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Abstract: Salmonella spp. and Escherichia coli (E. coli) are two of the deadliest foodborne pathogens
in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these
pathogens to increase their pathogenicity. This study aims to examine the genes detected in both
outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre
for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate
statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp.,
non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data
were projected onto a two-dimensional space through principal component analysis. Hierarchical
clustering was then used to quantify the relationship between the genes in the dataset. Most of
the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in
Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-
weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA
and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli.
The iro operon and ars operon may play a role in the ecological success of the epidemic clones
of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil
operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and
antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship.
All these findings provide helpful information for experiment design to combat outbreaks of E. coli
and Salmonella spp.

Keywords: outbreak; Escherichia coli; Salmonella spp.; NCBI Pathogen Detection Isolates Browser;
principal component analysis; hierarchical clustering

1. Introduction

Foodborne pathogens pose a dangerous risk to public health, as it is estimated that
those pathogens cause 76 million cases of illness, 323,000 hospitalizations, and 5000 deaths
annually in the US [1]. Escherichia coli (E. coli) and Salmonella spp. are among the most
prevalent outbreak pathogens that cause major health issues (e.g., diarrhea, cramps, vom-
iting, and severe illnesses like hemorrhagic colitis) [2]. In particular, Salmonella spp. are
involved in outbreaks that are mainly caused by contamination of a wide range of foods,
from tomato [3] to cheese and beef [4]. Enterohemorrhagic E. coli (e.g., E. coli O157) can
contaminate water and soil, which may lead to outbreaks. During the Walkerton E. coli
outbreak, seven people died and 2000 more contracted the sickness [5]. In a different
study, scientists observed a strain of E. coli that produces a specific kind of cytotoxin
(called verocytotoxin) in an outbreak with a surprisingly high risk of hemolytic uremic
syndrome [6].

One potential reason for Salmonella spp. and E. coli O157 to cause outbreaks is that
these pathogens are resistant to commonly used antibiotics [7]. In an outbreak where
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226 out of 252 isolates of Salmonella spp. were detected, Newport infections were re-
ported with certain forms of antimicrobial resistance to trimethoprim-sulfamethoxazole,
tetracycline, and chloramphenicol, and decreased susceptibility to azithromycin [3]. It
is thus important to quickly sequence pathogens and investigate the genes involved in
antimicrobial resistance [7]. Extensive studies have been conducted to detect and combat
Salmonella spp. and E. coli O157. When an outbreak takes place, the pathogen isolates
generally go through the following analysis steps: serotyped and phage typed analysis,
antimicrobial susceptibility testing, and genomic DNA sequencing. Whole genome se-
quence (WGS) analysis and microarray analysis are among the most used approaches
for gene identification (references [8,9] for Salmonella spp.; references [10–14] for E. coli).
Once the activity levels of genes are quantified, bioinformatics approaches are applied to
characterize the pathogens’ genotypes. Belgian National Reference Laboratory of Food-
borne Outbreaks (NRL-FBO) developed a bioinformatics platform to find all available
antimicrobial resistance genes and identify plasmids in the WGS sequences [8]. During a
Salmonella enterica serovar Enteritidis outbreak in Massachusetts in 2018, a reference-free
bioinformatics pipeline was used to analyze WGS data, allowing the creation of a phyloge-
netic tree to illustrate the relatedness between isolates [15]. Furthermore, a variety of other
data analysis methods have been investigated. A team at National Center for Toxicologi-
cal Research used ArrayTrack as the platform for data analysis for 69 Salmonella spp. [9].
Furthermore, a software package, consisting of five types of bioinformatics approaches
(pulsed-field gel electrophoresis (PFGE) band standardization, Salmonella spp. serotype
prediction, hierarchical cluster analysis, distance matrix analysis, and two-way hierarchical
cluster analysis), has been developed and integrated with PFGE database to enhance the
data mining of PFGE fingerprints [16].

