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Abstract: Micafungin is widely used for invasive candidiasis, especially in critically ill patients and
those with cancer, and for empirical antifungal therapy in patients with neutropenic fever. This is the
first study to investigate the pharmacokinetics and disposition parameters of micafungin in patients
with cancer. In this observational pharmacokinetic study, blood samples were collected and analyzed
using high-performance liquid chromatography. Pharmacokinetic parameters were estimated using
Monolix 4.4 software. The plasma micafungin concentrations were measured in a total of 133 sam-
ples from 19 patients. In the final two-compartment model with linear elimination, the estimated
micafungin clearance (CL) was significantly higher in patients with cancer than in those without
cancer (1.2 vs. 0.6 L/h, p = 0.012), whereas other parameters did not significantly differ between
the two groups. Aspartate and alanine transaminases and body weight significantly influenced
micafungin CL in patients, with and without cancer. Overall, the probability of target attainment
increased with increasing doses and decreased with higher MICs in both groups. In simulations,
the patients without cancer achieved higher pharmacokinetic/pharmacodynamic targets with a 90%
probability for all simulated doses, compared to the patients with cancer. Micafungin demonstrated
dose-proportional linear pharmacokinetics in both the patients with and those without cancer. The
estimated micafungin CL was significantly higher in patients with cancer, suggesting a need for
increased dosage, especially for Candida spp. with high MICs, in these patients. Further studies
should assess the efficacy and optimum dosage of micafungin for the treatment and prevention of
febrile neutropenia (FN) in patients with cancer.

Keywords: micafungin; cancer; population pharmacokinetics; modeling; Monte Carlo simulation

1. Introduction

Neutropenia is a common, serious complication of myelosuppressive chemotherapy
and a leading cause of infection-related morbidity and mortality in patients with cancer [1].
Febrile neutropenia (FN) is a serious condition that continues to have major clinical, eco-
nomic, and quality-of-life impacts on chemotherapy-treated patients [2–4]. The incidence
of FN is lower (5–10%) in patients with solid tumors receiving cytotoxic therapy, who are at
low risk from medical complications, compared to the higher FN incidence rates of 20–25%
and 85–95% in those with non-leukemic hematologic malignancies and acute leukemia,
respectively [5,6]. Furthermore, FN mortality ranges from 8% to 14% [7,8], and bacterial
infections are the most common cause of FN [9,10]. Fungal infections are prevalent in high-
risk patients with neutropenic fever, and patients with prolonged and severe neutropenia
are at higher risk of candidemia and invasive fungal infections. Candida albicans is the
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most prevalent yeast pathogen responsible for fungal infections in neutropenic patients
with cancer. Other Candida spp., including C. glabrata and C. tropicalis, are also preva-
lent, whereas Aspergillus spp. are the most common pathogenic molds in hematological
malignancies [11,12].

Effective strategies to anticipate, prevent, and treat this infection have resulted in
better outcomes. Recently released clinical practice guidelines recommend the use of
echinocandins, including anidulafungin, micafungin, and caspofungin, as first-line antifun-
gals for the primary and secondary prevention of FN in high-risk patients [13–15]. These
antifungals are also recommended as empirical antifungal therapy in patients with persis-
tent FN [13–15]. Compared to other systemic antifungals, the advantages of echinocandins
include a relatively better toxicity profile and less potential for drug-drug interactions [16].

Micafungin shows excellent antifungal activity against the majority of Candida spp.,
including azole-resistant strains, and it shows some activity against Aspergillus spp. [17].
Although all echinocandins share a similar spectrum of activity, each agent differs in its
pathway of metabolism, resulting in distinguishable half-lives, dosing strategies, and drug
interaction profiles [18]. Echinocandins are minimally absorbed after oral administration
due to their large molecular weights and are, therefore, available only as intravenous for-
mulations [17]. All three echinocandins are highly bound to plasma proteins (85–99%) [17]
and have relatively low volumes of distribution [17]. Moreover, echinocandins distribute
minimally to urine, the eyes, and the cerebrospinal fluid [17]. In addition, echinocandins are
not significantly metabolized by cytochrome P450, nor are they inhibitors or substrates of
P-glycoprotein drug efflux pumps. Thus, echinocandins display a lower potential for drug-
drug interactions, which reduces their likelihood to be targets of drug-drug interactions,
compared to other antifungals [17].

