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Abstract: In the last years, there has been an increase of antimicrobial resistance rates around the
world with the misuse and overuse of antimicrobials as one of the main leading drivers. In response
to this threat, a variety of initiatives have arisen to promote the efficient use of antimicrobials. These
initiatives rely on antimicrobial surveillance systems to promote appropriate prescription practices
and are provided by national or global health care institutions with limited consideration of the
variations within hospitals. As a consequence, physicians’ adherence to these generic guidelines is still
limited. To fill this gap, this work presents an automated approach to performing local antimicrobial
surveillance from microbiology data. Moreover, in addition to the commonly reported resistance
rates, this work estimates secular resistance trends through regression analysis to provide a single
value that effectively communicates the resistance trend to a wider audience. The methods considered
for trend estimation were ordinary least squares regression, weighted least squares regression with
weights inversely proportional to the number of microbiology records available and autoregressive
integrated moving average. Among these, weighted least squares regression was found to be the
most robust against changes in the granularity of the time series and presented the best performance.
To validate the results, three case studies have been thoroughly compared with the existing literature:
(i) Escherichia coli in urine cultures; (ii) Escherichia coli in blood cultures; and (iii) Staphylococcus aureus
in wound cultures. The benefits of providing local rather than general antimicrobial surveillance data
of a higher quality is two fold. Firstly, it has the potential to stimulate engagement among physicians
to strengthen their knowledge and awareness on antimicrobial resistance which might encourage
prescribers to change their prescription habits more willingly. Moreover, it provides fundamental
knowledge to the wide range of stakeholders to revise and potentially tailor existing guidelines to
the specific needs of each hospital.

Keywords: antimicrobial resistance; resistance rate; resistance trend; antimicrobial surveillance;
regression analysis; time series analysis; escherichia coli; staphylococcus aureus

1. Introduction

The growing threat of antimicrobial resistance (AMR) is a leading patient health
and safety issue, with estimates that AMR will be responsible for more than 10 million
deaths by 2050 [1]. The development of resistance in pathogens is another manifestation
of the Darwinian theory of biological evolution [2] and is accelerated by circumstances
where selective pressure is exerted. As a result, over the last years, research has focused
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on identifying the factors contributing to AMR [1,3,4]. The alarming outcomes have
motivated the emergence of different strategies and guidelines to analyse, present and
ultimately combat antimicrobial resistance. At a national level, Public Health England
implemented the English surveillance program for antimicrobial utilisation and resistance
(ESPAUR) which provides annual reports as a benchmark for determining appropriate
local action [5]. At an international level, the European Centre for Disease Prevention
and Control through the European antimicrobial resistance surveillance network (EARS-
Net) has created the largest publicly funded system for antimicrobial surveillance in
Europe [6]. Furthermore, the World Health Organization has recently implemented the
global antimicrobial resistance surveillance system (GLASS) [7] to strengthen the evidence
base on AMR and inform decision-making. Unfortunately, despite of these initiatives,
homogeneity of antimicrobial policies still produce different AMR outcomes [8].

The misuse and overuse of antimicrobials in humans has been identified as a major
driver of AMR [3,9]. Whilst reasons for the misuse and overuse of antimicrobials are
complex, a number of factors have been described. At the individual level, physicians often
prioritise the management of the patient being treated, paying little regard to the long-term
consequences of overusing antimicrobials [10]. Moreover, the majority of antimicrobial
prescribing is performed by individuals who are not experts in infection management and
may have limited understanding of antimicrobials and AMR [3,11–14]. To address the
challenges posed by AMR, the importance of behaviour change interventions to improve
the long-term use of antimicrobials in infection management has been recognised [15–17].
Thus, there is potential to improve the prescription behaviour of physicians through the
implementation of effective communication strategies to present local rather than general
AMR surveillance data.

1.1. The Need of Local AMR Surveillance

The guidelines on empirical antibiotic use often disregard local resistance patterns
in their recommendations [18]. However, with increasing electronic recording of data,
there is a growing interest in the potential secondary use of microbiological laboratory
data to provide the necessary information to support antimicrobial stewardship programs
(AMS) [19] which are crucial to guide health care organizations designing evidence-based
policies to combat AMR [20,21]. Local susceptibility reporting and surveillance has been
shown to be determinant to inform empiric antimicrobial therapy selection [22–24]. For
example, a general hospital in mid-Norway reported lower antimicrobial resistance rates
than the rest of countries outside Scandinavia within the blood stream infection cohort [25].
As a consequence, appropriate empiric antibiotic therapy was achieved to a larger extent by
tailoring existing guidelines according to the local resistance patterns previously identified.

