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Abstract: The population structure of Pseudomonas aeruginosa is panmictic-epidemic in nature, with
the prevalence of some high-risk clones. These clones are often linked to virulence, antibiotic
resistance, and more morbidity. The clonal success of these lineages has been linked to acqui-
sition and spread of mobile genetic elements. The main aim of the study was to explore other
molecular markers that explain their global success. A comprehensive set of 528 completely se-
quenced P. aeruginosa genomes was analyzed. The population structure was examined using
Multilocus Sequence Typing (MLST). Strain relationships analysis and diversity analysis were
performed using the geoBURST Full Minimum Spanning Tree (MST) algorithm and hierarchi-
cal clustering. A phylogenetic tree was constructed using the Unweighted Pair Group Method
with Arithmetic mean (UPGMA) algorithm. A panel of previously investigated resistance mark-
ers were examined for their link to high-risk clones. A novel panel of molecular markers has
been identified in relation to risky clones including armR, ampR, nalC, nalD, mexZ, mexS, gyrAT83I,
gyrAD87N, nalCE153Q, nalCS46A, parCS87W, parCS87L, ampRG283E, ampRM288R, pmrALeu71Arg,
pmrBGly423Cys, nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A. In ad-
dition to mobile genetic elements, chromosomal variants in membrane proteins and efflux pump
regulators can play an important role in the success of high-risk clones. Finding risk-associated
markers during molecular surveillance necessitates applying more infection-control precautions.

Keywords: molecular markers; Pseudomonas aeruginosa high-risk clones; population structure; clonal
success; MLST; virulence; antibiotic resistance

1. Introduction

Pseudomonas aeruginosa has been declared as one of the “six top priority dangerous
microbes” by the infectious disease society of America since 2006 and is still among the list
of the most worrying pathogens. According to the European Centre for Disease Control
(ECDC) in 2013 and the recent Centers of Disease Control (CDC) antibiotic resistance
report in 2019, P. aeruginosa was classified as a serious public health threat. It is esti-
mated that 51,000 cases of infection exist each year. It is not considered among the urgent
threats but it may worsen and become urgent without ongoing monitoring and prevention
activities [1,2]. P. aeruginosa is one of the Gram-negative bacteria currently causing serious
hospital-acquired infections with very few treatment options [3]. The organism has been
classified as one of the six ESKAPE organisms (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
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species) with emerging clinical importance. This group of organisms has long been known
as responsible for the majority of nosocomial infections and they are capable of escaping
the action of antimicrobial agents [4]. It is also classified as one of the critical pathogens
with an urgent need for new antibiotic development by the World Health Organization
(WHO) [5,6].

Sound knowledge of the population structure of a bacterial organism and the molec-
ular markers linked to its high-risk behavior are essential to make meaningful clinical
conclusions. This knowledge is important when molecular typing is used in surveil-
lance, epidemic and outbreak investigation, and in the identification of epidemic high-risk
clones [7]. The population structure of Pseudomonas aeruginosa is consensually believed
to be of panmictic-epidemic nature [8], which means that it exhibits a high degree of
recombination with random association between loci. Panmixia means random mating and
panmictic bacterial populations exhibit the characteristics of linkage equilibrium with high
genetic variations at neutral loci [9]. For this type of population structure, better prognostic
markers are vital to make better evidence-based patient care decisions [10].

Prognostic markers should have the potential to predict high-risk behavior and should
show clear links to disease and patient outcomes. Using such molecular markers will enable
directed intervention and will also help in molecular epidemiologic surveillance.

High-risk clones are specific sequence types that have been frequently observed and
linked to specific types of behavior including virulence, antibiotic resistance, site specific
pathogenicity (e.g., cystic fibrosis, keratitis), or infection outcome. It has been suggested
that a limited number of frequently observed widespread clones are responsible for human
infections [11], with other clones showing links to higher morbidity and mortality rates
in cystic fibrosis patients [12–15]. Specific dominant multi-drug-resistant (MDR) and ex-
tensively drug-resistant (XDR) clones appear to be disseminated in hospitals worldwide.
Marked as high-risk clones, they are thought to play a major role in the spread of resis-
tance worldwide [16]. In many studies, these clones accounted for the majority of XDR
isolates [17]. P. aeruginosa is also considered an important pathogen that determines the
biggest morbidity and mortality in cystic fibrosis patients with MDR/XDR strains, being
highly linked to disease exacerbations [18].