Echinocandins exhibit concentration-dependent killing against Candida spp., based
on in vivo studies showing that echinocandins have a fungicidal effect proportional to the
maximum (peak) plasma drug concentration, and a persistent antifungal effect after the
reduction in plasma drug concentration to levels below the MIC [19,20]. Fungicidal efficacy
against Candida spp. is also correlated with the 24 h area under the concentration-time
curve (AUC0–24)/MIC ratio [19,20].

Physiological changes in patients with cancer may result in altered pharmacokinetic
parameters and may lead to either supratherapeutic or subtherapeutic levels of antimicro-
bial agents, thereby affecting their efficacy and safety [21]. Although the pharmacokinetics
of micafungin have been investigated in various patient populations, including those in
surgical, intensive care unit, and lung transplantation settings, no study to date has evalu-
ated the pharmacokinetic properties of micafungin in adult patients with cancer [22–25].
Therefore, in this study, we compared the pharmacokinetics of micafungin between patients
with and without cancer and developed a model to describe the complex pharmacokinetics
of micafungin in both patient groups. We investigated inter-individual variability and
assessed the probability of achieving PK/PD targets with current dosing strategies in this
patient population, with the overarching aim of providing the basis for establishing an
effective and safe micafungin dose regimen for patients with cancer.

2. Methods and Patients
2.1. Study Design and Subjects

This was a prospective pharmacokinetic study to compare adult patients with and
without cancer. The study was conducted at King Saud University Medical City, a tertiary
hospital. The study included male and female patients aged ≥ 18 years, who were admitted
to the hospital and received a minimum of 2 micafungin doses based on empirical evidence
or culture results. Patients who were pregnant and those with a micafungin allergy were
excluded. The study protocol was approved by the Institutional Review Board of King
Saud University Medical City (E-18-3373), and written informed consent was obtained
from all patients before their inclusion in the study.
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2.2. Micafungin Dosing and Blood Sampling

All patients were treated with a 100–150 mg daily dose of micafungin for empirical use
or confirmed fungal infection. Micafungin was diluted in 100 mL isotonic saline solution
and infused over 60 min. Blood samples were drawn at 1, 2, 4, 6, 8, 12, and 24 h from the
initiation of the micafungin dose. All blood samples were centrifuged, and plasma samples
were stored at −80 ◦C until analysis.

2.3. Analytical Assay

Plasma micafungin concentrations were determined using a high-performance liquid
chromatography (HPLC) method with a UV detection system, with slight modification [26].
Plasma samples were separated from whole blood, acidified with phosphoric acid, pre-
cipitated with acetonitrile, and centrifuged prior to dilution with buffer and injection
into an HPLC system. Anidulafungin served as I.S. for micafungin. The method was
fully validated and achieved using an isocratic Prominence Shimadzu HPLC system
(Shimadzu, Columbia, MD, USA), which comprised an autosampler (SIL-20AHT), a UV
detector (Shimadzu UV SPD-20A), and a pump (LC-20AB) connected to a degasser (Dgu-
20A3). The separation of micafungin was performed on a Phenomenex Luna C18 column
(250 × 4.6 mm i.d., 5 µm; Phenomenex, CA). The mobile phase comprised 0.1% (w/w) am-
monium acetate in water, with pH adjusted to 7.0 with 25% NH3 solution and acetonitrile
(70%:30%); the flow rate was 1 mL/min, and micafungin was detected at 273 nm. Data
acquisition was achieved using LC Solution chromatographic software version 1.22 SP1
(Shimadzu, Columbia, MD, USA).

