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Abstract: To explore whether combined treatments with daptomycin and gentamicin can prevent the
development of Staphylococcus aureus resistance, and whether the possible restriction is associated
with changes in antibiotic mutant prevention concentrations (MPCs), the enrichment of daptomycin-
and gentamicin-resistant mutants was studied by simulating 5-day single and combined treatments
in an in vitro dynamic model. The MPCs of the antibiotics in the combination were determined at
concentration ratios equal to the ratios of 24 h areas, under the concentration–time curve (AUCs) of
the antibiotics, as simulated in pharmacodynamic experiments. The MPCs of both daptomycin and
gentamicin decreased in the presence of each other; this led to an increase in the time when antibiotic
concentrations were above the MPC (T>MPC). The increases in T>MPCs were concurrent with increases
of the anti-mutant effects of the combined antibiotics. When anti-mutant effects of the antibiotics in
single and combined treatments were plotted against the T>MPCs, significant sigmoid relationships
were obtained. These findings suggest that (1) daptomycin–gentamicin combinations prevent the
development of S. aureus resistance to each antibiotic; (2) the anti-mutant effects of antibiotic combi-
nations can be predicted using MPCs determined at pharmacokinetic-based antibiotic concentration
ratios; (3) T>MPC is a reliable predictor of the anti-mutant efficacy of antibiotic combinations.

Keywords: daptomycin–gentamicin combination; in vitro model; anti-mutant effect

1. Introduction

Emerging trends in antimicrobial resistance (AMR) presuppose the need to search
for effective tools to improve treatment outcomes. One such tool is the use of combined
therapy, with two or more antimicrobial agents, to mitigate the effects of AMR. Daptomycin
is widely used to treat gram-positive infections including endocarditis and bacteremia,
especially those caused by Staphylococcus aureus [1–4]. However, an increasing number of
clinical case reports that document daptomycin resistance [5–8] highlight the necessity to
explore combinations of daptomycin with other anti-staphylococcal antimicrobial agents,
such as gentamicin. Currently, in vivo and in vitro data are limited with respect to the
anti-mutant efficacy of this combination. The few extant in vivo studies have not shown
that daptomycin–gentamicin combination is superior to daptomycin alone as applied to
the suppression of resistance [9,10]; however, in one of the studied S. aureus strains, the
development of daptomycin resistance was restricted in the presence of gentamicin [10].

Anti-mutant activity of the daptomycin–gentamicin combination was investigated in
several in vitro studies, conducted in both static [11,12] and dynamic conditions [13–15].
The results of these studies yielded controversial conclusions, indicating that the anti-
mutant efficacy of this combination might or might not be improved relative to daptomycin
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alone. In time-kill experiments, the daptomycin–gentamicin combination restricted the
development of daptomycin resistance in S. aureus strains [11]. However, gentamicin could
not prevent the appearance of daptomycin-resistant S. aureus cells when staphylococci were
exposed to stepwise-increasing concentrations of daptomycin, alone or in combination
with gentamicin [12]. In a pharmacodynamic study [13], the combination of daptomycin
and gentamicin, at doses that correspond to therapeutic values, prevented the decrease
in S. aureus susceptibility to both drugs noted in respective mono-treatments. However,
in other studies [14,15], only the prevention of gentamicin resistance in the presence of
daptomycin was detected, while resistance to daptomycin did not occur in mono- or
combined treatments. These sparse data do not allow conclusions about daptomycin–
gentamicin interactions in relation to anti-mutant effects. This supports the need for further
investigation of the anti-mutant potential of daptomycin–gentamicin combinations.

A previous in vitro pharmacodynamic study of the combination of daptomycin with
linezolid [16] revealed enhanced anti-mutant effects against S. aureus. The observed en-
hancement was attributed to lengthening the time within the dosing interval, when an-
tibiotic concentrations exceeded the mutant prevention concentration (MPC) (T>MPC), as a
result of lowering the MPCs of each antibacterial in the presence of the other. The MPCs of
linezolid and daptomycin used in this combination were determined at concentration ratios
equal to the ratio of the 24 h area under the concentration–time curve (AUC) of linezolid to
the AUC of daptomycin simulated in the pharmacokinetic experiments. This allowed deter-
mination of the antibiotic MPCs used in the combination studies at pharmacokinetic-based
concentration ratios.