Some recent reports have identified contaminated bronchoscopes’ rinsing water and
connecting tubes as reservoirs for spreading the organism [19]. In addition, previous
reports have also identified wastewater networks as trafficking sources between hospital
wash basins for pathogenic bacteria including P. aeruginosa [20]. This situation makes
it important to understand whether the clonal success of epidemic high-risk clones is
essentially related to mutational resistance or to horizontally acquired resistance elements,
i.e., antibiotic inactivating enzymes or integrons carrying specific gene cassettes. Such an
understanding can greatly impact the choice of the best approach required to tackle these
high-risk clones and to control their dissemination in hospital environments. High-risk
behavior may be encountered as an acquired trait, consequently indicating the higher
probability of inter-hospital dissemination of XDR/MDR high-risk clones. The other
probability is a conserved lineage-related characteristic which is consistently detected in
different hospitals where originally susceptible clones may undergo independent parallel
evolution into high-risk clones in different settings by acquiring these markers.

It is proposed that P. aeruginosa “high-risk clones” represent distinct lineages highly
capable of acquiring and maintaining resistance genes and/or the mobile genetic elements
containing these genes when compared with the general P. aeruginosa population [21].
However, clonal success in susceptible P. aeruginosa high-risk clones tends to be under
investigated in most studies, which consequently necessitates the assessment of the genetic
markers underlying clonal success in a range of both resistant and susceptible high-risk
clones, the point that the current study set has tried to cover.

The primary aim of this study was to conduct an additional investigation of the molec-
ular basis of success of high-risk clones. To achieve that, a set of previously investigated
resistance markers including those in quinolone resistance-determining region (QRDR), in
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efflux pumps operons, in cell membrane-related proteins, and others have been specifically
examined. To ensure the diversity and comprehensive representation of the studied set of
sequences, phylogenetic analysis and hierarchical clustering of the studied sequences were
performed in relation to all known Sequence Types (STs) for P. aeruginosa. The analysis
performed in this work aims at identifying molecular markers or signatures linked to
high-risk clones in P. aeruginosa. When such markers are detected, they can be used to
efficiently direct infection-control efforts which would consequently reduce the spread of
these epidemic clones. For example, a marker linked to high-risk behavior can indicate
that the patient or the setting carries high-risk potential and consequently necessitates
additional precautionary measures or isolation practices to avoid its transmission.

2. Results

The population structure of P. aeruginosa was analyzed in a large comprehensive
dataset. A large set of public P. aeruginosa genomes from the Patric database [22] was stud-
ied. The analyzed set included the whole spectrum of resistance profiles for ciprofloxacin,
levofloxacin, gentamycin, and amikacin antibiotics. Multilocus sequence typing (MLST)
was performed for all sequences according to the previously described typing scheme by
Curran [23]. Phylogenetic analysis and hierarchical clustering were performed to evaluate
the distribution of the studied set of sequences among all known P. aeruginosa genomes.
Strain relationships were analyzed using the geoBURST Full Minimum Spanning Tree
(MST) algorithm [24], as implemented in the software PHYLOVIZ [25] to construct a
minimum spanning tree (MST) of the total set of P. aeruginosa strains based on MLST data.

2.1. Description of Population Structure and Diversity in the Studied Set of Sequences

Applying geoBURST algorithm at a double locus variant level (DLV) showed 186 clonal
complexes with 157 singletons. The most frequent clonal complexes observed were CC
233 consisting of 13 STs (30 sequences), CC17 consisting of 4 STs (13 sequences), CC 395
consisting of 2 STs (14 sequences), CC 316 consisting of 3 STs (10 sequences), and CC
319 consisting of 4 STs (12 sequences). Other examples include CC 446 consisting of 2
STs (10 sequences) and CC 111 consisting of 1 ST (30 sequences). This indicates that the
sequences under study probably represent a wide range of diversity based on ST classifi-
cation. The index of association (I A) was calculated to estimate the degree of association
and recombination between alleles at different loci based on MLST allelic profile data [26].
When all 528 sequences were analyzed, the standardized index of association (IS

A) = 0.1302
(p < 0.001). This indicates linkage equilibrium and low evidence of association among the
alleles analyzed. Pairwise variance (VD = 1.4063) was greater than the critical value (L =
0.8007) with the mean genetic diversity of (H) as 0.8648 ± 0.0261. These results support that
recombination plays a key role in allele distribution and support the non-clonal structure
of the P. aeruginosa population based on MLST classification of the studied set of sequences.