The advance in sequencing and bioinformatics techniques accelerated the discov-
ery of genes involved in antimicrobial resistance, stress response, and virulence of both
Salmonella spp. and E. coli O157. A report in 2020 found heavy metal resistant genes, disin-
fectant resistance genes, and antimicrobial resistance genes in E. coli and Salmonella spp.
isolated from chicken broiler farms and retail meat [17]. Another study analyzed antimi-
crobial resistance patterns and virulence genes for the Avian pathogenic E. coli (APEC)
from broiler chicken farms in Jordan [18]. A third study in 2014 reported that emrE, sugE(c),
mdfA, and ydgE/ydgF are the most abundant disinfectant resistance genes in E. coli from
retail meat in the US [19]. These studies, in addition to a few others, highlight exam-
ples of extensive research on the antimicrobial resistance genes identified in E. coli and
Salmonella spp. [20–28]. However, since more of these existing studies mainly focused on
one pathogen (i.e., E. coli or Salmonella spp.) isolated from one type of source (e.g., beef
and water), it is necessary to conduct a comprehensive study on genomic data of multiple
pathogens isolated from various sources over time. Expanding upon previous studies, the
aim of the study is to study the genomic data of both E. coli and Salmonella spp. isolated
from various sources during outbreak or non-outbreak times in the US.

Before knowledge about antibiotic resistance was prevalent, humans used antibiotics
as a convenient cure to life-threatening bacterial infections. However, as humans con-
tinue to overuse antibiotics, resistant bacteria flourish, preserving their genes for future
generations until the entire population has a resistance to the antibiotics [7]. In addition
to the adaptation to antibiotics, pathogens have genes that can readily adapt, over a few
generations, to various environmental stresses, resulting in outbreaks from these bacteria
that are difficult to contain. Pathogens have responses that make them resilient to changing
circumstances with responses that help them survive in a hostile environment, such as
acidity, high salt concentrations, and extreme temperatures [29]. It is thus important to
evaluate the involvement of stress response genes in outbreak pathogens. After pathogens
survive from antimicrobial treatments and hostile stress environments, virulence factors
are required for pathogens to infect hosts and then create a niche there ([30,31]). While
extensive studies of the outbreaks of Salmonella spp. and E. coli O157 have been conducted
to detect pathogens and identify antimicrobial resistance genes, the relationship between
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the genes involved in antimicrobial resistance, virulence factors, and stress response have
not been thoroughly studied for these pathogens. In addition, the comparison of these
three types of genes between outbreak and non-outbreak isolates has not been conducted.
To address these problems, this study strives to identify and isolate genes related to antimi-
crobial resistance, virulence and stress responses that would explain the pathogenicity of
Salmonella spp. and E. coli O157. These genes may become good targets for inhibition to
suppress the rates of infection of these harmful foodborne pathogens.

The National Centre for Biotechnology Information Pathogens Isolates Browser (NPIB)
database offers sensitive and rapid surveillance with enhanced methods of laboratory iden-
tification and subtyping for foodborne pathogens. In addition, it identifies antimicrobial
resistance genes, stress response genes, and virulence genes for each isolate sample [32,33].
Research for each type of gene for microorganisms from the NPIB has been conducted to
some extent. As for antimicrobial resistance, genes are mainly involved in antimicrobial-
degradation, antimicrobial efflux pumps, and modification of antimicrobial binding tar-
gets [32]. It was reported by Cui et al., 2021 that virulence factors facilitate pathogens
to infect host cells with adhesin-like proteins, increased iron reception and uptake, and
toxin synthesis for host inhibition [33]. As for stress response genes, the following oper-
ons/genes are reported as important: the mer operon (responsible for the regulation of
mercury binding and resistance), the ars operon (which mediates arsenic resistance), and
asr (which regulates an acid shock protein that allows for survival in acidic conditions) [34].
However, these studies are not focused on either outbreak pathogens or the relationship
between the three types of genes (i.e., antimicrobial resistance genes, stress response genes,
and virulence genes). To address this, the genomic data for E. coli and Salmonella spp.,
most available from 2010 to 2021, in the NPIB database, is thoroughly studied in this
work. Although the data includes tens of thousands of samples, the data can be filtered
into four categories: outbreak E. coli, outbreak Salmonella spp., non-outbreak E. coli, and
non-outbreak Salmonella spp. Since the dataset for each category of pathogens consists
of hundreds of genes and thousands of samples, a multivariate statistical approach, i.e.,
principal component analysis (PCA) [35,36], is used to project the genes in the dataset
into a two-dimensional space. The outlier genes, which stand out from the bulk of genes
due to their occurrence patterns, are identified as important genes. These genes are then
analyzed with the hierarchical clustering approach [37–39] to investigate the relationship
of antimicrobial resistance genes, stress response genes, and virulence genes. The inves-
tigation of various types of genes in Salmonella spp. and E. coli may reveal how these
genes collaborate to enhance the antimicrobial resistance, the probability of surviving long
enough to reproduce, and ability to cause damage to a host. The genes identified from this
work may be used as targets for creating substances to counter Salmonella spp. and E. coli
outbreaks.