1.1.1. Measuring Resistance from Susceptibility Data

The most widespread resistance measurement is denoted as Single Antimicrobial
Resistance Index (SARI) and evaluates the proportion (or percentage) of hosts harbouring
resistant pathogens within a certain population. In scenarios where a pathogen exhibits
resistance to numerous antimicrobials, the Multiple Antimicrobial Resistance Index (MARI)
evaluates the ratio of antimicrobials to which a pathogen is resistant [26]. These metrics
inform clinicians on overall antimicrobial resistance levels; however, they overlook informa-
tion such as resistance tendency or seasonality. For such purpose, the previously explained
indexes are computed on consecutive and independent time intervals to produce resistance
time series signals. Unfortunately, these are predominantly analysed by means of visual
graphs and described vaguely with expressions such as ‘slightly increased’, ‘decreased’
or ‘remained constant’. The exploitation of computational algorithms to automate the
handling and interpretation of large microbiology datasets is still limited [27,28].
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1.1.2. Evaluating Tendency on Time Series Signals

Time series analysis comprises statistical methods to extract meaningful statistics and
characteristics from time series data which is commonly split into four main components:
trend, cyclical fluctuation, seasonal variation and residual effect. The trend represents
tendencies and regularities in the time series and it is crucial in domains such as stock
market, meteorology or biology. The methods suitable for detection and estimation of
trends in a particular domain are determined by: (i) the definition of trend; (ii) the model
used for the trend; (iii) the characteristics of the data; and (iv) the application objectives.
Linear regression is perhaps the most popular method to estimate trends when the trend is
defined as the growth rate of a population. In linear regression, the trend is expressed as a
linear function of time where ordinary least squares regression has been widely used due
to its simplicity to understand [29]. However, it is highly affected by outliers, non-linearity,
correlation among variables and heteroskedasticity [30]. To overcome these flaws, there
are alternatives such as weighted least squares regression and robust regression. On the
other side, autoregressive integrated moving average (ARIMA) is widely applied in time
series analysis and has proven to be robust for short term forecasting based on previous
observations [31,32]. A number of variations on the ARIMA model have been developed
to consider seasonal variations (SARIMA) or handle multiple time series (VARIMA).

In this study, we compare the robustness of three different regression analysis methods
to quantify secular resistance trends. Moreover, the results obtained are compared with those
reported in the existing literature for three different case studies: (i) Escherichia coli in urine
cultures; (ii) Escherichia coli in blood cultures; and (iii) Staphylococcus aureus in wound cultures.

2. Materials and Methods

The methodology implemented to estimate secular trends in AMR from susceptibility
data is described in Figure 1. Firstly, the microbiology data was divided into combinations,
which are defined by the sample type and a pair pathogen-antimicrobial. For each combina-
tion, the resistance time series signal was generated using either independent or overlapping
time intervals. The time series was linearly interpolated to fill sporadic missing values. No
additional filtering was applied. An analysis of stationarity around a trend was carried out
to identify those combinations fulfilling the requirements posed by ARIMA. To conclude,
regression analysis was applied to quantify the tendency of the time series.

stationarity

time-series generation

trend estimation

Microbiology

data

Cleaning
Independent

time-spans

Overlapping

time-spans Decompose

Missing

...
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Combination
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Figure 1. High-level methodology diagram. It is composed by three main sections: time series generation (yellow),
stationarity analysis (orange) and trend estimation (green). The stationarity analysis was performed using the Augmented
Dickey-Fuller (ADF) and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests to identify root-stationary and trend-
stationary time series signals. The regression analysis methods considered were ordinary least squares (OLS), weighted
least squares (WLS) and autoregressive integrated moving average (ARIMA).
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2.1. Microbiology Data

This study was conducted with data from the Imperial College Healthcare NHS Trust,
which comprises three separate hospitals. Data contained more than 3.5 million suscepti-
bility tests for over 300,000 isolates corresponding to approximately 200,000 individuals.
Laboratory operating procedures followed national standards for microbiological inves-
tigation [33]; isolates were identified using API® (bioMèrieux) from 2009 to 2011 and by
MALDI-TOF spectroscopy (Biotyper®, Brunker) from 2011 to 2015. Susceptibilities were
determined by disc diffusion using BSAC criteria [34]. Duplicated or incomplete entries
caused by either human (e.g., reporting same results twice accidentally) or software errors
were eliminated. In addition, results were de-duplicated to discard identical organisms
repeatedly isolated from a patient during the same hospital admission.

2.2. Attributes in a Susceptibility Test Record

Susceptibility test records are composed by laboratory number, patient number, date,
sample type or culture (e.g., blood or urine), pathogen, antimicrobial, reported status and
outcome (resistant, sensitive or intermediate). These were grouped for each sample type
by pairs (pathogen, antimicrobial) since it is widely accepted by clinicians as detailed in
the UK five year strategy in AMR [20].