The degree of concordance between the two typing schemes used was evaluated using
Simpson’s index of diversity (SID: with 95% confidence intervals) and showed that MLST
(Simpson’s ID = 0.987 with 95% CI (0.984–0.990)) was more discriminatory than serotyping
(Simpson’s ID = 0.856 with 95% CI (0.843–0.869)). Inter-method concordance was also
evaluated using the adjusted Wallace coefficient [27]. The adjusted Wallace coefficient
shows the probability that two strains classified as the same type by one method will also
be classified as the same one when using another method. Adjusted Wallace between ST
and serotypes = 0.840 with 95% CI (0.792–0.889), while that between serotypes and STs
was significantly low = 0.064 with 95% CI (0.048–0.080), which means that ST can predict
serotype with high confidence while the opposite is not true.

A phylogenetic analysis of the concatenated sequences of the MLST alleles was per-
formed including the study sequences and the entire MLST database. The results of the
phylogenetic analysis indicate that the sequences exhibit diversity and show non-clustered
distribution among all known STs for the organism. The results are shown in Figure 1. The
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figure illustrates the position of high-risk clones among all other sets of sequences included
in the analysis, which are shown in blue.

Antibiotics 2021, 10, x  4 of 20 
 

phylogenetic analysis indicate that the sequences exhibit diversity and show non-clus-
tered distribution among all known STs for the organism. The results are shown in Figure 
1. The figure illustrates the position of high-risk clones among all other sets of sequences 
included in the analysis, which are shown in blue. 

 
Figure 1. Hierarchical clustering showing the distribution of analyzed sequences among all known 
Sequence Types STs. Blue circles indicate the position of the studied sequences among all other P. 
aeruginosa sequences. The positions of high-risk clones are also shown on the figure using different 
colors. 

2.2. Analysis of Different Multilocus Sequence Typing (MLST) Profiles 
A population analysis of 528 P. aeruginosa sequences was performed and considera-

ble genetic diversity was observed among the MLST results. MLST analysis identified 249 
STs among all sequences, including 229 known and 20 novel STs. The international clones 
ST235 (serotype O11 (98%)) was the most frequently identified in a total of 50 sequences, 
followed by ST111 (serotype O12 (83.3%) and serotype O4 (16.7%)) which was identified 
in a total of 30 sequences. ST244 (serotype O12 (53.9%) and serotype O2 (58.5%)) was iden-
tified in 13 sequences, while ST308 (serotype O11 (100%)) was identified in 14 sequences. 
Each of the sequence types of ST395 (serotype O6 (100%)) and ST253 (serotype O10 
(92.3%)) were identified in 13 sequences. ST348 (serotype O2 (88.9%)) was identified in 
nine sequences. ST274 (serotype O3 (100%)) was identified in 10 sequences. ST179 (sero-
type O6 (90%)) was identified in 10 sequences and ST233 (serotype O6 (100%)) was iden-
tified in 13 sequences. ST17 (serotype O1 (100%)) was identified in 10 sequences, while 
ST27 (serotype O1 (100%)) was identified in six sequences and ST175 (serotype O4 (100%)) 
in eight sequences. These data are visualized in Figure 2 which shows serotypes overlaid 
on corresponding STs. Figure 2 shows the minimum spanning tree (MST) analysis of the 
studied set of P. aeruginosa sequences based on MLST data at SLV level. Each circle corre-
sponds to an ST identified in the studied collection of sequences. The area of each circle 
corresponds to the number of sequences showing a certain ST. The positions of high-risk 
groups are shown on the graph. In Figure 2, different ST groups are colored based on the 

Figure 1. Hierarchical clustering showing the distribution of analyzed sequences among all known
Sequence Types STs. Blue circles indicate the position of the studied sequences among all other
P. aeruginosa sequences. The positions of high-risk clones are also shown on the figure using differ-
ent colors.