2. Results

The outlier genes were first identified via the PCA and hierarchical clustering ap-
proach as shown in the Materials and Methods section. Those outlier genes were further
analyzed using a hierarchical clustering approach to show their similarity in the detection
pattern in outbreak E. coli, non-outbreak E. coli, outbreak Salmonella spp., and non-outbreak
Salmonella spp. These outlier genes were also categorized into antimicrobial resistance
genes, stress response genes, and virulence genes to study the similarity between these
three groups of genes in detections. These genes were also compared between outbreak
and non-outbreak pathogens to find genes specific to outbreak pathogens.

2.1. Analysis and Comparison of Genes Detected in the Outbreak and Non-Outbreak E. coli

The outlier genes for outbreak and non-outbreak E. coli are shown in Figure 1A,B
in the format of hierarchical dendrograms. The functions of all these important (outlier)
genes can be found in Table S1 (Supplementary Material) as a supplemental material. Some
notable important genes identified from outbreak E. coli (Figure 1A) are stx operon genes
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(i.e., stxB2c, stxA2d, and stxB1a), esp operon genes (i.e., espJ, espF, espP, espX1, and espX1),
nle operon genes (i.e., nleA, nleB, nleC, and nleB2), and a few other genes (e.g., etpD, katP,
and ehxA). All these genes are virulence genes that secrete various proteins to efficiently
infect host cells and harm the victim. In particular, the stx operon genes are involved in
the functions for E. coli to produce Shiga toxins [40] that can damage small intestines and
lead to diarrhea. The esp operon in E. coli is controlled by a promoter, activated upon
contact with eukaryotic cells as a virulence factor operon [41]. The four nle genes encode
secreted effectors, which are proteins secreted by the bacteria into the host cell that increase
pathogenicity [42]. As shown in Figure 1B, most of these virulence-related genes also play
an important role in non-outbreak E. coli. The important stress response genes remain the
same for both outbreak and non-outbreak E. coli. Compared to outbreak E. coli, there are
more antimicrobial resistance genes and stress response genes in the non-outbreak E. coli.
Genes, such as the tet operon genes that encode a tetracycline efflux pump, were commonly
detected in non-outbreak E. coli.

Figure 1. The dendrograms of outlier genes identified for (A) outbreak E. coli isolates and (B) non-outbreak E. coli isolates.

While genes from both outbreak E. coli and non-outbreak E. coli are involved in
antimicrobial resistance, stress response, and virulence, the genes in Figure 1A,B are further
compared to identify the genes unique to outbreak E. coli. Figure 1 shows that genes related
to virulence factors outnumber the other two types of genes for both non-outbreak and
outbreak E. coli. It seems that there is an abundance of virulence genes (marked in red
in the figures) in outbreak E. coli, which accounts for 33/41 of the total important genes.
This ratio is greater when compared to that of non-outbreak E. coli (i.e., 35/50). Among
these virulence genes, five of them, i.e., epeA, stxA2d, stxB2c, subA, and subB, are unique
to outbreak E. coli (Figure 2). The epeA gene encodes Enterohemorrhagic E. coli (EHEC)
plasmid-encoded autotransporter that may impose toxic effect on host cells, such as HeLa
cells [43]. While some stx operon genes are present in both outbreak and non-outbreak
E. coli, the outbreak E. coli isolates were commonly detected with two extra genes (i.e.,
stxA2d and stxB2c) that target the proteins of host cells as extra virulence, making the E. coli
stronger for an outbreak. The other proteins like subB stress response genes are helpful for
outbreak E. coli, but not as helpful for non-outbreak E. coli. subA and subB genes encode
the prototype of the new AB5 toxin family, which are virulence factors that cause massive
mortality across the globe (particularly in children from underdeveloped countries) [44].
Contrary to outbreak E. coli, more antimicrobial resistant genes were commonly detected
in non-outbreak E. coli, such as genes: aadA1, aph(3”)-Ib, aph(6)-Id, blaTEM-1, sul2, tet(A),
and tet(B). Among these genes, aadA1 encodes aminoglycoside adenylyltransferase, an
antimicrobial resistance enzyme in Gram-negative pathogens. Gene aph(3”)-Ib encodes
aminoglycoside phosphotransferase, and aph(6)-Id encodes for catalyzing the addition
of phosphate from ATP. Both of these proteins catalyze the addition of phosphate from
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ATP. Gene blaTEM-1 encodes ampicillin resistance protein, while sul2 is associated with
dihydropteroate synthase type-1 for the resistance to sulfonamide. Both tet(A) and tet(B)
encode an efflux MFS transporter for tetracycline resistance.