To explore whether combined treatments with daptomycin and gentamicin can pre-
vent the enrichment of S. aureus mutants resistant to both drugs, and if such restriction is
associated with changes in antibiotic MPCs, the enrichment of daptomycin- and gentamicin-
resistant mutants was studied by simulating 5-day single and combined treatments in
an in vitro dynamic model. The exposures of daptomycin were simulated to provide
subtherapeutic doses of the lipopeptide and to allow higher probability of daptomycin-
resistant S. aureus mutant growth. In contrast, gentamicin-pharmacokinetics were simu-
lated at therapeutic exposures, according to previous in vitro studies that reported high
intensity of growth of gentamicin-resistant mutants, even at high-dose aminoglycoside
regimens [13,15,17]. As referenced above [16], the MPCs of one antibiotic, in the presence
of the other, were determined at a pharmacokinetic-based daptomycin-to-gentamicin con-
centration ratio, which was equal to the ratio of the AUC of daptomycin to the AUC of
gentamicin in pharmacokinetic simulations of the combined treatments.

2. Results
2.1. MPCs of Daptomycin and Gentamicin Alone and in Combination

MPCs were assessed for daptomycin and gentamicin alone and in combination
(Table 1). Increasing antibiotic concentrations in the agar plates led to lower numbers
of surviving cells. For each antibiotic, this lowering was more pronounced in the presence
of the second agent. As an example, plots reflecting concentration-dependent changes
in numbers of antibiotic-resistant mutants on agar plates with daptomycin or gentam-
icin, alone or in combination, at a daptomycin-to-gentamicin concentration ratio of 1:1.5,
are shown in Figure 1. As seen in the figure, plots for daptomycin in the presence of
gentamicin and vice versa are shifted to the left along the abscissa compared with those
observed for each antibiotic alone. As a result, the estimated MPCs of daptomycin or
gentamicin in combination were lower than the MPCs observed with the respective single
agents. Under the influence of daptomycin, the MPCs of gentamicin decreased from 10 to
3–6 mg/L depending on the daptomycin-to-gentamicin concentration ratio (1.7–3.3-fold);
under the influence of gentamicin, the MPCs of daptomycin decreased from 16 to 1.2-
6mg/L depending on the daptomycin-to-gentamicin concentration ratio (2.7–13.3-fold).
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Table 1. MPCs (modal MPC estimation for a data set, n = 3) of daptomycin and gentamicin alone or
in combination against Staphylococcus aureus 293. Measured MPC from each replicate was within one
doubling of the modal MPC estimate.

Antibiotic Daptomycin-to-Gentamicin
AUC Ratio Regimen MPC,

mg/L

Daptomycin - D30 16

D100 16

Daptomycin in the presence of
gentamicin

1:2 D30+G65 2

1:5 D30+G160 1.2

1.5:1 D100+G65 6

1:1.5 D100+G160 2

Gentamicin - G65 10

G160 10

Gentamicin in the presence of
daptomycin

1:2 D30+G65 4

1.5:1 D100+G65 4

1:5 D30+G160 6

1:1.5 D100+G160 3
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cin are shown in Figure 2. As seen in the figure, at low exposure of daptomycin (regimen 
D30), S. aureus mutants resistant to 2 × MIC of antibiotic emerged after 24 h from the be-
ginning of the experiment. At high daptomycin exposure (D100) the amplification of an-
tibiotic-resistant cells was less pronounced, and occurred 72 h after beginning the ex-
periment (Figure 2a,b). The growth of daptomycin-resistant cells was suppressed at 
regimens D30+G65 and D100+G65, and was completely restricted at regimens D30+G160 
and D100+G160. 

Figure 1. Determination of MPC of daptomycin (D) (a) and gentamicin (G) (b) alone and in combination at concentration
ratio 1:1.5, respectively, against S. aureus 293.

2.2. Antibiotic Pharmacodynamics with Resistant S. aureus Mutants

Time courses of S. aureus mutants resistant to 2 × MIC of daptomycin and gentamicin
are shown in Figure 2. As seen in the figure, at low exposure of daptomycin (regimen
D30), S. aureus mutants resistant to 2 × MIC of antibiotic emerged after 24 h from the
beginning of the experiment. At high daptomycin exposure (D100) the amplification
of antibiotic-resistant cells was less pronounced, and occurred 72 h after beginning the
experiment (Figure 2a,b). The growth of daptomycin-resistant cells was suppressed at
regimens D30+G65 and D100+G65, and was completely restricted at regimens D30+G160
and D100+G160.