2.3. Generation of Resistance Time Series Signals

The Single Antimicrobial Resistance Index (SARI) is stated in Equation (1) where
R, I and S represent the number of susceptibility tests with resistant, intermediate and
susceptible outcomes respectively. It provides a value within the range [0,1] where values
close to one indicate high resistance.

SARI =
R + I

R + I + S
. (1)

To study the temporal evolution of AMR, it is necessary to generate a resistance time
series from the susceptibility test data. This is often achieved by computing the resistance
index on consecutive partitions of the data (see Table 1). The traditional strategy of dealing
with partitions considers independent time intervals (see yearly, monthly or weekly time
series). Unfortunately, this strategy forces to trade-off between granularity (level of detail)
and accuracy. The overlapping time intervals strategy drops such dependence by defining
a window of fixed size which is moved across time. The length of the window is denoted
as period and the time step as shift. For instance, three time series obtained using the
overlapping time intervals strategy with a monthly shift (1M) and window lengths of
12, 6 and 3 have been presented for the sake of clarity (see 1M12, 1M6 and 1M3). The
notation to define the time series generation methodology (shiftperiod) is described with
various examples in Table 1. For instance, 7D4 defines a time series with weekly resistance
indexes (7D) calculated using the microbiology records available for the previous four
weeks (4x7D). It is important to note that some notations are equivalent representations of
the same susceptibility data at different granularity, hence their slopes are comparable. As
an example, the trend estimated for 1M1 should be approximately thirty times the trend
estimated for 1D30.
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Table 1. Description of strategies to generate resistance time series.

Independent time intervals

This is the traditional method used in antimicrobial
surveillance systems where the time spans considered
are independent; that is, they do not overlap (e.g., month
or year).

Overlapping time intervals

This method is defined as a fixed region which is moved
across time to compute consecutive resistance indexes. It
is described by two parameters; the length of the region
(period) and the distance between consecutive windows
(shift).

Notation

The notation to define the time series generation method-
ology use is shiftperiod. Some examples are presented
below.

shiftperiod Shift Period Type
1D1 Daily previous day I
7D1 Weekly previous week I
1M1 Monthly previous month I

12M1 Yearly previous year I
1M12 Monthly previous year O
1M6 Monthly previous 6 months O
1M3 Monthly previous 3 months O t (month)

t (year)

0 6 12 18 24 30 36

0 1 2 3

weekly (7D1)

monthly (1M1)

trimonthly (3M1)

yearly (12M1)

overlapping (1M12)... ...

overlapping (1M6)... ... ...

overlapping (1M3)... ... ... ...

Keys: D=day; M=month; I=independent time intervals; O=overlapping time intervals.

2.4. Regression Analysis for Trend Estimation

The linear model (see Equation (2)) has been selected to quantify resistance tendency
for several reasons: (i) the development of resistance in pathogens is an evolutionary
response hence large variations in short periods (e.g., consecutive days or months) are not
expected; (ii) the slope parameter can be directly translated to change over time increasing
its practicability; and (iii) the offset parameter is highly related with the overall resistance.
Hence, the response variable in regression analysis (resistance index) is described by the
explanatory variable (time). The slope (m) ranges within the interval [−1,1] where sign
and absolute value capture direction and rate of change respectively. The unit of the
slope is represented by ∆y/∆x. It has been denoted as Single Antimicrobial Resistance
Trend (SART).

y = mx + n where m =
yt+1 − yt

xt+1 − xt
. (2)

2.4.1. Least Squares Regression

The optimization problem in ordinary least squares (OLS) regression minimizes the
least square errors to find the best fitting model as described in Equation (3). These
errors (εi) are often called residuals and represent the differences between observed (y)
and estimated (y′) variables. Ordinary least squares assumes identical weights (wi) and
independently distributed residuals with a normal distribution.

min
m,n

T

∑
i=1

w2
i ε2

i where εi = yi − y′i = yi− (mxi + n). (3)

It is frequently observed that some residuals might have higher variance than others,
meaning that those observations are effectively less certain. To contemplate such variability,
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weighted linear squares (WLS) regression (see Equation (3)) applies a weighting function
to the residuals. In this paper, the confidence of the computed resistance index (observed
variable) relies on the number of susceptibility test records manipulated. Hence, the
sigmoid function has been used to define weights proportional to the population size.

