each GCM and they asserted in their conclusion that “the
choice of GCM is more important than the choice of the cEoS itself”. From this point, cEoSs
cannot be blamed for inaccurate results [52].

Peng-Robinson cEoS is considered by researchers as the most well-known and widely
used due to its flexibility and simplicity [53–55]. Schmitt and Reid presented a modifi-
cation to this equation [48,56] which makes it possible to avoid estimation of a solute’s
critical properties.

In fact, they excluded the binary interaction parameter, supposed that solute’s pa-
rameters a2 and b2 are independent of temperature and considered them as adjustable
parameters. Additionally, terms containing y2 in the combining and mixing rules were
eliminated due to their small values.

They proposed the simplified form for the fugacity coefficient given by Equation (14)
below [48]:

ln ϕSF
2 =

(
b2
b1

)
(Z− 1)− ln

[
P(V−b1)

RT

]
−
(

a1/81/2RTb1

)(
2
√

a2
a1
−
(

b2
b1

))
× ln

[
(V+2.414b1)

(V−
√

2b1)

] (14)

Parameters a1 and b1 are calculated according to van der Waals’s classical mixing rules
using pure carbon dioxide properties [36,48]: a1 =

0.4572R2T2
C1

Pc1
×
[
1 +

(
0.3746 + 1.5423ω1 − 0.2699ω2

1
)(

1−
√

Tr
)]2

b1 =
0.07780RTc1

Pc1

(15)

Using Equations (14) and (15) together with Psub
2 obtained in Sections 4.1 and 4.2, the

molar solubility of Penicillin G and Penicillin V can be calculated by Equation (7).
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• Regression of the experimental data (N = 18) for Penicillin G with modified PR cEoS is
done by the implementation of Psub

2 , one of whichis obtained by SRK cEoS (Psub
2 -SRK)

and the other is obtained by RK cEoS(Psub
2 -RK). The results are presented in Table 3.

Table 3. Regression results with modified PR EoS for Penicillin G.

Using (Psub
2 -SRK) Using (Psub

2 -RK)

a2

(
Pa
(
m3/mol

)2
)

1.63 × 10−4 2.19 × 10−4

b2
(
m3/mol

)
1.89 × 10−4 1.98 × 10−4

(AARD %) global 70.86 27.98

(AARD%) for 313 K 98.58 28.61

(AARD%) for 323 K 95.04 23.10

(AARD%) for 333 K 18.95 41.51

From Table 3, we can see that the use of sublimation pressure (Psub
2 -SRK) leads to very

large deviations, both globally as well as for specific temperature values.
The results are better visualized by representations; here, plots are presented as molar

solubility versus density instead of pressure because they are more informative [57].
In Figure 1 below, in (a) and (b), the calculated solubilities of Penicillin G by modified

PR cEoS using Psub
2 estimated by SRK cEoS are not in agreement with the experimental

ones and show considerable deviations.
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Figure 1. Experimental and calculated solubility of Penicillin G versus density. (a) (Psub
2 -RK). (b) (Psub

2 -SRK).

Figure 2 shows the large difference obtained at 313K, in (a) all calculated solubilities
with modified PR cEoS and experimental ones which are in concordance when using the
(Psub

2 -RK), which is not the case in (b) when using(Psub
2 -SRK).

• The same is true for Penicillin V; regression of the solubility data (N = 24) with
modified PR cEoS is done by implementing Psub

2 given in Table 2 and obtained results
are displayed in Table 4.

The use of sublimation pressure (Psub
2 -PR) leads to larger deviations than the use

of sublimation pressure (Psub
2 -Clapeyron). The results are represented in figures below;

Figure 3 clearly shows that globally, the concordance between the experimental and calcu-
lated solubility is inexistent in (a) and that this is less marked in (b). Figure 4 shows the
same conclusion in a temperature-by-temperature representation.
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Table 4. Regression results with modified PR cEoS for Penicillin V.
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(
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(
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(
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From another point of view, when fitting the obtained sublimation pressures to the
equation of Clausius-Clapeyron (Equation (17)), very high values for sublimation enthalpy
are obtained. For example, in Figure 5 are presented the results for Penicillin G, and from
the slopes of the two straight lines, a sublimation enthalpy of 302.8 kJ/moland 160.5 kJ/mol
are found. These values are considered very high for a molecule such as Penicillin, which is
not very complex and larger than others. These results lead to propose a new sublimation
pressure.
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6. Use of New Sublimation Pressure

Similar to many other drugs, Penicillins are polar, thermolabile and nonvolatile com-
pounds. Because of that, they can decompose before their boiling point Tb [53] and sublime
before their melting point Tm [58]. In both cases, their boiling temperature cannot be
found [58], since some methods for sublimation pressure estimation involving these two
specific temperatures (such as that of Mackay et al. [59] for example) can be avoided by
considering other approaches, because the obtained results will represent vapor pressures
instead of sublimation pressures [60].