2.2. Analysis of Different Multilocus Sequence Typing (MLST) Profiles

A population analysis of 528 P. aeruginosa sequences was performed and considerable
genetic diversity was observed among the MLST results. MLST analysis identified 249 STs
among all sequences, including 229 known and 20 novel STs. The international clones ST235
(serotype O11 (98%)) was the most frequently identified in a total of 50 sequences, followed
by ST111 (serotype O12 (83.3%) and serotype O4 (16.7%)) which was identified in a total
of 30 sequences. ST244 (serotype O12 (53.9%) and serotype O2 (58.5%)) was identified in
13 sequences, while ST308 (serotype O11 (100%)) was identified in 14 sequences. Each of
the sequence types of ST395 (serotype O6 (100%)) and ST253 (serotype O10 (92.3%)) were
identified in 13 sequences. ST348 (serotype O2 (88.9%)) was identified in nine sequences.
ST274 (serotype O3 (100%)) was identified in 10 sequences. ST179 (serotype O6 (90%)) was
identified in 10 sequences and ST233 (serotype O6 (100%)) was identified in 13 sequences.
ST17 (serotype O1 (100%)) was identified in 10 sequences, while ST27 (serotype O1 (100%))
was identified in six sequences and ST175 (serotype O4 (100%)) in eight sequences. These
data are visualized in Figure 2 which shows serotypes overlaid on corresponding STs.
Figure 2 shows the minimum spanning tree (MST) analysis of the studied set of P. aeruginosa
sequences based on MLST data at SLV level. Each circle corresponds to an ST identified in
the studied collection of sequences. The area of each circle corresponds to the number of
sequences showing a certain ST. The positions of high-risk groups are shown on the graph.
In Figure 2, different ST groups are colored based on the corresponding serotype. This gives
an idea about the degree of concordance/correlation between the two typing methods.
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2.3. Resistance Profile of P. aeruginosa Epidemic High-Risk Clones

Among the studied sequences, the international high-risk clone ST235 was the most
frequently identified among all STs in the study set (50 sequences). Among its 50 se-
quences, 13 are ciprofloxacin-resistant, 46 are levofloxacin-resistant, and only 4 sequences
are levofloxacin-susceptible. ST111 was the next most frequently observed ST in a to-
tal of 30 sequences, with 28 levofloxacin-resistant sequences, 2 levofloxacin-susceptible
sequences, 3 ciprofloxacin-resistant sequences, and 1 ciprofloxacin-susceptible sequence.
ST244 was identified in 13 sequences; 3 are levofloxacin-susceptible, 10 are levofloxacin-
resistant, and 2 are ciprofloxacin-resistant. ST395 was identified in 13 sequences; 8 are
levofloxacin-susceptible, 5 are levofloxacin-resistant, and 3 are ciprofloxacin-resistant.
ST175 was identified in eight sequences; all are levofloxacin resistant. The cystic fibro-
sis (CF) clone ST17 was identified in 10 sequences; 4 are levofloxacin-susceptible, 6 are
levofloxacin-resistant, and 1 is ciprofloxacin-resistant. Another CF clone, ST274, was
identified in 10 sequences; 5 are levofloxacin-susceptible, 5 are levofloxacin-resistant, 1 is
ciprofloxacin-resistant, and 1 is ciprofloxacin-susceptible. These results are summarized in
Table 1.

For aminoglycosides, 23 sequences with ST235 are amikacin-resistant, 27 are amikacin-
susceptible, 3 are gentamycin-resistant, and 10 are gentamycin-susceptible. ST111 in-
cluded a total of 14 amikacin-resistant sequences, 16 amikacin-susceptible sequences,
3 gentamycin-resistant sequences, and 1 gentamycin-susceptible sequence. Sequences
belonging to ST244 included 6 amikacin-resistant sequences, 7 amikacin-susceptible se-
quences, and 2 gentamycin-resistant sequences. ST395 included 1 amikacin-resistant
sequence, 12 amikacin-susceptible sequences, 2 gentamycin-resistant sequences, and 1
gentamycin-susceptible sequence. All sequences with ST175 were amikacin susceptible.
Sequences with ST17 included 8 amikacin-susceptible sequences, 2-amikacin resistant
sequences, and 1 gentamycin-susceptible sequence. Sequences with ST274 included 9
amikacin-susceptible sequences, 1 amikacin-resistant sequence, 1 gentamycin-resistant
sequence, and 1 gentamycin-susceptible sequence (Table 1).

Quinolone and aminoglycoside Minimum Inhibitory Concentration (MIC) values for
the high-risk clones observed in the studied collection with their corresponding serotypes
are shown in Supplementary Tables S1 and S2. Figures 3, 5, 6, and 8 show the susceptibility
of the different studied antibiotic agents in relation to different STs.
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Table 1. Summary of sequences belonging to high-risk clones with their corresponding quinolone and aminoglycoside susceptibility.