2.4. Population Pharmacokinetic Modeling

Data from patients with and without cancer were comodeled using Monolix 4.4 soft-
ware (Supplementary File S1). Monolix estimates pharmacokinetic parameters using the
stochastic approximation expectation maximization algorithm [27]. In the first step, we
developed the base structural model for micafungin by fitting various compartmental mod-
els to plasma drug concentrations. The following criteria were followed to select between
models: (a) a decrease in the minimum of the objective function value (log-likelihood
value); (b) precision of the parameter estimation expressed as RSE (%) and calculated as the
ratio between the standard error and final parameter estimate; (c) physiologic plausibility;
and (d) GOF plots including observed and predicted concentrations, residuals plot, and
visual predictive check [28,29].

2.5. Covariate Model

A covariate model was developed in a stepwise fashion, with forward inclusion based
on model selection criteria. First, we plotted the empirical Bayesian estimates vs. covariates
to screen for potentially significant correlations. Next, we performed a stepwise regression
analysis to test the significant covariates identified in step 1, using the −2 log-likelihood
ratio test [28,29]. Age, body weight, height, BMI, sex, serum creatinine, creatinine clearance,
sequential organ failure assessment score, and levels of AST, alanine transaminase, total
bilirubin, and albumin were tested as covariates.

2.6. Model Diagnostics

GOF was assessed using the log-likelihood criterion during model building. Plots
of model-based individual and population predictions vs. the observed concentrations
were performed for model assessment. A predicted–corrected visual predictive check
using 1000 simulations was constructed to study the performance of the final model. A
statistically significant improvement in log-likelihood value (p < 0.05) was required for a
more complex model to be supported.
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2.7. Monte Carlo Simulations of Plasma Concentrations and PTA

Various Monte Carlo simulations (n = 1000) of plasma concentrations were employed
using R statistical software to calculate the AUC0–24/MIC for varying MICs (0.002–4 mg/L).
The final population model was utilized to simulate different micafungin dosing regimens.
Intravenous doses of 100, 150, and 200 mg/day micafungin were simulated for patients
weighing 50, 70, and 100 kg with AST and ALT levels of 2–3 × ULM. MIC data for
Candida spp. and Candida parapsilosis were extracted from the European Committee on
Antimicrobial Susceptibility Testing database [30] and used to determine PTA. Target
micafungin pharmacokinetic/pharmacodynamic values were defined according to total
plasma AUC0–24/MIC targets of 3000 and 285 for non-parapsilosis Candida spp. and Candida
parapsilosis, respectively [31]. A priori, a dosing regimen was considered successful if the
fractional target attainment was >90%.

3. Results
3.1. Study Cohort

The cohort of this prospective, single-center study comprised 19 patients, including
10 patients with cancer and 9 without cancer. As shown in Table 1, there were no differences
in the demographic and clinical characteristics between the two groups. All patients with
cancer received 100 mg/day micafungin, while seven patients without cancer received
100 mg/day micafungin, and two patients without cancer received 150 mg/day.

Table 1. Clinical and demographic characteristics of patients included in the study.

Characteristics Patients with Cancer (n = 10) Patients without Cancer (n = 9) p Value

Age, years, mean (SD) 47.3 (12.3) 51.1 (19.1) 0.25

Sex, %
male/female 60/40 67/33 0.35

Weight, kg, mean (SD) 63.4 (18.2) 69.8 (15.7) 0.23

Height, cm, mean (SD) 162.2 (9.9) 163.1 (7.3) 0.78

Serum creatinine, mmol/L, mean (SD) 74.7 (43.4) 63.6 (35.8) 0.16

CLCr, mL/min, mean (SD) 103 (58.8) 99 (69.3) 0.97

Albumin, mean (SD) 25.6 (5.8) 22.6 (3.7) 0.12

AST, mean (SD) 34.2 (9.3) 37.7 (15.4) 0.14

ALT, mean (SD) 26.3 (11.3) 28.3 (6.7) 0.23

Total bilirubin, mean (SD) 26.5 (3.8) 20.5 (16.4) 0.31

SOFA score 7 (5.5) 8 (6.5) 0.25

AST, aspartate transaminase; ALT, alanine transaminase; CLCr, creatinine clearance; SOFA, sequential organ failure assessment.