For this purpose, another attempt by involving a new approach for the sublimation
pressure is presented here. Recently, Nasri [61] have presented a different way to estimate
Psub

2 , which is based on obtaining the two parameters AS and BS of the Clausius-Clapeyron
equation given by Equation (12) below [62]. This requires three steps: first, checking the
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consistency of the solubility data; second, correlating the data by the model of Mendez-
Santiago-Teja [63] to have AS; third, correlating the data by the Bartle’s model [64] to obtain
parameter BS, which represents the sublimation enthalpy ∆Hs [65–70].

From Figure 6, it can be seen clearly that the solubility data of the two Penicillins
generally follow a linear trend. For Penicillin G, we have two points that are far from the
line, these points are (323.15 K; 100 bar) and (333.15 K; 100 bar) and are eliminated in the
correlation’s step to be able to estimate accurate parameters, and thus, an accurate Psub

2 ,
and are reconsidered in the calculation step of molar solubility with modified PR cEoS.
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Table 5 gives the results of the Penicillins data’s correlation, which is very acceptable
since the AARD is low. These results are used to estimate the new sublimation pressure [62]
according to Equation (16).

ln pSub
2 = AS − BS

RT
(16)

Table 5. Results of the correlating data with the two empirical models and the newsublimation
pressures obtained.

Mendez-Santiago-Teja Model Bartle’s Model

Penicillin G Penicillin V Penicillin G Penicillin V

A’= −11,475.4 −5495.9 a = 25.1 12.6

B’= 165,852.2 73,223.7 b = −10,260.3 −5049.7

C’= 26.2 12.8 c = 1.2 × 10−2 5.05 × 10−3

AARD% = 24.6 17.01 AARD% = 16.9 16.1

∆Hs
estimated (kJ/mol) 85.3 41.9

ln Psub
2 (Pa) = C′ − ∆HS

RT

Penicillin G: Psub
2 = e(26.2− 85.3

RT ) Penicillin V: Psub
2 = e(12.8− 41.9

RT )

As in Section 5, the new sublimation pressures in Table 5 are used to calculate the molar
solubility y2 of the two Penicillins with the modified PR cEoS. The results are displayed
in Table 6 and compared to those of Section 4. It is very clear to see that the AARDs have
decreased considerably for the two Penicillins and even more for Penicillin G with an AARD
of only 4% at 333 K. For better visualization, the new solubilities calculated at higher
temperatures together with experimental ones, as well as those considered the best in the
previous section, are presented in Figure 7. Very good agreement between the obtained
solubilities involving the new Psub

2 and experimental ones for both penicillins is observed.
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Table 6. Results of the calculated solubilities using new sublimation pressures.

AARD% (Penicillin G) AARD% (Penicillin V)

New Psub
2 Psub

2 -RK New Psub
2 Psub

2 -Clapeyron

T = 313.15 K 27.4 28.6 T = 314.85 K 26.7 41.7

T = 323.15 K 11.1 23.1 T = 324.85 K 26.4 43.4

T = 333.15 K 4.0 41.5 T = 334.85 K 40.6 60.3
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7. Conclusions

The sublimation pressure is very important in the thermodynamic modeling of a
drug’s solubility in SC CO2 using the cubic equations of states approach. This work
focused on this predominant thermophysical property.

Many researchers have considered it as an adjustable parameter; here, we present a
review, address the study’s research question and use a new approach for sublimation
pressure to considerably improve the results obtained from the use of the modified Peng-
Robinson cEoS, in which the effect of the estimated critical coordinates of the solid solutes
(Penicillins) is highly reduced. The results obtained for both Penicillin G and Penicillin V
are very promising, since the AARDs have decreased considerably (just 4% in some cases).

Moreover, it should be noted that considering the sublimation pressure as an ad-
justable parameter will further complicate the calculations; additionally, cEoSs still have
many advantages, even when the supercritical fluid phase is considered.
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