High-risk
clone

Number of
sequences

Ciprofloxacin-
resistant

Ciprofloxacin-
susceptible

Unrecorded
ciprofloxacin-
susceptibility

Levofloxacin-
resistant

Levofloxacin-
susceptible

Gentamycin-
resistant

Gentamycin-
susceptible

Unrecorded
gentamycin-

susceptibility

Amikacin-
resistant

Amikacin-
susceptible

ST235 50 13 - 37 46 4 3 10 37 23 27
ST111 30 3 1 26 28 2 3 1 26 14 16
ST244 13 2 - 11 10 3 2 - 11 6 7
ST395 13 3 - 10 5 8 2 1 10 1 12
ST175 8 - - 8 8 - - - 8 - 8
ST17 10 1 - 9 6 4 - 1 9 2 8

ST274 10 1 1 8 5 5 1 1 8 1 9

(-) sign refers to (No sequences) in the category specified.
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2.4. Analysis of Molecular Markers in Relation to High-Risk Clones
2.4.1. Levofloxacin-Related Molecular Markers

A total of 528 sequences were analyzed for levofloxacin susceptibility (338 resistant
and 190 susceptible). Figure 3 is an MST tree showing levofloxacin susceptibility in relation
to different STs. Levofloxacin susceptibility behavior does not show a specific clustering or
clonal distribution pattern in relation to the ST classification in general. This figure also
shows that ST111, ST235, ST175, and ST233 are majorly composed of resistant sequences,
while nearly half of the sequences classified under ST253, ST244, ST17 and ST27 were not
resistant. Of those analyzed, a total of 196 sequences belonged to epidemic high-risk clones
(ST17 (N = 10), ST27 (N = 6), ST111 (N = 30), ST235 (N = 50), ST175 (N = 8), ST179 (N = 10),
ST244 (N = 13), ST233 (N = 13), ST308 (N = 14), ST395 (N = 13), ST532 (N = 3), ST446 (N = 3),
ST274 (N = 10), and ST253 (N = 13)).

A chi-square test for independence (with Yates’ continuity correction) indicated signif-
icant associations between ampR, x2 (1, n = 528) = 5.7, p = 0.017, phi = 0.104; arm R, x2 (1,
n = 528) = 9.5, p = 0.002, phi = 0.134; mexZ, x2 (1, n = 528) = 5.9, p = 0.015, phi = 0.106; nfxB, x2

(1, n = 528) = 6.74, p = 0.009, phi = 0.113; mexS, x2 (1, n = 528) = 6.2, p = 0.013, phi = 0.109; nalC,
x2 (1, n = 528) = 6.2, p = 0.013, phi = 0.109; nalD, x2 (1, n = 528) = 3.9, p = 0.05, phi = 0.085;
gyrAT83I, x2 (1, n = 528) = 64.3, p < 0.005, phi = 0.349; gyrAD87N, x2 (1, n = 528) = 13.23,
p < 0.005, phi = 0.158; nalCE153Q, x2 (1, n = 528) = 10.014, p = 0.001, phi = 0.139; nalCS46A,
x2 (1, n = 528) = 6.23, p = 0.013, phi = 0.109; parCS87W, x2 (1, n = 528) = 28.03, p < 0.005,
phi = 0.23; parCS87L, x2 (1, n = 528) = 47.6, p < 0.005, phi = 0.301, ampRG283E, x2 (1, n = 528)
= 5.1, p = 0.024, phi = 0.098; ampRM288R, x2 (1, n = 528) = 7.66, p = 0.006, phi = 0.121,
and high-risk groups. These are listed in Figure 4.
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Some markers also showed significant links to specific clones, including mexSSer124Arg,
nalD, nalCG71E, nalCA186T, nalCS46A, nalCE153Q, parCS87W, parCS87L, gyrAT83I, gyrAD87N,
ampRG283E, and ampRM288R. These are shown in Table 2.
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Table 2. Levofloxacin molecular markers showing significant association with specific high-risk clones.

Molecular Marker High-Risk Clone Chi-Square p-Value Phi Coefficient

mexSSer124Arg ST235 39.6 <0.005 0.274
mexSSer124Arg ST395 14.06 <0.005 0.163

nalD ST395 3.97 0.046 0.274
nalCG71E ST395 5.7 0.017 0.103

nalCA186T ST233 147.6 <0.005 0.529
nalCS46A ST235 3.06 0.08 0.076
nalCS46A ST244, ST253 4.44 0.035 0.092

nalCE153Q ST235 71.06 <0.005 0.367
nalID153Q ST235 20.7 <0.005 0.198
parCS87W ST274 7.9 0.005 0.122
parCS87L ST111 17.09 <0.005 0.18
parCS87L ST233 32.3 <0.005 0.248
parCS87L ST235 49 <0.005 0.306
parCS87L ST244 9.5 0.005 0.135
parCS87L ST308 16.6 <0.005 0.178
gyrAT83I ST111 25.7 <0.005 0.22
gyrAT83I ST233 20.1 <0.005 0.195
gyrAT83I ST235 35.42 <0.005 0.259
gyrAT83I ST244 4.5 0.035 0.092
gyrAT83I ST308 12.7 <0.005 0.155

gyrAD87N ST395 7.13 0.008 0.116
ampRG283E ST235 49.85 <0.005 0.307
ampRG283E ST308 9.78 0.002 0.136
ampRM288R ST235 82.776 <0.005 0.396
ampRM288R ST308 18.658 <0.005 0.188