Antibiotics 2021, 10, 1148 4 of 10Antibiotics 2021, 10, 1148 4 of 10 
 

 
Figure 2. Time courses of subpopulations of S. aureus 293, resistant to 2 × MIC of daptomycin (a,b) and gentamicin (c,d). 
Dosing regimens are indicated at each curve. Data are presented as arithmetic means ± standard deviations. 

Gentamicin monotherapy at both AUCs, even at the super-therapeutic simulated 
dose, did not prevent the growth of mutants resistant to 2 × MIC of the antibiotic (Figure 
2c,d). At gentamicin AUC of 65 mg × h/L the emergence of resistant S. aureus cells was 
pronounced and starting from 96 h reached 108 CFU/mL, while in the presence of dap-
tomycin the growth of gentamicin-resistant mutants was suppressed. The higher was the 
lipopeptide AUC in the combination, the lower were the numbers of gentamicin-resistant 
cells. However, even at regimen D100+G65, complete suppression of gentamicin-resistant 
cells was not observed. At gentamicin AUC of 160 proliferation of gentamicin-resistant 
mutants during monotherapy occurred starting from 72 h and reached 106 CFU/mL at the 
end of the treatment. Similarly, an enhanced anti-mutant effect of the combination was 
observed at the higher gentamicin AUC (regimens D30+G160 and D100+G160). At regi-
men D30+G160, the growth of gentamicin-resistant mutants was completely restricted. 
Similar trends, showing enhanced anti-mutant efficacy of daptomycin–gentamicin com-
binations, were observed when bacterial growth was analyzed on agar plates with 4 × 
MIC of daptomycin and gentamicin (Figure S1, available as Supplementary data). The 
growth of resistant staphylococci on agar plates with 8 × MIC of daptomycin was not 
detected in either mono- or combined treatments, while gentamicin-resistant staphylo-
cocci were enriched in monotherapy with aminoglycoside and suppressed in the pres-
ence of daptomycin (data not shown). 

Enhancement of anti-mutant effects of daptomycin (expressed as the area under the 
bacterial mutant concentration–time curve, AUBCM(D)) in the presence of gentamicin was 
consistent with increases in T>MPC levels (Figure 3a,c). For example, AUBCM(D)s declined 
from 122 (regimen D30) to 28 (log CFU/mL) × h (regimen D30+G65), along with the 
lengthening of T>MPC from 0% to 12%, respectively. Changes in the anti-mutant effect of 

Figure 2. Time courses of subpopulations of S. aureus 293, resistant to 2 × MIC of daptomycin (a,b) and gentamicin (c,d).
Dosing regimens are indicated at each curve. Data are presented as arithmetic means ± standard deviations.

Gentamicin monotherapy at both AUCs, even at the super-therapeutic simulated dose,
did not prevent the growth of mutants resistant to 2 × MIC of the antibiotic (Figure 2c,d).
At gentamicin AUC of 65 mg × h/L the emergence of resistant S. aureus cells was pro-
nounced and starting from 96 h reached 108 CFU/mL, while in the presence of daptomycin
the growth of gentamicin-resistant mutants was suppressed. The higher was the lipopep-
tide AUC in the combination, the lower were the numbers of gentamicin-resistant cells.
However, even at regimen D100+G65, complete suppression of gentamicin-resistant cells
was not observed. At gentamicin AUC of 160 proliferation of gentamicin-resistant mutants
during monotherapy occurred starting from 72 h and reached 106 CFU/mL at the end of
the treatment. Similarly, an enhanced anti-mutant effect of the combination was observed at
the higher gentamicin AUC (regimens D30+G160 and D100+G160). At regimen D30+G160,
the growth of gentamicin-resistant mutants was completely restricted. Similar trends,
showing enhanced anti-mutant efficacy of daptomycin–gentamicin combinations, were
observed when bacterial growth was analyzed on agar plates with 4 × MIC of daptomycin
and gentamicin (Figure S1, available as Supplementary data). The growth of resistant
staphylococci on agar plates with 8 × MIC of daptomycin was not detected in either
mono- or combined treatments, while gentamicin-resistant staphylococci were enriched in
monotherapy with aminoglycoside and suppressed in the presence of daptomycin (data
not shown).