2.4.2. Autoregressive Integrated Moving Average

An autoregressive integrated moving average (ARIMA) model is a generalization of
an autoregressive moving average (ARMA) model which can be also applied in scenarios
where data show evidence of non-stationarity. The autoregressive (AR) part expresses the
variable of interest (resistance index) as a function of past values of the variable. The moving
average (MA) indicates that the regression error is a linear combination of error terms
which occurred contemporaneously and at various times in the past. An ARIMA(p,d,q)
model is defined as shown in Equation (4), where p is the number of autoregressive terms,
d is the number of differences needed for stationarity, q is the number of lagged forecast
errors, and φ and θ are the coefficients of the model.

y′t = µ +
p

∑
i=1

φiyt−i −
q

∑
j=1

θjyt−j. (4)

The interpretation of the parameter µ depends on the ARIMA model used for the
fitting. In order to estimate the linear trend, it was interesting to consider exclusively MA
models so that the expected value of µ was the mean of the one-time differenced series;
that is, the slope coefficient of the un-differenced series. The Bayesian information criterion
(BIC) was used to select the best ARIMA(0,1,q) model, being the one with the lowest BIC
the preferred.

2.5. Statistical Analysis
2.5.1. Trend and Stationarity in Time Series

An analysis of stationarity around a trend was carried out to identify time series
satisfying the assumptions posed by ARIMA. The augmented Dickey–Fuller test (ADF)
was used to determine the presence of a unit root. When the other roots of the characteristic
function lie inside the unit circle the first difference of the process is stationary. Due to this
property, these are also called difference-stationary processes. Since the absence of unit
root is not a proof of non-stationarity, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
was used to identify the existence of an underlying trend which can also be removed to
obtain a stationary process. These are called trend-stationary processes. In both unit-root
and trend-stationary processes, the mean can increase or decrease over time; however, in
the presence of a shock, trend-stationary processes revert to this mean tendency in the long
run (deterministic trend) while unit-root processes have a permanent impact (stochastic
trend). The significance level of the tests was set to 0.05.

2.5.2. Statistical Significance among Regression Methods

The statistical significance of the differences among the regression methods was
determined using the non parametric test Wilcoxon–Mann–Whitney (also denoted Mann–
Whitney U) where the significance level was set to 0.05.

2.5.3. Pearson Correlation Coefficient

It measures the linear correlation between two variables with a value within the range
[−1,1]. Coefficient values of −1, 0 and 1 indicate total negative linear correlation, no linear
correlation and total positive correlation respectively. In this study, the coefficient is used
to assess whether or not there is a linear correlation between the number of observations
(susceptibility test records) and the computed resistance index.
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2.6. Software

The Python programming language was used in this research. The libraries used for
time series analysis and data handling were Statsmodels [? ] and Pandas [36] respectively.
Additionally, Matplotlib [37] and Seaborn [38] were used for data visualization.

3. Results
3.1. Analysis of the Robustness of the Methods

The process to generate a resistance time series signal from susceptibility data is
defined by two parameters: shift and period. This section compares the robustness of
three regression analysis methods (OLS, WLS and ARIMA) to quantify secular trends for
resistance time series generated using different parameter configurations. For such purpose,
the absolute difference between paired trends (SART distances) has been computed. The
distribution of such distances is shown in Figure 2 for consecutive periods (left) and various
granularities (right). Lower values indicate higher consistency in the estimation of trends.
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Figure 2. Distribution of paired SART distances. Comparison of ordinary least squares (OLS), weighted least squares
(WLS) and autoregressive integrated moving average (ARIMA) in the following scenarios: consecutive periods (left)
and equivalent granularities (right). An additional graph including exclusively OLS and WLS has been added on the
latter to facilitate their comparison. The x-axis represents couplets of configurations to generate resistance time series
under comparison.

3.1.1. Consistency on Consecutive Time Spans

The length of the period determines the amount of susceptibility test records accounted
to compute the resistance index. Lengthy periods provide smoother time series which
are better approximated by the linear model, especially when overlapping time periods
are considered. As a consequence, the SART distances decrease as shown by the median
of the distributions (see left graph in Figure 2). This behaviour is consistent in OLS and
WLS. However, it is worth highlighting the irregularities shown by ARIMA. The median
and quartiles of the distributions indicate that WLS produces the most stable results and
it is followed closely by OLS. Nonetheless, there is a considerable gap between these
two methods and ARIMA. All the distances estimated by WLS were significantly smaller
(p < 0.001) than those obtained using OLS and ARIMA.

3.1.2. Consistency on Granularity

The SART measures ratio of change per time unit. Therefore, the monthly trend
should be approximately four times the weekly trend and thirty times the daily trend.
These correspondences are shown in Figure 2. Firstly, it is important to notice the substantial
variation in the distribution of SART distances, which is one order of magnitude larger
for ARIMA. Consequently, ARIMA has not been further considered for trend estimation.
For the sake of clarity, the distribution of SART distances for OLS and WLS have been
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represented separately (see right graph in Figure 2). WLS presents the best performance in
terms of granularity and the disparity with OLS is particularly visible for those scenarios
in which independent time periods are used (1M1 and 7D1). All the distances estimated by
WLS were significantly smaller (p < 0.001) than those obtained using OLS and ARIMA.