On the other hand, some other markers showed significant absence in relation to
high-risk clones, including mexSA175V, x2 (1, n = 528) = 8.5, p = 0.004, phi = −0.127;
mexSE181D, x2 (1, n = 528) = 6.135, p = 0.013, phi = −0.108; nalCS209R, x2 (1, n = 528) = 18.3,
p < 0.005, phi = −0.186; mexRR79N, x2 (1, n = 528) = 6.7, p = 0.01, phi = −0.112; mexRE70R,
x2 (1, n = 528) = 11.99, p = 0.001, phi = −0.151; mexRL130T, x2 (1, n = 528) = 8.95, p = 0.003,
phi = −0.13; mexRG97L, x2 (1, n = 528) = 12.5, p < 0.005, phi = −0.154, mexRL29D, x2 (1,
n = 528) = 11.5, p < 0.005, phi = −0.154, and ampRE114A, x2 (1, n = 528) = 14.32, p < 0.005,
phi = −0.165, summarized in Figure 4.

2.4.2. Ciprofloxacin-Related Molecular Markers

A total of 142 sequences were analyzed for ciprofloxacin susceptibility (105 resistant
and 37 susceptible). Figure 5 is an MST tree showing ciprofloxacin susceptibility in relation
to different STs. The pattern of distribution of antibiotic phenotype in relation to MLST
classification is similar to that observed with the levofloxacin MST tree. No clustering of
the susceptible phenotype is observed in relation to different STs. This may indicate that
information drawn from MLST is not sufficient alone to reflect antibiotic susceptibility
behavior in a highly recombining organism like P. aeruginosa. Of those analyzed, a total
of 39 sequences belonged to epidemic high-risk clones (ST17 (N = 1), ST27 (N = 1), ST111
(N = 4), ST179 (N = 3), ST233 (N = 5), ST235 (N = 12), ST244 (N = 2), ST253 (N = 2), ST274
(N = 2), ST308 (N = 2), ST446 (N = 1), ST395 (N = 3), and ST532 (N = 1)).
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ciprofloxacin-resistant (n = 105); blue color: ciprofloxacin-susceptible (n = 37); grey color: unknown susceptibility
to ciprofloxacin.

A chi-square test for independence (with Yates’ continuity correction) indicated sig-
nificant associations between nalCE153Q, x2 (1, n = 142) = 7.831, p = 0.005, phi = 0.235;
parCS87L, x2 (1, n = 142) = 6.86, p = 0.009, phi = 0.22; gyrAT83I, x2 (1, n = 142) = 7.362,
p = 0.007, phi = 0.228; gyrAD87N, x2 (1, n = 142) = 4.668, p = 0.031, phi = 0.181; ampRM288R,
x2 (1, n = 142) = 5.068, p = 0.024, phi = 0.189, and high-risk groups.

Furthermore, mexS Val333Gly, x2 (1, n = 142) = 10.9, p = 0.001, phi = 0.277; nalCE153Q,
x2 (1, n = 142) = 46.937, p < 0.005, phi = 0.575; nalDI153Q, x2 (1, n = 142) =4.5, p < 0.033,
phi = 0.179; gyrAT83I, x2 (1, n = 142) = 5.72, p = 0.017, phi = 0.201; ampRG283E, x2 (1, n= 142)
= 15.975, p < 0.005, phi = 0.335, and ampRM288R, x2 (1, n = 142) =24.26, p < 0.005, phi = 0.413,
showed significant links to ST235.

2.4.3. Amikacin-Related Molecular Markers

A total of 528 sequences were analyzed for amikacin susceptibility (142 resistant and
386 susceptible). Figure 6 is an MST tree showing amikacin susceptibility in relation to
different STs. Based on the distribution of high-risk clones seen in Figure 6, amikacin
resistance does not appear to correlate with high-risk clones. Except for ST233, the majority
of sequences forming all other high-risk STs were mostly susceptible. About half of the
isolates forming ST111 and ST235 were resistant. For the ST111 group, 14 sequences
were amikacin-resistant and 16 were amikacin-susceptible. For ST235, 23 sequences were
amikacin-resistant and 27 were amikacin-susceptible.