3.2. Population Pharmacokinetic Modeling

The plasma micafungin concentrations were measured in seven samples collected from
each of the 19 patients, for a total of 133 samples. The final model was a two-compartment
model with linear elimination from the central compartment. A combined error model was
the most accurate for residual and interpatient variability. The pharmacokinetic model was
parameterized in terms of clearance (CL), volume of the central compartment (V1), volume
of the peripheral compartment (V2), and intercompartmental clearance (Q). Table 2 shows
the parameter estimates of the model for both groups. The estimated CL was significantly
higher in patients with cancer than in those without cancer (1.2 vs. 0.6 L/h, p = 0.012),
while there were no differences in other parameters between the two groups. Among the
investigated covariates, aspartate transaminase (AST), alanine transaminase (ALT), and
body weight significantly influenced the CL of micafungin in both patient groups. On the
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other hand, body mass index (BMI), body weight, and levels of total bilirubin and albumin
affected the V1 in both groups.

The diagnostic goodness-of-fit (GOF) plots for the final micafungin covariate model
(Figure 1) did not show major deviations. As shown in Table 2, the relative standard errors
(RSEs [%]), revealed that all parameters were precisely estimated. The predicted–corrected
visual predictive check of the final model (Figure 2) revealed that the predictions were
consistent with the observations, suggesting good validity of the model to the data. As
shown in Figures 1 and 2, the final pharmacokinetic model adequately described the
measured concentrations. As a result, the model was used to simulate all subsequent
dosing regimens.
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(Middle pink shaded region), and 90th (Above blue shaded region) percentiles of the simulated data.

Table 2. Population pharmacokinetic parameter estimates of micafungin following intravenous
infusion.

Parameter Patients with Cancer Patients without Cancer

Estimate RSE (%) Estimate RSE (%) p Values

CL (L/h) 1.2 11.6 0.6 14 0.012

V1 (L) 10.7 23.6 12 22.2 0.65

Q (L/h) 0.144 14 0.188 10 0.56

V2 (L) 3.5 16 2.77 12.5 0.73

IIV ** for CL (%) 34.1 14.8 11.8 18

IIV for V1 (%) 7.6 5.2 7.6 20

IIV for Q (%) 32.2 18 20.4 13

IIV for V2 (%) 36.8 15 32.1 22

Residual error

a 0.21 10.7 0.15 9.2

b 0.22 4.5 0.18 13.6
** Expressed as coefficient of variation. CL, clearance; IIV, inter-individual variability; Q, intercompartmental
clearance; RSE, relative standard error; V1, volume of the central compartment; V2, volume of the peripheral
compartment.
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3.3. Monte Carlo Simulations of Plasma Concentrations and Probability of Target Attainment

We used Monte Carlo simulations to evaluate different micafungin dosing regimens.
The probability of target attainment (PTA) values for different micafungin dosing regi-
mens against the MIC distributions for Candida spp. and C. parapsilosis are presented in
Figures 3 and 4. Overall, the PTA increased with increasing doses and decreased with
higher MICs for both patient groups. In the simulations, the patients without cancer
achieved higher pharmacokinetic/pharmacodynamic (PK/PD) targets, with 90% proba-
bility for Candida spp. and C. parapsilosis, and higher MICs for all simulated doses, when
compared with the patients with cancer. In addition, the simulation of changes in body
weight revealed differences in PTA values for Candida spp. and C. parapsilosis in both
groups (Table 3). On the other hand, the simulation of changes in ALT and AST levels did
not affect the PTA values.

Table 3. MIC breakpoints for Candida spp. and C. parapsilosis indicating 90% PTA for various micafungin doses in patients
weighing 50, 70, and 100 kg.