Enhancement of anti-mutant effects of daptomycin (expressed as the area under the
bacterial mutant concentration–time curve, AUBCM(D)) in the presence of gentamicin
was consistent with increases in T>MPC levels (Figure 3a,c). For example, AUBCM(D)s
declined from 122 (regimen D30) to 28 (log CFU/mL) × h (regimen D30+G65), along
with the lengthening of T>MPC from 0% to 12%, respectively. Changes in the anti-mutant
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effect of gentamicin (expressed as AUBCM(G)) under the influence of daptomycin are
shown in Figure 3b,d. Again, the enhancement of gentamicin’s anti-mutant effect in the
presence of daptomycin was accompanied by increased levels of T>MPCs. For example,
when AUBCM(G) decreased from 530 (regimen G65) to 425 (log CFU/mL) × h (regimen
D30+G65), T>MPCs increased from 7% to 24%.
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3. Discussion

In the current study, the anti-mutant potential of daptomycin–gentamicin combi-
nations against S. aureus was examined. Daptomycin concentrations were simulated to
achieve subtherapeutic AUCs, and to provide higher probability of the emergence of
S. aureus resistance to daptomycin, while gentamicin was dosed to simulate therapeu-
tic AUCs that correspond to once daily high-level doses of 5 and 7 mg/kg. Previous
studies have documented that enrichment of gentamicin-resistant cells occurs even at
high peak aminoglycoside concentrations [13,15,17]. As a result, when mono-treatments
with daptomycin and gentamicin were simulated in the dynamic model, enrichment
of resistant S. aureus mutants was observed. In contrast to monotherapy, all combined
treatments revealed enhanced anti-mutant effectiveness against both daptomycin- and
gentamicin-resistant S. aureus. This could be predicted from the increased values of T>MPC
associated with these regimens, which in turn were caused by lowered MPCs of both
daptomycin and gentamicin in the presence of each other. The daptomycin-to-gentamicin
concentration ratios, at which MPCs of antibiotics were determined, were equal to the
respective daptomycin-to-gentamicin AUC ratios used in the pharmacokinetic simulations.
This pharmacokinetic-based approach to MPC determination has been used in previous
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studies with the following antibiotic combinations: linezolid–rifampicin [18], daptomycin–
rifampicin [19], linezolid–gentamicin [17] and linezolid–daptomycin [16]. In the current
study the increased T>MPCs for each antibacterial in the presence of the second agent were
consistent with enhanced anti-mutant effects of daptomycin and gentamicin in combination
and consequently with decreased areas under the bacterial mutant concentration–time
curve (AUBCMs) of daptomycin (AUBCM(D)) and gentamicin (AUBCM(G)), respectively.
The present study demonstrates the protective effects of lengthening the times above MPC
for daptomycin and gentamicin against the emergence of resistant S. aureus mutants. Sim-
ilar conclusions, regarding the key role of increased T>MPCs of antibiotic combinations
in enhancing their anti-mutant effects, were reported in our studies of combinations of
daptomycin with linezolid [16] and linezolid with gentamicin [17] or rifampicin [18].