Of those analyzed, a total of 196 sequences belonged to epidemic high-risk clones
(ST17 (N = 10), ST27 (N = 6), ST111 (N = 30), ST235 (N = 50), ST175 (N = 8), ST179 (N = 10),
ST244 (N = 13), ST233 (N = 13), ST308 (N = 14), ST395 (N = 13), ST532 (N = 3), ST446 (N = 3),
ST274 (N = 10), and ST253 (N = 13)).

A chi-square test for independence (with Yates’ continuity correction) indicated sig-
nificant associations between armR and high-risk groups, x2 (1, n = 528) = 9.5, p = 0.002,
phi = 0.134. A significant association was also found between each of nalC, x2 (1, n = 528)
= 6.218, p = 0.013, phi = 0.109; nalD, x2 (1, n = 528) = 3.856, p = 0.05, phi = 0.085; mexZ, x2 (1,
n = 528) = 5.904, p = 0.015, phi = 0.106; ampR, x2 (1, n = 528) = 5.701, p = 0.017, phi = 0.104;
gidBE186A, x2 (1, n = 528) = 89.753, p < 0.005, phi = 0.412; pmrBGly423Cys, x2 (1, n = 528)
= 21.478, p < 0.005, phi = 0.202; pmrALeu71Arg, x2 (1, n = 528) = 14.546, p < 0.005, phi = 0.166;
nuoGA890T, x2 (1, n = 528) = 16.236, p < 0.005, phi = 0.175; pstBE89Q, x2 (1, n = 528) = 6.92,
p = 0.009, phi = 0.114; arnAA170T, x2 (1, n = 528) = 3.878, p = 0.049, phi = 0.086; arnDG206C,
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x2 (1, n = 528) = 3.878, p = 0.049, phi = 0.086; and phoQY85F, x2 (1, n = 528) = 60.031, p < 0.005,
phi = 0.337, and high-risk groups. These are summarized in Figure 7.
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Some markers appeared to be conserved to specific high-risk clones, showing very
high effect sizes, including phoQY85F, nuoGA890T, pstBE89Q, arnAA170T, gidBE186A, and
arnDG206C. Table 3 summarizes amikacin molecular markers showing links to specific
high-risk clones.
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Table 3. Amikacin molecular markers showing significant associations with specific high-risk clones.

Molecular Marker High-Risk Clone Chi-Square p-Value Phi Coefficient

phoQY85F ST235 400.38 <0.005 0.871
nuoGA890T ST395 455.82 <0.005 0.929
pstBE89Q ST233 338.5 <0.005 0.801

arnAA170T ST233 292.64 <0.005 0.744
arnDG206C ST233 292.64 <0.005 0.744
gidBE186A ST235 493.946 <0.005 0.967
lptAR62S ST446 85.48 <0.005 0.402

faoAT385A ST244 121.92 <0.005 0.481
pmrBGly423Cys ST111 22.492 <0.005 0.206
pmrBGly423Cys ST235 28.103 <0.005 0.231
pmrBGly423Cys ST253 14.338 <0.005 0.165
pmrBGly423Cys ST308 12.493 <0.005 0.154
pmrALeu71Arg ST17 29.38 <0.005 0.236
pmrALeu71Arg ST233 30.868 <0.005 0.242
pmrALeu71Arg ST253 24.145 <0.005 0.214
pmrALeu71Arg ST308 27.034 <0.005 0.226
pmrALeu71Arg ST175 23.414 <0.005 0.211
pmrALeu71Arg ST179 29.38 <0.005 0.236
pmrALeu71Arg ST532 8.696 0.003 0.128

phoQY85F showed high conservation to ST235 (x2 (1, n = 528) = 400.38, p < 0.005),
with high effect size (phi = 0.871). The marker was identified in 48/50 ST235 sequences
and rarely identified in other high-risk clones. nuoGA890T was exclusively identified in
all sequences with ST395 (13/13) and not identified at all in any other high-risk clone
(x2 (1, n = 528) = 455.82, p < 0.005), showing very high effect size (phi = 0.929). Similarly,
pstBE89Q showed high conservation to ST233. It was identified in all sequences with
ST233 (13/13) and not identified at all in any other high-risk clone assessed (x2 (1, n = 528)
= 338.5, p < 0.005, phi = 0.801). Similarly, both arnAA170T and arnDG206C were exclusively
identified in ST233 (13/13 sequences) and not in any other high-risk clone among those
assessed; x2 (1, n = 528) = 292.64, p < 0.005, phi = 0.744, and x2 (1, n = 528) = 292.64, p < 0.005,
phi = 0.744, respectively. On the other hand, gidB E186A showed significant conservation
in ST235 (49/50 sequences); x2 (1, n = 528) = 493.946, p < 0.005, with very high effect size,
phi = 0.967.

