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Abstract: Treatment of infectious diseases caused by carbapenem-resistant Pseudomonas aeruginosa
is becoming a greater challenge. This study aimed to identify the imipenem resistance mechanism
in P. aeruginosa isolated from a dog. Minimum Inhibitory Concentration (MIC) was determined
by the broth microdilution method according to the Clinical and Laboratory Standards Institute
recommendations. We performed polymerase chain reaction and whole-genome sequencing to
detect carbapenem resistance genes. Genomic DNA of P. aeruginosa K19PSE24 was sequenced via
the combined analysis of 20-kb PacBio SMRTbell and PacBio RS II. Peptide-Peptide Nucleic Acid
conjugates (P-PNAs) targeting the translation initiation region of blaOXA-913 were synthesized. The
isolate (K19PSE24) was resistant to imipenem and piperacillin/tazobactam yet was susceptible to
most of the tested antimicrobials. Whole-genome sequencing revealed that the K19PSE24 genome
comprised a single contig amounting to 6,815,777 base pairs, with 65 tRNA and 12 rRNA genes.
K19PSE24 belonged to sequence type 313 and carried the genes aph(3)-IIb, fosA, catB7, crpP, and
blaOXA-913 (an allele deposited in GenBank but not described in the literature). K19PSE24 also carried
genes encoding for virulence factors (exoenzyme T, exotoxin A, and elastase B) that are associated
with adhesion, invasion, and tissue lysis. Nevertheless, we did not detect any of the previously
reported carbapenem resistance genes. This is the first report of the blaOXA-913 gene in imipenem-
resistant P. aeruginosa in the literature. Notably, no viable colonies were found after co-treatment
with imipenem (2 µg/mL) and either of the P-PNAs (12.5 µM or 25 µM). The imipenem resistance in
K19PSE24 was primarily due to blaOXA-913 gene carriage.
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1. Introduction

Pseudomonas aeruginosa is one of the most problematic opportunistic human pathogens
and is particularly evident in cases of hospital-acquired pneumonia in immunocompro-
mised patients. It can be transmitted from humans to companion animals or vice versa [1,2].
Carbapenems are currently the antibiotics of choice for the treatment of infections caused
by multidrug-resistant pathogens. Carbapenems bind to penicillin-binding proteins and
inactivate an inhibitor of autolytic enzymes within the cell wall which leads to the death of
the bacteria [3]. Currently, different kinds of carbapenems are used in clinical practice as
antipseudomonal agents, such as doripenem, imipenem, and meropenem [4]. Among these,
meropenem is commonly used to treat bacteremia, sepsis, and infections caused by resis-
tant bacteria in dogs and cats [5,6]. Adverse events are relatively rare with carbapenems
and are mostly minor [7].

The global emergence of carbapenemase-producing bacteria is an alarming signal,
potentially leading to ever-increasingly restricted therapeutic choices [8]. Carbapenemases
are primarily classified into three classes of β-lactamases, the ambler classes A, B, and

Antibiotics 2021, 10, 1188. https://doi.org/10.3390/antibiotics10101188 https://www.mdpi.com/journal/antibiotics

https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0003-1244-201X
https://doi.org/10.3390/antibiotics10101188
https://doi.org/10.3390/antibiotics10101188
https://doi.org/10.3390/antibiotics10101188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antibiotics10101188
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics10101188?type=check_update&version=2


Antibiotics 2021, 10, 1188 2 of 6

D β-lactamases. Class D β-lactamases, also known as oxacillinases (OXA), have become
the most common type of acquired carbapenemases [9]. They are characterized by rapid
mutation and an expanded spectrum of activity [10]. Carbapenem-hydrolyzing class
D β-lactamases have been observed in Enterobacterales with OXA-48-like; in Acinetobac-
ter baumannii with OXA-23-like, OXA-40-like, OXA-58-like, and OXA-143-like; and in
P. aeruginosa with OXA-40-like, OXA-48-like, OXA-181-like, and OXA-198-like [10–14].
Recent emerging mechanisms of carbapenem resistance accumulate through the spread of
carbapenem-destroying-β-lactamases and leave a narrowed range of therapeutic options.
In this study, we aimed to determine the imipenem resistance mechanism in a clinical
isolate of P. aeruginosa recovered from a dog with pyoderma.