Figure 2. A comparison of outlier genes detected in outbreak E. coli and non-outbreak E. coli.

2.2. Analysis and Comparison of Genes Detected in the Outbreak and Non-Outbreak
Salmonella spp.

The important genes identified for outbreak and non-outbreak Salmonella spp. are shown
in Figure 3A,B, respectively. The important genes detected for outbreak Salmonella spp. are
mainly from the iro operon (e.g., genes iroB and iroC), the ars operon (e.g., genes arsA, arsB,
arsC, and arsR), the pco operon (e.g., genes pcoA, prcoB, pcoC, pcoD, pcoE, and pcoR), and the sil
operon (e.g., genes silA, silB, silC, silE, silF, silP, silR, and silS), in addition to a few individual
genes such as tet(A), fosA7, and cdtB. The iro operons are virulence genes (in red in Figure 3A),
while the ars and pco operons are stress response genes that produce a vital enzyme for the
survival of Salmonella spp. in extreme conditions (in blue in Figure 3B). The three individual
genes are two antimicrobial resistance genes, (tet(A) and fosA7), that encode for tetracycline
resistance and a virulence gene (cdtB) that can help the bacteria create transport proteins that
allow them to enter host cells. Contrary to E. coli, in which the virulence genes were the
major groups in the detected important genes, outbreak Salmonella spp. isolates are mainly
detected with the stress response genes (24 out of 31 genes). This may be due to that outbreak
Salmonella spp. undergoes an abundance of stressed conditions, as the bacteria thrives under
extreme conditions, such as heat, making it extremely difficult to kill, even if cooked.

Figure 3B represents the relationships between all of the outlier genes detected in
non-outbreak Salmonella spp. Similar to Figure 3A, certain genes are from operons pco and
sil. The pco operon genes, A, B, C, D, E, R, and S, all are necessary to code for proteins that
are copper resistant, and the sil operon genes, A, B, C, E, F, P, R, and S, are all a part of
the sil cation-efflux system that causes silver resistance. In addition to operons pco and
sil, certain genes are from the mer operon (mer A, C, P, R, and T) that code for different
proteins for mercuric resistance. It is interesting to note that the genes that code for proteins
found on the same operon are generally clustered together, with a few exceptions. While
most genes were categorized as part of a major cluster, the following four genes stood out
when the genes in Figure 3B are clustered into six groups: cdtB, arsD, asr, and sinH. The
cdtB and sinH genes are virulence genes (in red) made up of proteins that transport the
bacteria into the host cell (i.e., sinH) and destroy DNA (i.e., cdtB). On the other hand, arsD
and asr are stress response genes coding for proteins that protect the Salmonella spp. from
extreme conditions.
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Figure 3. The dendrograms of outlier genes identified for (A) outbreak Salmonella spp. isolates and (B) non-outbreak
Salmonella spp. isolates.

Figure 4 shows a further comparison of the outlier genes commonly detected in out-
break and non-outbreak Salmonella spp. (i.e., Figure 3A,B). The following five outlier genes
are found mainly in outbreak Salmonella spp.: iroB, iroC, arsA, arsB, and arsC. The ars operon
genes are stress response genes, which generally include instructions for creating enzymes
that make the environment more habitable for Salmonella spp. For instance, gene arsC
converts arsenate (which has been shown to arrest flagellar movement in Salmonella spp.)
into arsenite [45]. These stress response genes might be helpful for outbreak Salmonella spp.
to enhance their probability of further survival in extreme conditions. In addition, iroB and
iroC are virulence genes, causing damage to the host cells, making Salmonella spp. stronger
for causing outbreaks. As for non-outbreak Salmonella spp., more antimicrobial resistance
genes were uniquely identified as outlier genes. They include aadA1, aph(3”)-Ib, aph(6)-Id,
floR, gyrA_D87Y, sul1, and tet(B). It is interesting to find that four of these seven antimicro-
bial resistance genes were uniquely detected in non-outbreak E. coli (when compared to
outbreak E. coli). While sul2 was an outlier gene in non-outbreak E. coli, sul1 was the coun-
terpart in non- Salmonella spp. floR and gyrA_D87Y genes are involved in the resistance of
florfenicol and fluoroquinolone, respectively. In addition to these antimicrobial resistance
genes, the following virulence genes were mainly detected as outlier genes in non-outbreak
E. coli: merA, merC, merD, merE, merP, merR, merT, and qacEdelta1. The first seven of these
genes are from the mer operon for mercuric resistance, and qacEdelta1 encodes quaternary
ammonium compound efflux.