3.2. AMR Surveillance: Case Studies

The most commonly requested sample types were urine (30%), wound (26%) and
blood (6%) with the majority of tests corresponding to a reduced set of pathogens which
are a common cause of infection. The most representative pathogens were Escherichia coli
(51% in urine cultures and 26% in blood cultures) and Staphylococcus aureus (49% in wound
cultures). As such, to provide a detailed insight and validate the estimated resistance rates
and trends, three case studies are presented below: (i) Escherichia coli in blood samples; (ii)
Escherichia coli in urine samples; and (iii) Staphylococcus aureus in wound samples.

The presented case studies (see Tables 2–4, Figures 3–5) report the resistance rates and
resistance trends (monthly and yearly) with the corresponding confidence intervals for
various antimicrobials. These results are supported with references to the existing literature.
The last two columns present the Pearson correlation coefficient and the total number of
isolates. For the sake of clarity, the resistance rate, the resistance trend and the Pearson
correlation coefficient have been displayed graphically. In addition, a number of resistance
time series have been represented graphically (see Tables 2–4, Figures 3–5) including the
number of susceptibility tests (bars), the corresponding resistance index (circle) and the
estimated linear trend (overlay straight line).

Table 2. AMR summary for E. coli in urine samples.

Antimicrobial R(%) (95% CI) References TM(%) (95% CI) References TY(%) Pearson Isolates

Cephalexin (CELX) 11.1 (10.9, 11.3) 0.055 (0.045, 0.065) 0.7 ↑ −0.25 79,090
Ciprofloxacin (CIP) 16.3 (16.0, 16.5) [39,40] 0.046 (0.031, 0.062) [5,40] 0.6 ↑ −0.46 79,239
Trimethoprim (TRI) 37.8 (37.4, 38.1) [39–42] 0.033 (0.020, 0.046) [40] 0.4 ↑ −0.14 79,133
Augmentin (AUG) 10.9 (10.7, 11.2) 0.018 (−0.022, 0.059) 0.2↔ −0.42 79,093
Meropenem (MER) 0.2 (0.1, 0.3) 0.002 (−0.002, 0.006) 0.0↔ 0.02 9875

Nitrofurantoin (NIT) 2.7 (2.6, 2.8) [39–42] −0.006 (−0.013, 0.001) −0.1↔ −0.18 79,108
Amikacin (AMI) 1.1 (0.9, 1.2) −0.011 (−0.022, 0.000) −0.1↔ −0.23 9786

Cefotaxime (CTX) 60.8 (59.9, 61.8) −0.012 (−0.083, 0.059) −0.1↔ 0.01 9803
Tazocin (TAZ) 24.2 (23.3, 25.0) [39] −0.023 (−0.078, 0.032) −0.3↔ 0.01 9878

Gentamicin (GEN) 9.3 (9.1, 9.5) [42] −0.033 (−0.061, −0.005) −0.4 ↓ −0.62 63,399
Ertapenem (ERT) 2.0 (1.7, 2.3) −0.033 (−0.050, −0.017) −0.4 ↓ −0.31 8882

Ceftazidime (CAZ) 57.3 (53.3, 58.2) −0.038 (−0.113, 0.037) −0.5↔ −0.04 9810
Mecillinam (MEC) 5.4 (4.9, 5.8) −0.048 (−0.071, −0.024) −0.6 ↓ −0.29 9083

Cefoxitin (CXT) 26.0 (25.1, 26.8) −0.069 (−0.123, −0.016) −0.8 ↓ 0.15 9798
Keys: CI=confidence interval; R=resistance; TM=monthly trend; TY=yearly trend; ↑=significant increase; ↓=significant decrease.
Significance: A trend is significant if the CI does not include 0.
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facilitate comparison.
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Table 3. AMR summary for E. coli in blood samples.

Antimicrobial R(%) (95% CI) References TM(%) (95% CI) References TY(%) Pearson Isolates

Augmentin (AUG) 47.5 (45.8-49.2) [5,41] 0.359 (0.249, 0.470) [41] 4.3 ↑ 0.64 3317
Trimethoprim (TRI) 47.2 (45.4–49.1) 0.190 (0.079, 0.301) 2.3 ↑ 0.01 2774

Cefoxitin (CXT) 11.5 (10.4–12.6) 0.041 (−0.006, 0.089) 0.5↔ 0.22 3316
Tazocin (TAZ) 13.7 (12.6–14.9) [5,41,43] 0.006 (−0.040, 0.052) [5,41,43] 0.1↔ −0.08 3321