2. Results and Discussion

PacBio SMART analysis demonstrated that the genome of P. aeruginosa (K19PSE24)
comprised 6,815,777 base pairs with total coverage of 151.0× and 66.11% GC content. Abun-
dant categories in the Cluster of Orthologues Groups (COG) distribution (>5% of the total
COG-matched counts) include amino acid and inorganic ion transport and metabolism. We
also identified virulence factors that are associated with focal adhesion, phagocytosis, and
subsequent dissemination of P. aeruginosa (exoenzyme T, exoT), tissue lysis and invasion
(exotoxin A, exoA), and acute infection (elastase B, lasB) [15,16]. Multilocus sequence
typing demonstrated that the strain belonged to sequence type 313, a type already reported
in patients from different countries, including South Korea [17–19].

In this study, P. aeruginosa (K19PSE24) was resistant to imipenem (MIC > 8 µg/mL)
and piperacillin/ tazobactam (128/4 µg/mL), while it was susceptible to most of the
tested antimicrobials, including meropenem and ceftazidime (Table S1). K19PSE24’s chro-
mosome possessed genes encoding resistance to aminoglycosides (aph(3)-IIb), β-lactams
(blaOXA-913 and blaPAO), fosfomycin (fosA), phenicols (catB7), and quinolones (crpP). We
did not, however, detect any of the previously reported carbapenem resistance-encoding
genes using PCR and a whole-genome sequencing assay. Acquisition of multiple imported
and chromosomally encoded resistance mechanisms and/or a single mutational event
contribute to multidrug resistance in P. aeruginosa [20]. Fosfomycin, one of the oldest
antimicrobials, has now been revisited for its possible effectiveness against multidrug-
resistant strains, including P. aeruginosa [21]. Thus, further investigations may be needed
on the contribution of the fosA gene on the susceptibility of P. aeruginosa to fosfomycin.
Several studies have demonstrated the prevalence of the blaPAO gene, a chromosomally-
encoded cephalosporinase gene, in P. aeruginosa [22–24]. Madaha et al. [25] reported that
blaPAO-carrying P. aeruginosa isolates were sensitive to carbapenems especially imipenem.
The blaOXA-913 gene has also been reported in P. aeruginosa in Switzerland (GenBank: NG-
068184.1); however, the finding has not been described in the literature. Here, we report
for the first time the blaOXA-913 gene in imipenem-resistant P. aeruginosa isolated from a
dog with pyoderma in South Korea. We found low similarity (36.5%) between the amino
acid sequences of the blaOXA-913 gene detected in this study and the blaOXA-48-like gene in
K. pneumoniae (GenBank accession number CP024838.1). In addition, except for a single
amino acid substitution (Asn99Lys), blaOXA-913 in this study was highly similar (99.6%)
to the blaOXA-488 gene identified in P. aeruginosa (NG-049768.1). The chromosomal regions
of the blaOXA-913 gene had a substantial sequence homology (>98% sequence identity)
compared to those of previously reported OXA-50 family class D genes in P. aeruginosa
from different sources (Figure 1). Furthermore, we noted co-linearity (identity ≈ 99%)
between the nucleotide sequences of our strain (CP053687) and those of the OXA-50 family
gene-carrying P. aeruginosa strains described in Figure 1, as well as that of P. aeruginosa
PAO1 (NC_002516.2). The detection of a new carbapenem resistance gene (blaOXA-913)
in a virulent strain of P. aeruginosa is a great concern, since it significantly restricts the
therapeutic options for patients.
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Figure 1. Comparative analysis of chromosomal regions (1 Mb) of the blaOXA-913 gene and OXA-50
family class D genes. ANI analysis was performed using the ANI-blast method implemented in
PYANI (v.0.2.10) and the tree was generated based on the ANI values. The horizontal lines represent
the 95% threshold value. The scale bar represents sequence divergence, i.e., the percentage of
nucleotide substitution rate over the length of the genome.

PNA is an artificially synthesized DNA mimic that forms a stable complex with DNA
and RNA molecules in a sequence-dependent manner. Previous studies have shown the
target-specific gene silencing and/or growth inhibitory activities of P-PNAs in Gram-
positive and Gram-negative bacteria [26,27]. Ray and Norden [28] revealed that P-PNAs
can form a stable link with DNA and interfere with replication or transcription of the target
genes. In this study, the P-PNAs were designed to target the translation initiation region
of blaOXA-913. Growth inhibition was not observed when P. aeruginosa (K19PSE24) was
treated with either the P-PNAs (0.4–25 µM/mL) or imipenem (2 µg/mL). However, no
viable colonies were recovered after co-treatment with imipenem (2 µg/mL) and either
12.5 µM/mL or 25 µM/mL of the P-PNAs. Therefore, the imipenem resistance in K19PSE24
was primarily due to blaOXA-913 gene carriage.