Figure 4. A comparison of outlier genes detected in outbreak Salmonella spp. and non-outbreak Salmonella spp.
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2.3. Comparison of Genes Detected in E. coli and Salmonella spp.

Since E. coli and Salmonella spp. are the most common pathogens causing outbreaks, it
is of value to compare the outliers detected in them. Interestingly, no outlier gene is shared
by outbreak E. coli and outbreak Salmonella spp. A similar trend is also observed in the
comparison of outlier genes between non-outbreak E. coli and non-outbreak Salmonella spp.,
which indicates that a relatively low portion of the outlier genes (i.e., seven genes) are
shared by them (Figure 5). Five of these genes are antimicrobial genes (i.e., aadA1, aph(3”)-Ib,
aph(6)-Id, tet(A), and tet(B)), while the other two are virulence genes (i.e., iutA and ybtP). It
is interesting to see that more virulence outlier genes are detected in non-outbreak E. coli
while more stress-response outlier genes are found in non-outbreak Salmonella spp.

Figure 5. A comparison of outlier genes detected in non-outbreak E. coli and non-outbreak Salmonella spp.

3. Discussion
3.1. Outlier Gene Difference between Outbreak and Non-Outbreak Pathogens

It is important to identify the outlier genes unique to the outbreak pathogens, as
these genes may provide useful information related to pathogen outbreaks. As shown
in Figures 2, 4 and 5, there are few outlier genes shared between Salmonella spp. and
E. coli in terms of genes. When comparing non-outbreak genes and outbreak genes for
the same microorganisms, quite a few similar genes can be identified. Furthermore,
36 genes are shared by outbreak and non-outbreak E. coli (Figure 2), while 26 genes are
shared by outbreak and non-outbreak Salmonella spp. (Figure 4). For the outlier genes
shared by the two types of E. coli, 28 of them are virulence genes, while three and five of
them are antimicrobial resistance genes and stress response genes, respectively. As for
Salmonella spp., 20 of the 26 outlier genes shared by outbreak and non-outbreak strains
are stress-response genes. The rest of the genes are involved in antimicrobial resistance
(4 genes) and virulence (2 genes).

While certain outlier genes are shared by outbreak and non-outbreak strains, certain
outlier genes are unique to outbreak strains. The following five outlier genes are unique to
outbreak E. coli: epeA, stxA2d, stxB2c, subA, and subB. All of them are virulence genes. In
particular, gene epeA encodes a high-molecular-weight serine protease autotransporter of
Enterobacteriaceae (SPATE) protein. It has been reported to contribute to the pathogenesis
of Enterohemorrhagic E. coli [46]. stxA2d and stxB2c genes are associated with the stx
operon that is known for its involvement in the production of one type of AB5 toxins. These
toxins may contribute to pathogenesis in certain life-threatening Shiga toxin-producing
E. coli (STEC) diseases. While other stx operon genes are found as outlier genes in non-
outbreak E. coli, subA and and subB genes are only regarded as outlier genes for outbreak
E. coli. Gene subA encodes distinct A subunit enzymic activity (i.e., subtilase rather than
RNA-N-glycosidase or ADP-ribosylase), while a potent cytotoxicity is encoded by subB [47].



Antibiotics 2021, 10, 1274 8 of 15

The cytotoxic activity of these two subtilases may contribute to the pathogenesis of outbreak
E. coli.

The operon with genes deemed as outliers for outbreak Salmonella spp. but not
deemed outliers for non-outbreak Salmonella spp. is the iro operon. The iro operon, more
specifically iroB, is commonly found in Salmonella enterica Typhi. Its glycosyltransferase
activity is essential for salmochelin production [48]. These virulence genes are critical for
Salmonella spp. to survive with the necessary level of iron and to increase the pathogenicity
for outbreaks. In addition to iroB and iroC, arsA, arsB, and arsC are the other three genes
uniquely deemed as outliers for outbreak Salmonella spp. These three genes are associated
with the ars operon. In addition to them, other ars operon genes, such as arsD and arsR, are
also detected as outlier genes for outbreak Salmonella spp. These genes encode an essential
adaptive feature (i.e., arsenic tolerance) for the ecological success of the epidemic clones of
Salmonella spp. [49].