Tigecycline (TIG) 1.7 (1.2–2.2) 0.002 (−0.026, 0.030) 0.0↔ 0.45 2734
Gentamicin (GEN) 16.6 (15.3–17.8) [5,44] 0.000 (−0.044, 0.045) [5,44] 0.0↔ −0.12 3322
Meropenem (MER) 0.5 (0.3–0.8) [5,41,43,44] −0.001 (−0.020, 0.018) [5,41,43,44] 0.0↔ −0.05 3280
Temocillin (TEM) 11.1 (10.0–12.2) −0.002 (−0.086, 0.082) 0.0↔ 0.42 3044
Ertapenem (ERT) 1.2 (0.8–1.6) −0.005 (−0.025, 0.016) −0.1↔ −0.28 2992
Aztreonam (AZT) 19.6 (18.1–21.0) −0.012 (−0.077, 0.052) −0.1↔ −0.26 2925

Amoxicillin (AMO) 72.7 (71.2–74.2) −0.017 (−0.085, 0.051) −0.2↔ −0.06 3319
Amikacin (AMI) 1.6 (1.2–2.1) −0.018 (−0.041, 0.006) −0.2↔ −0.23 3044

Ceftazidime (CAZ) 19.3 (17.9–20.6) [27,44] −0.019 (−0.065, 0.027) [27] −0.2↔ −0.33 3323
Cefotaxime (CTX) 20.3 (18.9–21.7) [27,44] −0.021 (−0.070, 0.027) [27] −0.3↔ −0.31 3201

Ciprofloxacin (CIP) 35.2 (33.6–36.8) [44] −0.035 (−0.017, 0.037) −0.4↔ −0.35 3320
Cefuroxime (CXM) 24.2 (22.8–25.7) −0.080 (−0.137, −0.024) −1.0 ↓ −0.39 3320
Tobramycin (TOB) 22.1 (20.6–23.6) −0.099 (−0.188, -0.010) −1.2 ↓ −0.65 2832

Colistin (COL) 4.0 (3.3–4.8) −0.208 (−0.274, −0.141) −2.5 ↓ −0.37 2606
Keys: CI=confidence interval; R=resistance; TM=monthly trend; TY=yearly trend; ↑=significant increase; ↓=significant decrease. Signifi-
cance: A trend is significant if the CI does not include 0.
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Figure 4. Case study II: E. coli in blood samples. The table presents the resistance index, resistance trend (monthly
and yearly), the pearson correlation coefficient, the number of isolates and external resources for validation for each
antimicrobial. In addition, the main metrics (left) and four examples of resistance time series (right) are graphically
represented to facilitate comparison.

Table 4. AMR summary for S. aureus in wound samples.

Antimicrobial R(%) (95% CI) References TM(%) (95% CI) References TY(%) Pearson Isolates

Trimethoprim (TRI) 10.1 (9.8, 10.4) 0.052 (0.026, 0.077) 0.6 ↑ 0.10 33,525
Penicillin (PEN) 89.4 (89.1, 89.7) 0.050 (0.034, 0.065) 0.6 ↑ 0.19 39,901
Rifampicin (RIF) 1.7 (1.5, 1.8) [45] 0.001 (−0.015, 0.017) [45] 0.0↔ 0.23 35,141

Mupirocin (MUP) 2.5 (2.3, 2.6) −0.001 (−0.020, 0.017) 0.0↔ −0.39 33,716
Gentamicin (GEN) 4.1 (3.9, 4.3) −0.003 (−0.023, 0.018) 0.0↔ −0.16 35,255
Clindamycin (CLI) 22.4 (22.0, 22.8) −0.016 (−0.034, 0.001) −0.2↔ −0.24 39,962
Tetracycline (TET) 9.7 (9.4, 10.0) −0.018 (−0.041, 0.004) −0.2↔ 0.15 35,429
Fusidic acid (FUS) 14.5 (14.2, 14.9) −0.025 (−0.044, −0.006) −0.3 ↓ 0.04 39,918

Erythromicin (ERY) 26.0 (25.6, 26.5) −0.032 (−0.049, −0.015) −0.4 ↓ −0.24 39,971
Meticillin (MET) 15.3 (14.9, 15.7) [41] −0.090 (−0.113, −0.068) [41] −1.1 ↓ −0.45 39,950

Ciprofloxacin (CIP) 20.1 (19.7, 20.5) −0.116 (−0.156, −0.075) −1.4 ↓ −0.62 35,227

Keys: CI=confidence interval; R=resistance; TM=monthly trend; TY=yearly trend; ↑=significant increase; ↓=significant decrease.
Significance: A trend is significant if the CI does not include 0.
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Figure 5. Case study III: S.aureus in wound samples. The table presents the resistance index, resistance trend (monthly
and yearly), the Pearson correlation coefficient, the number of isolates and external resources for validation for each
antimicrobial. In addition, the main metrics (left) and four examples of resistance time series (right) are graphically
represented to facilitate comparison.