Micafungin Dose
(mg) Body Weight (kg)

MIC Breakpoint (mg/L)

Patients with Cancer Patients without Cancer

Candida spp. C. parapsilosis Candida spp. C. parapsilosis

100 50 0.032 0.25 0.032 0.5

70 0.016 0.125 0.032 0.25

100 0.016 0.064 0.016 0.125

150 50 0.032 0.25 0.064 0.5

70 0.032 0.25 0.032 0.25

100 0.016 0.125 0.032 0.25

200 50 0.032 0.25 0.064 0.5

70 0.032 0.25 0.032 0.5

100 0.016 0.125 0.032 0.5

PTA, probability of target attainment.
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4. Discussion

FN poses a serious risk and causes high rates of treatment failure in patients with
cancer. The FN-associated mortality is 8–15% in patients with cancer [7,8]. In addition, FN
is a common cause of delays in chemotherapy schedules and dose reduction, which have a
negative impact on final treatment outcomes [2]. Furthermore, FN is a major cause of pro-
longed hospitalization and has substantial impact on patients’ quality of life [3,4]. Bacterial
infections are the most common cause of FN [9,10]; however, fungal infections are prevalent
in high-risk patients. C. albicans is the predominant yeast pathogen isolated in patients with
cancer, whereas other Candida spp., including C. glabrata, C. tropicalis, and C. parapsilosis, are
also prevalent in these patients [11,12]. Thus, the early recognition of patients at high-risk
for FN and the appropriate initiation of prophylactic antibacterial and/or antifungal agents
are of utmost importance [14]. According to the recently published guidelines for the man-
agement of patients with cancer diagnosed with FN, echinocandins, including micafungin
and caspofungin, are recommended as first-line therapeutic options for the primary and
secondary prevention of fungal infections in high-risk patients. Echinocandins are also
recommended as the first-line empirical antifungal therapy in patients with persistent
FN [13–15].

Micafungin follows linear elimination pharmacokinetics, producing a terminal half-
life of approximately 15 h in adults [19]. Micafungin is metabolized in the liver by catechol
O-methyltransferase, arylsulfatase, and hydroxylation [17]. Only 1% of the unchanged
drug is excreted through the kidneys [17]. Micafungin is non-dialyzable and does not
require dose adjustment in patients with renal impairment [17]. The elimination phar-
macokinetics of micafungin in patients with advanced hepatic insufficiency are not fully
understood [20]. Micafungin exhibits concentration-dependent killing of Candida spp.,
and the AUC0–24/MIC is the best pharmacodynamic parameter for describing the dose-
response relationship [19,20].

Physiological changes in patients with cancer may result in altered pharmacokinetic
parameters [21]. Several changes in distribution and metabolism processes lead to these
observed changes in the PK parameters [21]. Changes in the plasma proteins (including
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albumin) have a direct impact on the volume of distribution and the quantity of drugs
available for metabolism [21]. As shown in previous pharmacokinetic studies on patients
with cancer, these changes can lead to either supratherapeutic or subtherapeutic levels of
antimicrobial agents [32–34], subsequently affecting their efficacy and safety. No study to
date has investigated the pharmacokinetics of micafungin in patients with cancer [22–25].

In this prospective study, we investigated the pharmacokinetics of micafungin in pa-
tients with cancer compared to those without cancer. We described the plasma concentration-
time curve of micafungin using a two-compartment model, similar to that described in
previous studies [22–25,32–39]. The estimated CL, V1, Q, and V2 values for micafungin
were 1.2 L/h, 10.7 L, 0.144 L/h, and 3.5 L, respectively, in patients with cancer and 0.6 L/h,
12 L, 0.188 L/h, and 2.77 L, respectively, in patients without cancer. Overall, there were
no differences in the pharmacokinetic parameters except for the estimated micafungin
CL between the two groups. The significantly higher estimated CL found in patients
with cancer, compared to those without cancer, might be attributable to increased hepatic
blood flow due to the modulation of vascular activity of liver tissue [40,41]. Other possi-
ble reasons for such differences include the increased free fraction of micafungin due to
changes in plasma proteins levels or other, yet unknown, reasons in patients with cancer,
which warrant further investigation [40,41]. Strikingly, the micafungin CL in both groups
was significantly lower than that reported in other populations (0.84 L/h) [22–25,32–39].
Among the investigated covariates, body weight significantly influenced the micafungin
CL in both groups, a finding that is in line with other pharmacokinetic studies, suggesting
that obese patients may need higher doses of micafungin [40,41]. ALT and AST were
the other parameters with a significant influence on CL, an expected finding given that
micafungin is primarily eliminated via hepatic metabolism [20]. Conversely, BMI, body
weight, total bilirubin, and albumin affected the V1 in both groups, which accords with
previous studies [22–25,32–39]. Although several studies reported a correlation between
disease severity and micafungin CL, we were not able to identify the sequential organ
failure assessment score as a relevant covariate [23,24].