3.2. Outlier Gene Difference between Salmonella spp. and E. coli

Although both Salmonella spp. and E. coli are Gram-negative bacteria from the En-
terobacteriaceae family, there are few outlier genes shared between the two (as shown in
Figure 5). Even though Salmonella spp. and E. coli separated 120 million years ago from
a common ancestor, one report found that Salmonella spp. and E. coli share around 85%
of their genomes. Since the divergence of the two bacteria, Salmonella spp. have adapted
the ability for horizontal gene transfer. The genes encoding Salmonella spp. pathogenicity
islands are essential for it to survive in extreme conditions [50]. This is true as E. coli is usu-
ally regarded as a commensal, whereas Salmonella spp. is known for causing gastroenteritis
and typhoid fever in humans [51]. The variation of the phenotypes is attributed to both
point mutations and segments of genomes. Therefore, it is these slight variations in genes
that cause distinctive phenotypic characteristics between Salmonella spp. and E. coli [52].
In particular, the genes in outbreak and non-outbreak Salmonella spp. have an abundance
of stress response genes. Since Salmonella spp. spread to humans if fecal matter is present
in food, virulence factors are limited. Salmonella spp. do not necessarily infect a host cell
by invading it. Instead, Salmonella spp. make their way into humans if food is not cooked
thoroughly, due to the fact that the stress genes of Salmonella spp. enable them withstand
extreme conditions, such as abnormal temperature and acidity. Contrary to Salmonella spp.,
outbreak and non-outbreak E. coli contain more virulence genes than stress response genes.
This may be due to E. coli’s commensal role, as this role enables E. coli to survive without
experiencing as much stress as Salmonella spp. On the other hand, the large portion of
virulence outlier genes are beneficial for E. coli to invade human bodies.

3.3. Interaction between Antimicrobial Resistance Genes, Stress Response Genes, and
Virulence Genes

Figures 1 and 3 show the dendrograms of outlier genes for E. coli and Salmonella spp.
The three types of genes, i.e., antimicrobial resistance genes, stress response genes, and
virulence genes, are listed in different colors. These figures may reveal some hidden
interactions between these three types of genes that facilitate the survival of the two
pathogens. While it is not surprising to see that genes within the same operon generally
stay close to each other in the dendrograms, certain genes from different types/operons
stay together. Those genes are discussed separately below for E. coli and Salmonella spp.

As shown in the dendrograms in Figure 1, the two operons that share the greatest
similarities between the results are the esp and ter operons for both outbreak and non-
outbreak E. coli. The esp operon genes (which include espX1, espA, espB, espF, espJ, espK, and
espP) are all a part of the type three secretion system. The type three secretion system is
the process where pathogenic Gram-negative bacteria transport virulence proteins, known
as effectors, straight into the cytosol of the host cells. This function is commonly found
in enteropathogenic E. coli which belongs in the Shiga toxin-producing E. coli (STEC)
family [53]. Most STECs also possess tellurite resistance, which is possible through the ter
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operon [54]. With both of these operons found encoded in STECs, similarities between them
shown in the data may be due to the prevalence of STECs compared to other pathotypes.

The genes from pco and sil operons generally stay together in the dendrograms for
both outbreak and non-outbreak Salmonella spp. (Figure 3). The sil operon causes resistance
to silver, while the pco operon allows for copper resistance. Both the operons are a part
of a Tn-7-like structure in Salmonella spp. Together they likely have the potential to cause
co-selection of antibiotic resistance genes [55]. While sil and pco operon genes are both
stress-response genes, the following six genes, from different gene types, stay in the same
dendrogram branch for both outbreak and non-outbreak Salmonella spp.: asr, golT, golS,
sinH, mdsA, and mdsB. Among them, asr, golT, and golS are stress response genes; sinH
is a virulence gene; mdsA and mdsB are antimicrobial resistance genes. In particular, asr
encodes an acid shock protein that allows for survival in acidic conditions. GolT is a P-type
ATPase that enables Salmonella spp. to detect the presence of gold salts in the environment
and to mount the appropriate resistance response. The expression of GolT is controlled by
GolS, an MerR-like sensor that is highly selective for Au ions [56]. These stress-response
genes enable Salmonella spp. to survive hostile environments. The sinH gene encodes
an autotransporter protein that facilitates the adhesion and invasion of Salmonella spp.
into host cells, while mdsA and mdsB are from the mds operon that encodes membrane
fusion proteins of the multidrug and metal efflux. In another report, it was interesting to
find that the aforementioned six genes are observed in over 90% of endemic and ecdemic
non-typhoidal Salmonella spp. circulating among animals and animal products in South
Africa over a 60-year period [57]. These genes may have hidden interactions that are
worthy of further investigation in the future.