4. Discussion

The process to generate a resistance time series signal from susceptibility data is
defined by two parameters: shift and period. Regardless of the value of these parameters,
the estimated trends should be independent of the granularity (shift) and show a consistent
change when time spans overlap (period). OLS is perhaps the most popular method for
trend estimation and has shown consistent results in our study. However, it is known to be
greatly affected by outliers. To palliate this effect, WLS has been considered to reduce the
contribution of outliers by considering the number of susceptibility tests available. While
ARIMA is a very popular suite of models which has proven to be robust in short-term
forecasting, it has two main limitations: (i)requires stationary time series and (ii) parameter
tuning is not straightforward. Altogether, WLS was selected as the preferred method for
trend estimation since it was robust against changes in the granularity of the time series and
presented the best performance. In addition, it is easy to comprehend and use increasing
its practicability and implementation in other institutions.

4.1. Case Study I: Escherichia coli in Urine Samples

Escherichia coli (ECOL) is a gram negative bacteria and most strains are harmless, being
part of the normal flora of the gut. However, virulent strains can cause gastroenteritis,
urinary tract infection, meningitis and Crohn’s disease. It is the most widely studied
pathogen since it is easy to reproduce under favourable conditions. E. coli is responsible for
more than 85% of all urinary tract infections. There is an alarming resistance to cefotaxime
(60.8%), ceftazidime (57.3%) and trimethoprim (37.8%) with equivalent results in other
studies (see table in Figure 3). Furthermore, there has been a noticeable increase in resistance
to cephalexin (0.7%), ciprofloxacin (0.6%) and trimethoprim (0.4%). On the other side,
resistance to Augmentin (0.2%) is positive yet not significant since the confidence intervals
contain 0. Nitrofurantoin is commonly identified as one of the most active agents to treat E.
coli with resistance rates within the range 3.7–6% in 2003–2008 [39,42], further stabilized to
3% in 2015–2017 [5,41]. These rates harmonize with those presented in the corresponding
resistance time series (see time series graph for nitrofurantoin in Figure 3) and the estimated
marginally decreasing trend (−0.01%). While the resistance rate to nitrofurantoin (2.7%) is
low, there are antimicrobials with even lower rates such as ertapenem (2.0%) or amikacin
(1.1%). Furthermore, carbapenems show negligible resistance rates; meropenem (0.2%) and
imipenem (0.2%).

4.2. Case Study II: Escherichia coli in Blood Samples

The national mandatory surveillance program has reported a consistent rise in the
incidences of E. coli bacteremia in England [5]. Furthermore, the majority of antimicrobials
under surveillance also presented an increase in resistance rates over the last years (see
Figure 4). Such rising resistance rates are particularly significant for Augmentin (4.3%) and
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trimethoprim (2.3%). Note that, although the resistance trend for Augmentin is significant,
the pearson coefficient indicates a high correlation between the number of records and the
estimated resistance index. The introduction of MALDI-TOF mass spectrometry in 2011
might have caused this effect (see time series graph for Augmentin in Figure 4). The high
proportion of resistant isolates presented for these two antimicrobials (47.5% and 47.2%
respectively) is only overpassed by amoxicillin (72.7%). Thus, there should be concerns
on the use of these antimicrobials in clinical practice. Ciprofloxacin presents the fourth
highest proportion of resistant isolates (35.2%), which has been slightly decreasing in recent
years [27]. On the contrary, surveillance in carbapenems shows negligible resistance rates
which have remained constant over the years [5]. For instance, meropenem and ertapenem
resistance rates (0.5% and 1.2%) and trends (0.0% and −0.1%) are shown in Figure 4.

4.3. Case Study III: Staphylococcus aureus in Wound Samples

Staphylococcus aureus (SAUR) is a Gram-positive bacteria typically found in the respi-
ratory tract and the skin. It is a leading cause of bloodstream infections [46,47], generally
associated with breakages in the skin due to surgery, injury or use of intra-vascular devices
such as catheters. Therefore, it is frequently acquired in hospitals [48]. Penicillin-resistant
isolates were recognised in 1942 [49] reaching a proportion of 80% by late 1960s. Nowadays,
the resistance rate to penicillin (89.4%) is the highest and has shown an increasing trend
(0.6%) over the last years. There was also an emergence of methicillin-resistant Staphylo-
coccus aureus (MRSA). It was first reported in a British hospital and became a worldwide
problem in clinical medicine [27] with a peak of 43% in 2001 [50]. The Department of Health
in England made reduction in rates of MRSA a priority with improvement of surveillance as
one of their first actions. This led to a decrease in the number of resistant cases reported [51].
Such decrease continued in 2012–2015 [41,52] and coincides with the negative trend (−1.1%)
presented in Figure 5 and the corresponding time series graph. Nowadays, approximately
15.3% of isolates are methicillin-resistant [41]. Also, there should be concerns on antimicro-
bials such as erythromycin (26.0%) and clindamycin (22.4%) with higher resistance rates
and no further evidence of improvement. Moreover, while resistance rates to trimethoprim
are not very high (10.1%), it has presented a noticeable rise (0.6%) in the last years. Since
trimethoprim is clinically valuable to treat skin and soft tissue infections caused by MRSA,
such rise constitutes a major threat. On the other side, rifampicin-containing treatments
are known to improve outcomes in Staphylococcal wound infections presenting the lowest
resistance rate (1.7%) and a constant trend (0.0%) [45].