All micafungin dosing regimens evaluated using Monto Carlo simulations were
adequate in obtaining optimal PTAs of ≥90% for both C. parapsilosis and non-Candida
parapsilosis spp., with MICs of ≤0.016 mg/L in both the patients with cancer and those
without cancer. For C. parapsilosis, all dosage regimens in both groups provided PTAs of
≥90% for MICs of ≤0.250 mg/L, except for the dosing regimen of 100 mg/day micafungin
in patients with cancer, which was able to achieve the PK/PD target only at an MIC of
≤0.125 mg/L. The simulated dosage regimen of 200 mg/day micafungin was the only
optimal regimen to achieve PTAs of ≥90% at an MIC of 0.500 mg/L in patients without
cancer. Unfortunately, in patients with cancer, none of the evaluated regimens were optimal
at an MIC of ≥0.500 mg/L. At an MIC of ≥1.000 mg/L, none of the simulated dosing
regimens were sufficient to achieve good target attainment in either group. For non-
parapsilosis Candida spp., 100 mg/day micafungin was sufficient to achieve a 90% PTA
at MICs of ≤0.032 mg/L in patients without cancer, whereas the same dosage regimen
failed to achieve the PK/PD target at an MIC of 0.032 mg/L (approximate PTA of 30%) in
patients with cancer. PTA exceeded 90% at an MIC of 0.032 mg/L with the dosing regimen
of 150 mg/day micafungin in both the cancer and non-cancer groups, whereas the same
dosing regimen was insufficient to achieve a 90% PTA at MICs of ≥0.064 mg/L in both
groups. For an MIC of 0.064 mg/L, only the dosage regimen of 200 mg/day micafungin
provided a PTA exceeding 90% in patients without cancer, whereas all regimens were
associated with suboptimal PTA for MICs of ≥0.064 mg/L in patients with cancer. In short,
PTA increased with increasing doses and decreased with higher MICs for both groups. In
the simulations, the patients without cancer achieved higher PK/PD targets with a 90%
probability for Candida spp. and C. parapsilosis with higher MICs for all evaluated doses,
compared to the patients with cancer. Moreover, the simulations including changes in
body weight revealed differences in PTA for Candida spp. and C. parapsilosis in both groups
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(Table 3). In contrast, the changes in ALT and AST levels did not affect the PTA in the
simulations.

To our knowledge, this is the first study comparing the pharmacokinetics of micafun-
gin between patients with and without cancer. Nonetheless, the study findings should
be interpreted with consideration given to several limitations. First, the relatively small
cohort of patients might have prevented the identification of other significant covariates
that could predict variability in pharmacokinetic parameters. Second, in the present study
we measured total micafungin concentrations (unbound plus bound) and not the unbound
or free fractions. Third, most of the study patients were terminally ill and on multiple
medications, with different health statuses and disease severity, which prevented the assess-
ment of safety and clinical outcomes. Finally, the study comprised a heterogeneous group
of patients with various cancers in various stages, which might have led to significant
interpatient variability.

5. Conclusions

Micafungin demonstrated dose-proportional linear pharmacokinetics in patients with
cancer, consistent with that observed in patients without cancer. The estimated micafungin
CL was significantly higher in patients with cancer, suggesting a need for increased dosage
in this patient population, especially for Candida spp. with high MICs. Nonetheless, further
studies are warranted to assess the efficacy and optimum dosage of micafungin for the
treatment and prevention of FN in patients with cancer.
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