3. Materials and Methods
3.1. Isolation and Identification of P. aeruginosa

An isolate of P. aeruginosa was obtained from a skin scraping specimen of a dog with
pyoderma in 2019. Isolation and identification of P. aeruginosa were performed using a
CHROMagarTM Pseudomonas agar plate (CHROMagar, Becton Dickinson, Sparks, MD,
USA). The isolate was then confirmed by matrix-assisted laser desorption ionization-time-
of-flight mass spectrometry (MALDI-TOF, bioMérieux, Marcy L’Etoile, France).

3.2. Antimicrobial Susceptibility Testing

Testing for antimicrobial susceptibility was performed by the broth microdilution
method using the COMPGN1F Sensititre panel (Trek Diagnostic Systems, Cleveland, OH,
USA), according to the manufacturer’s instruction. The results were interpreted accord-
ing to the Clinical and Laboratory Standards Institute (CLSI) breakpoints. P. aeruginosa
ATCC27853 was used as a reference strain.



Antibiotics 2021, 10, 1188 4 of 6

3.3. Polymerase Chain Reaction (PCR) and Whole-Genome Sequencing

A PCR assay was performed to detect the most frequently reported carbapenem resis-
tance genes in South Korea (blaIMP, blaVIM, blaOXA-48-like, blaNDM, and blaKPC) (Table S2) [29,30].
Whole-genome sequencing was performed using PacBio RS II (Pacific Biosciences, Menlo
Park, CA, USA), as previously described [31]. Antimicrobial resistance genes were ana-
lyzed by the Center for Genomic Epidemiology (http://www.genomicepidemiology.org/;
accessed on 18 February 2021). The sequence type (ST) of P. aeruginosa (GenBank acces-
sion number CP053687.1) was inferred from Pseudomonas housekeeping genes using the
Multilocus Sequence Typing Application 1.8 9 [32]. In addition, the sequence of the chro-
mosomal regions of the blaOXA-913 gene in this study (CP053687) was compared with those
of previously reported OXA-50 family class D genes. Briefly, the nucleotide sequences of
complete genomes of the OXA-50 family class D gene-carrying P. aeruginosa were down-
loaded from the GenBank nucleotide database, sequences were trimmed and chromosomal
regions (1Mb) containing blaOXA genes were prepared. The average nucleotide identity
(ANI) values were calculated with pairwise genome alignment of sequences by using the
ANI-blast method implemented in PYANI (v.0.2.10) [33], and the phylogenetic tree was
reconstructed based on the ANI values. In addition, the nucleotide sequence of our strain
was compared with those of OXA-50 family class D gene-carrying strains used in ANI
analysis, as well as that of P. aeruginosa PAO1 (NC_002516.2).

3.4. Peptide-Peptide Nucleic Acid Conjugation

We used artificially synthesized peptide-peptide nucleic acid conjugates (P-PNAs)
((KFF)3K-L-ATGCGCCCTCTCCTCTTCAG and (KFF)3K-L-CGAGCCATGCGCCCTCTCCT,
5′ to 3′ sequence) to silence the blaOXA-913 gene and confirm the gene associated with
imipenem resistance. Briefly, the blaOXA-913-specific oligonucleotides were searched in
the genome sequence of P. aeruginosa (CP053687.1). The resulting P-PNA oligomers for
blaOXA-913 were designed to bind to its translation initiation region, which overlapped
the ATG start codon and the ribosome-binding Shine-Dalgarno sequences (CGAGCC).
PNA synthesis, purification, and conjugation with (KFF)3K-L bacterial penetration peptide
were performed at PANAGENE (Daejeon, South Korea). P. aeruginosa (K19PSE24 and
ATCC 27853, 5 × 104 CFU/mL) were incubated with imipenem (2 µg/mL) alone or in
combination with different concentrations of P-PNAs (0.4, 0.8, 1.6, 3.12, 6.25, 12.5, and
25 µM) in 100 µL of Muller-Hinton broth at 37 ◦C for four hours. Then, 50 µL was removed
and spread-plated on Muller-Hinton agar plates, and the CFUs were determined after
incubation at 37 ◦C for 18 h.

4. Conclusion

The detection of the blaOXA-913 gene in P. aeruginosa is an alarming emerging threat.
This study highlights the need for continuous screening of companion animal isolates,
given that a novel imipenem resistance gene was detected in an isolate recovered from
a dog.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10101188/s1: Table S1: Antimicrobial susceptibility profiles of P. aeruginosa
K19PSE24; Table S2: Lists of primer used in the detection of carbapenem resistance genes in
P. aeruginosa.
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