4. Materials and Methods
4.1. Gene Data of E. coli and Salmonella spp. from NPIB Database

The gene data from the NPIB database was downloaded as an individual Excel file
for each of the four categories: outbreak E. coli, outbreak Salmonella spp., non-outbreak
E. coli, and non-outbreak Salmonella spp. The following information was contained in each
dataset: microorganism (E. coli or Salmonella spp.), collection year, isolation location (which
state in the US), isolation source, isolation types (environmental versus clinical setting),
antimicrobial resistance genes, stress response genes, virulence genes, and outbreak infor-
mation (outbreak or non-outbreak). A MATLAB program has been developed to digitize
thousands of samples into a table format (stored in a CSV Excel file) so that the data can be
processed in the R programming platform. Each row of the table contains the information
for one sample and each column represents one variable. Table 1 shows a portion of the
Excel data matrix extracted from the outbreak Salmonella spp. dataset. Each row represents
one sample and each column represents a gene identified in outbreak Salmonella spp. In
sample one (i.e., the second row in the table), Salmonella spp. was detected in a sample from
2019 (i.e., “organism = 1” for Salmonella spp. and “organism = 2” for E. coli) in an environ-
mental setting (i.e., “Type = 1” for the clinical setting and “Type = 2” for the environmental
setting). The “0” value in the fosA7 and tet(A) column indicated that these two gene were
not detected in that sample. On the contrary, mdsA and mdsB genes were detected in the
pathogen. Table 1 only lists several of the hundreds of genes for an illustrative purpose. If
the pathogen was sampled during an outbreak, a value of “1” was assigned to the column
represented by the variable “outbreak”. Otherwise, a “0” value was assigned. Table 1
was imported into the R programming language for data analysis, and the names of the
columns in Table 1 were used as the names of variables to recall the values listed in the
corresponding columns.
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Table 1. A portion of the Excel data matrix for the outbreak Salmonella spp. dataset.

Organism Collection Year Type Outbreak fosA7 mdsA mdsB . . . tet(A)

1 2019 2 0 0 1 1 . . . 0
1 2018 2 0 0 1 1 . . . 0
1 2016 2 1 0 1 1 . . . 0
1 2012 2 0 1 1 1 . . . 0
1 2014 2 0 1 1 1 . . . 0
1 2012 2 0 1 1 1 . . . 0

4.2. Identification of Important Genes via PCA and Hierarchical Clustering

Principal component analysis is one of the most commonly used unsupervised statis-
tical approaches in which high-dimensional data can be visualized in a two-dimensional
space with a good accuracy. To process the data with PCA, a matrix is generated in such a
way that each gene corresponds to a row while each column represents the times that gene
was detected in samples during each year (from 2010 to 2021). The number of columns in
the generated matrix, i.e., 12 columns for 12 years, represent the number of dimensions the
matrix contains. It is challenging to project the genes in the dataset in a 12-dimensional
space. PCA was thus implemented to reduce the data to a two-dimensional space so that
the genes were visualized and further studied via the hierarchical clustering approach for
their relationships. In particular, the dimension in PCA that contains the largest amount
of variance and provides the strongest rendering of the data is called the first principal
component (PC1). Accordingly, the second principal component (PC2) is the direction with
the second highest variance and perpendicular to PC1. PC1 and PC2 are generally used to
build the data’s reduced-dimensional graph. Figure 6A illustrates the idea on how PCA can
be used to reduce data dimension. The PC1 and PC2 directions were identified for the data
presented in a three-dimensional space (i.e., x-y-z space). It can be seen that the projections
on the PC1 direction show the largest variance. The data points can still be distinguished
by their projections onto the PC1–PC2 space. Therefore, the three-dimensional space (i.e.,
x-y-z space) can be reduced to a two-dimensional space characterized by PC1 and PC2.
While Figure 6 provides a general description on how to reduce a three-dimensional space
to a two-dimensional space, a similar approach was used in this work to project the genes
from a high-dimensional space to a PC1–PC2 space.
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The projections of the genes into a PC1–PC2 space can facilitate the identification
of clusters that signal similarities between the genes on how they are detected in the
pathogens over time. The genes outside the largest cluster are deemed outliers. The
clustering helps visualize the patterns within each data set which would otherwise go
unseen in a multivariable data set. As an example, Figure 6B shows the genes projected
from the dataset for non-outbreak Salmonella spp. Since there are 360 genes in that dataset, it
is impossible to show the names of all genes clearly in Figure 6B. This figure is mainly used
to illustrate the challenge to study the relationship of a large number of genes. In particular,
many genes are lumped together in the red rectangle area in Figure 6B. The genes not in
that area, especially those outlier genes, show different occurrence patterns from those bulk
genes in the red rectangle area. A close examination of detection frequencies of these two
groups of genes in non-outbreak Salmonella spp., i.e., the bulk genes versus the outlier genes,
indicate that the outlier genes are of more apparent occurrence patterns. The outlier genes
are then regarded as important for further study on how they are involved in antimicrobial
resistance, stress response, and virulence. While the projections on the PC1–PC2 space are
helpful for identifying outlier genes, PCA does not return the quantitative relationship
of those genes. PCA is not able to show all the genes clearly as the bulk of the genes are
lumped together. Therefore, the hierarchical clustering approach is further implemented to
illustrate the relationship between those genes and provide a quantitative approach for
selecting the outlier genes.