To explore the relationships between daptomycin- and gentamicin-resistant S. aureus
observed in mono- and combined treatments and their respective T>MPCs, AUBCMs were
plotted against T>MPCs achieved in both single and combined treatments (merged data for
each antibiotic) (Figure 4). Reasonable sigmoid T>MPC relationships with AUBCM(D) or
AUBCM(G) (r2 0.80 or 0.67, respectively) were found. This indirectly suggests that MPCs
determined at pharmacokinetic-based concentration ratios are predictive of the anti-mutant
effectiveness of antibiotic combinations. The sigmoid shape of the relationships between
resistance and T>MPC has been reported previously with fluoroquinolone [20–23] and
linezolid [24,25] monotherapy.
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The anti-mutant efficacy of daptomycin–gentamicin combinations has been described
previously in a study using an in vitro pharmacodynamic model with simulated endo-
cardial vegetations [13]. Gentamicin addition at 5 mg/kg daily (the same as in current
study) to daptomycin (6 mg/kg/day) prevented the emergence of resistance to both drugs
relative to respective daptomycin and gentamicin monotherapy. In addition, in time-kill
experiments, presented in another in vitro study, the daptomycin–gentamicin combination
restricted the development of daptomycin resistance in S. aureus strains [11]. Our findings
support these observations that daptomycin–gentamicin combinations can be effective in
preventing staphylococcal resistance. Unfortunately, in a few other pharmacodynamic
studies (therapeutic doses of daptomycin were simulated at 8 and/or 6 mg/kg/day)
daptomycin resistance was not observed as the lipopeptide concentrations used (peak
concentrations ranged from 80 to 133 mg/L) exhibited high bactericidal activity that did
not allow exploration of possible improvement of the anti-mutant effect of daptomycin by
gentamicin; at the same time, gentamicin resistance emerged in mono-treatments and was
completely restricted in the presence of daptomycin [14,15].
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It is worth noting that in the current study only one daptomycin-susceptible S. aureus
strain was used. This limits the potential clinical relevance of our findings and suggests
the need for further investigation of the anti-mutant potential of daptomycin–gentamicin
combinations with a larger number of S. aureus strains. In addition, the clinical relevance of
the current study is limited as we used subtherapeutic daptomycin doses. To improve the
clinical significance of our research future simulation of therapeutic doses of daptomycin
against S. aureus strains with decreased lipopeptide susceptibility should be considered.
Another limitation is that the current study was carried out in in vitro conditions; this did
not allow considerations of any effects of the immune system and/or protein binding,
which might influence the anti-mutant efficacy of the antibiotics.

4. Materials and Methods
4.1. Antimicrobial Agents, Bacterial Strain and Susceptibility Testing

Daptomycin powder was purchased from Acros Organics (Fair Lawn, NJ, USA);
gentamicin sulfate was purchased from PhytoTechnology Laboratories (Lenexa, KS, USA).
Clinical isolate S. aureus 293 was used in the study; it was susceptible to both daptomycin
and gentamicin with MICs of 0.5 and 0.25 mg/L, respectively.

4.2. MPC Determinations

Antibiotic MPCs, alone and in the presence of each other, were determined as de-
scribed elsewhere [18]. Each experiment was conducted in triplicate. Daptomycin MPC
in the presence of gentamicin and gentamicin MPC in the presence of daptomycin were
determined at daptomycin-to-gentamicin concentration ratios equal to the respective an-
tibiotic AUC ratios used in subsequent pharmacokinetic simulations. As a result, the
daptomycin-to-gentamicin concentration ratios in MPC determinations were 1.5:1, 1:1.5,
1:2 and 1:5.

4.3. Antibiotic Dosing Regimens and Simulated Pharmacokinetic Profiles

Both single and combined treatments mimicked subtherapeutic dosing regimens of dapto-
mycin, with respective AUCs of 30 mg × h/L (regimen D30, this designation was also used in
combination treatments) and 100 mg × h/L (regimen D100), and therapeutic dosing regimens
of gentamicin, 5 and 7 mg/kg once daily, with respective AUCs of 65 mg × h/L (regimen G65)
and 160 mg × h/L (regimen G160) calculated using peak serum gentamicin concentrations re-
ported in human studies (16.6 and 39.8 mg/L, respectively) [26,27]. Combined treatments with
daptomycin and gentamicin were D100+G65 (1.5:1 ratio), D100+G160 (1:1.5 ratio), D30+G65
(1:2 ratio) and D30+G160 (1:5 ratio).

All pharmacodynamic experiments with once-daily dosing of daptomycin or gentam-
icin used alone or in combination were conducted for five consecutive days. The simulated
antibiotic half-lives were as follows: 9 h for daptomycin [28] and 3 h [26] for gentamicin.

4.4. In Vitro Dynamic Model

To simulate mono-treatments with daptomycin and gentamicin a previously described
dynamic model [29] was used. Briefly, the model consists of two connected flasks with
fresh Mueller–Hinton broth supplemented with 50 mg of Ca2+/L (CSMHB), because
daptomycin antimicrobial activity is influenced by the presence of Ca2+ [30]. One flask
(central unit, volume 100 mL) also contained a magnetic stirrer and either a bacterial culture
alone (growth control experiment) or a bacterial culture plus antibiotic (killing/regrowth
experiments). Peristaltic pumps circulated fresh nutrient medium to and from the central
unit, at a desired flow rate of 7.7 mL/h (for daptomycin) and 23.2 mL/h (for gentamicin)
to provide a mono-exponential decay of antibiotic concentrations.