4.4. Susceptibility Testing: Behaviour and Guidelines

The information extracted from antimicrobial surveillance is valuable to guide and
support antimicrobial therapy selection. However, the reliability of this information highly
depends on the number of observations available which might vary considerably (see
isolates in Figure 3). For instance, a large proportion of combinations had an insufficient
number of susceptibility tests to perform resistance trend estimation. The disparity among
the pathogens tested is induced by the hospital occurrence rate; leading to higher number
of tests for pathogens which are a common cause of infection in the population. On
the other side, laboratory guidelines promote susceptibility testing for a limited range
of antimicrobial agents that, based on pharmacological and empirical knowledge, may
potentially be able to inhibit or kill the pathogen. This selection, generally based on national
laboratory guidelines, causes the corresponding disparity among antimicrobials. Note that
these guidelines might not be appropriate for the needs of each hospital. Thus, developing
effective communication strategies, such as the resistance summaries presented in this work,
could provide the necessary knowledge to revise and potentially tailor them accordingly.

4.5. Advantages of Overlapping Time Intervals in Surveillance

Antimicrobial surveillance is performed at different levels (e.g., local or national) and
it is greatly affected by the size of the dataset considered. Versatile yet efficient analytic
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methods are required in those scenarios where data access or availability is restricted,
such as clinical research. The main advantages of overlapping time intervals are: (i) it is a
flexible approach which enables to adjust granularity and accuracy (ii) resulting time series
are visually more legible and insightful (iii) enables the study of short-time variations in
contrast to current mechanisms using sparse data points (years apart) and (iv) the outcomes
are more consistent. On the other side, it might originate certain relationship between
consecutive observations as data is partially shared. Overall, this step is optional and might
be particularly useful in scenarios where data is limited but decent levels of granularity are
still required.

4.6. The Importance of Surveillance Data

Despite global antimicrobial surveillance becoming a priority in recent years, ho-
mogeneity of antimicrobial policies does still produce different antimicrobial resistance
outcomes [8]. For instance, it is widely documented that resistance rates are considerably
higher in London than in the rest of UK, emphasizing the significance of local AMR surveil-
lance. Health care organizations benefit from data on rates of antimicrobial resistance in
many ways: (i) contributes to the evidence base used for formulation of national treatment
guidelines (ii) can be used to assess the effectiveness and impact of interventions and
(iii) has a key role in detecting the emergence and spread of previously uncommon or
completely novel types of resistance. Furthermore, AMR surveillance plays a major role in
patient management by providing data that influences clinical decision-making [9]. Since
it guides antimicrobial selection for empirical treatment it is crucial at point of care. For
such reason, this information will be integrated in Enhanced Personalized and Integrated
Care for Infection Management at Point of Care (EPIC IMPOC), a modular intelligent deci-
sion support system which aims to assist clinicians at the different stages of the infection
management pathway [53–57].

4.7. Limitations

The data considered in this study were not collected purposely. Therefore, it could be
influenced by external factors such as changes in susceptibility testing policies (e.g., MIC
breakpoints), technology or outbreaks. For instance, the introduction of MALDI-TOF mass
spectrometry in 2011 might have affected the number of microbiology tests requested by
clinicians. However, while testing relies on hospital policies, suspicion of infection was
assumed for all microbiology tests requested.

5. Conclusions

Surveillance is the cornerstone for assessing the burden of antimicrobial resistance
and strengthens knowledge for action in support of stewardship program strategies by
improving existing guidelines. The efficient use of susceptibility data provided by the
overlapping time spans drops the dependence between the granularity and accuracy of
traditional surveillance systems. The robustness of weighted least squares regression facili-
tates resistance trend estimation and could be used to enhance existing surveillance systems
which exclusively focus on resistant rates. Furthermore, there is an opportunity to investi-
gate seasonal or other cyclic variations. Automating and facilitating access to surveillance
reports through clinical decision support systems would enhance resistance awareness
among clinicians and possibly have an impact on antimicrobial prescription practices.
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