Hierarchical clustering is used in this work to select similar genes into groups called
clusters and illustrate the relationship between genes in the dendrogram format. It differs
from K-means clustering, another popular type of unsupervised learning that clusters data
points based on similarity, in the sense that in K-means clustering, the number of clusters
can be pre-specified so that the genes are specified into k clusters, while in hierarchical
clustering, the number of clusters is not pre-specified. Hierarchical clustering outputs a
dendrogram, a tree-like visual representation of each possible number of clusters, from
1 to n, with n as the total number of objects in the dataset. Furthermore, hierarchical
clustering shows a detailed relationship between the genes, making it more beneficial
than K-means clustering. In hierarchical clustering, at the very top of the dendrogram
is the most general cluster. Lower on the dendrogram, the genes in the cluster are more
similar to one another, compared to those connected on the top. To illustrate this, Figure 7
shows the result of hierarchical clustering for the data from the dataset for non-outbreak
Salmonella spp. Since there are 360 genes in the dendrogram, the names of individual
genes can only be seen by zooming in Figure 7. Similar to Figure 6A, Figure 7 is mainly
used to illustrate the general procedure to identify the outlier genes. The identified outlier
genes are shown in detail in the Results section. Compared to the PCA result shown
in Figure 6B, the relationship between individual genes can be found in the hierarchical
dendrogram. The bulk genes lumped together in the red rectangle in Figure 6B can be
further identified as the genes in the red rectangle, which contains the largest number of
genes showing a similar low occurrence pattern. The other genes (e.g., asr and sinH) are
regarded as outlier genes which are targets for further investigation for their involvement
in antimicrobial resistance, stress response, and virulence factors of the pathogen. The
outlier genes identified from the hierarchical clustering approach can be confirmed by the
PCA result. In Figure 6B, the outlier genes asr and sinH in Figure 7 stay away from the bulk
genes in PCA. As a result, hierarchical clustering is a critical method in this work, as it is
able to easily analyze hundreds of genes, observe and visualize which sub-clusters relate
to each other, and determine how closely related the genes are using the vertical distance.
The outlier genes identified from hierarchical clustering for E. coli and Salmonella spp. can
be further compared to study similarity and dissimilarity in genes during outbreaks and
non-outbreaks.
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Figure 7. A hierarchical cluster of genes from the dataset for non-outbreak Salmonella spp. The genes in the red rectangle correspond to the bulk genes in the red rectangle of Figure 6B.
Compared to the results from PCA, the relationship between genes is illustrated in hierarchical clustering.
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5. Conclusions

The historical gene data for the US from National Centre for Biotechnology Infor-
mation Pathogen Detection Isolates Browser was analyzed with multivariate statistical
analysis to identify genes important to outbreak and non-outbreak E. coli and outbreak and
non-outbreak Salmonella spp. The results show that stress-response genes are the major
outlier genes for Salmonella spp. On the other hand, most outlier genes detected in E. coli
are virulence genes. This leads to only a few outlier genes shared by Salmonella spp. and
E. coli. Compared to non-outbreak E. coli, epeA, stxA2d, stxB2c, subA, and subB genes were
uniquely identified as outlier genes for outbreak E. coli. The iro operon genes and ars
operon genes were unique outlier genes to outbreak Salmonella spp. Certain antimicrobial
resistance genes, stress-response genes, and virulence genes were found to coexist together
in the historical data. They include asr, golT, golS, sinH, mdsA, and mdsB genes for E. coli,
and the esp and ter operon genes for Salmonella spp. The findings from this work may be
used to generate hypotheses for further experimental study of outbreak Salmonella spp.
and E. coli.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10101274/s1, Table S1: Functions of outlier genes shown in Figures 1–5.
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