In combined treatments simultaneous mono-exponential elimination of daptomycin
and gentamicin was simulated; the model was modified according to the Blaser and
Zinner principle [31]. Briefly, the model was supplemented with an additional flask with
fresh CSMHB (200 mL) and the antibiotic with the longer half-life, i.e., daptomycin, at a
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concentration equal to those in the central unit. Similar to mono-treatments, in combined
treatments peristaltic pumps circulated fresh nutrient medium to and antibiotic-containing
medium (with both daptomycin and gentamicin) from the central unit at a flow rate
that corresponds to the antibiotic with the shorter half-life, i.e., gentamicin (23.2 mL/h).
To compensate for a too rapid daptomycin loss from the central unit peristaltic pumps
transferred the fresh medium with daptomycin from the additional flask to the central
unit at a flow rate equal to the difference between the rates of gentamicin and daptomycin
—15.5 mL/h (23.2 mL/h–7.7 mL/h).

The operation procedure used in the pharmacodynamic experiments was as described
elsewhere [29]. Antibiotic dosing and sampling of the central unit were processed auto-
matically using computer-assisted controls. Each experiment was performed at least in
duplicate. Before the start of the experiment, the system was filled with sterile CSMHB,
and placed in an incubator at 37 ◦C. After that, the central unit was inoculated with an 18-h
culture of bacteria and incubated for several hours, until exponentially growing cultures
reached ~108 colony-forming units (CFU)/mL. Then antibiotics were administered into the
central unit of the model. The duration of each experiment was 120 h.

4.5. Quantitation of the Antimicrobial Effects on the Resistant Subpopulations of S. aureus

To monitor the time courses of antibiotic-resistant subpopulations of S. aureus 293 in
the pharmacodynamic experiments, the central unit of the model was multiply sampled
throughout the observation period (120 h). The samples were serially diluted, if necessary,
plated on Mueller–Hinton agar (MHA) with 2×, 4× and 8 × MIC of daptomycin or
gentamicin, and incubated for up to 72 h at 37 ◦C. The viable counts were screened visually
for growth. The lower limit of detection was 10 CFU/mL (equivalent to at least one colony
per plate).

To characterize the time courses of S. aureus mutants resistant to 2 × MIC of antibiotic,
the area under the bacterial mutant concentration–time curve (AUBCM) [32] was calculated
from the onset to the end of the experiment (120 h) and corrected for the area under
the lower limit of detection over the same time interval. For staphylococci resistant to
daptomycin it was designed as AUBCM(D); for staphylococci resistant to gentamicin it was
designed as AUBCM(G).

4.6. T>MPC Relationships with the Emergence of Resistance

The AUBCM(D)s and AUBCM(G)s, determined in simulated mono- and combined
treatments (merged data), were plotted against T>MPC and fitted by the sigmoid function:

Y = Y0 + a/{1 + exp[−(x−x0)/b]}, (1)

where Y is AUBCM(D) or AUBCM(G), x is T>MPC, Y0 and a are the minimal and maximal
values of the AUBCM, respectively, x0 is x corresponding to a/2, and b is a parameter
reflecting sigmoidicity.

All calculations were performed using SigmaPlot 12 software (Systat Software Inc.,
headquartered in San Jose, CA, USA).

5. Conclusions

The present study suggests that (1) daptomycin–gentamicin combination restricts the
development of daptomycin- and gentamicin-resistant S. aureus mutants; (2) the inhibition
of resistant S. aureus mutants using daptomycin–gentamicin combinations can be predicted
by MPCs determined at pharmacokinetic-based antibiotic concentration ratios, and (3)
T>MPC is a reliable predictor of the anti-mutant efficacy of antibiotic combinations as studied
using in vitro dynamic models.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10101148/s1, Figure S1: Time courses of subpopulations of S. aureus 293 resistant to

https://www.mdpi.com/article/10.3390/antibiotics10101148/s1
https://www.mdpi.com/article/10.3390/antibiotics10101148/s1
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4×MIC of daptomycin (a,b) and gentamicin (c,d). Dosing regimens are indicated at each curve. Data
are presented as arithmetic means ± standard deviations.
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