On the other hand, some other markers showed absence in relation to high-risk clones,
including each of lptAT55A, x2 (1, n = 528) = 22.8, p < 0.005, phi = −0.208; mexRR79N, x2

(1, n = 528) = 6.669, p = 0.01, phi = −0.112; mexRE70R, x2 (1, n = 528) = 11.995, p = 0.001,
phi = −0.151; mexRL130T, x2 (1, n = 528) = 8.953, p = 0.003, phi = −0.130; mexRG97L, x2 (1,
n = 528) = 12.523, p < 0.005, phi = −0.154, and mexRL29D, x2 (1, n = 691) = 12.502, p < 0.005,
phi = −0.154 (Figure 7).

2.4.4. Gentamycin-Related Molecular Markers

A total of 139 sequences were analyzed for gentamycin susceptibility phenotype
(57 resistant and 82 susceptible). Figure 8 is an MST tree showing gentamycin susceptibility
in relation to different STs. The distribution of gentamycin susceptibility and resistance
in Figure 8 shows that both gentamycin-resistant and gentamycin-susceptible isolates are
evenly distributed all over the MST tree. This may indicate that the antibiotic susceptibility
phenotype relates to different STs at different distances and is not clustering in clones or
in relation to specific clonal complexes. This is also similar to what was observed with
quinolones in Figures 3 and 5. Furthermore, the high-risk clones shown in the graph
include both resistant and susceptible sequences. Of those analyzed, a total of 39 sequences
belonged to epidemic high-risk clones (ST523 (N = 1), ST446 (N = 1), ST395 (N = 3), ST308
(N = 2), ST274 (N = 2), ST253 (N = 1), ST244 (N = 2), ST235 (N = 13), ST233 (N = 5), ST179
(N = 3), ST111 (N = 4), ST27 (N = 1), and ST17 (N = 1)).
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A chi-square test for independence (with Yates’ continuity correction) indicated sig-
nificant association between nalCE153Q and high-risk groups; x2 (1, n = 139) = 22.475,
p < 0.005, phi = 0.402. Significant associations were also found between each of gidBE97Q,
x2 (1, n = 139) = 36.772, p < 0.005, phi = 0.514; gidBE186A, x2 (1, n = 139) = 36.772, p < 0.005,
phi = 0.514; pstBE89Q, x2 (1, n = 139) = 4.989, p = 0.026, phi = 0.189; and arnDG206C, x2

(1, n = 139) = 4.989, p = 0.026, phi = 0.189 and high-risk groups. Gentamycin molecular
markers showing significant links to specific high-risk clones are summarized in Table 4.

Table 4. Gentamycin molecular markers showing significant associations with specific high-risk clones.

Molecular Marker High-Risk Clone Chi-Square p-Value Phi Coefficient

nalDSer32Asn ST235 3.955 0.047 0.169
nalCE153Q ST235 98.99 <0.005 0.844

pmrALeu71Arg ST308 5.594 0.018 0.201
pmrALeu71Arg ST233 14.298 <0.005 0.321
pmrALeu71Arg ST179 8.453 0.004 0.247

pstBE89Q ST233 84.93 <0.005 0.782
arnA A170T ST233 74.917 <0.005 0.734
arnDG206C ST233 84.93 <0.005 0.782
gidBE97Q ST235 139 <0.005 1
gidBE186A ST235 139 <0.005 1

3. Discussion

Understanding the reason for the success of epidemic high-risk clones is essential
for designing treatment and infection control strategies [28]. The specific genetic resis-
tance markers of these high-risk clones were described in detail for the first time by
Cabot et al. [29]. These include multiple combinations of chromosomal mutations and/or
horizontally acquired resistance elements. The mosaic nature observed for both chro-
mosomal and acquired resistance elements in relation to high-risk clones necessitates
being cautious before making conclusions about the molecular bases of success for these
clones [30]. Correa et al. (2015) showed that the dissemination of extensively drug-resistant
P. aeruginosa has been repeatedly linked to the presence of mobile genetic elements that
would facilitate their successful spread and clonal dissemination [21]. Gene cassettes
carried by class 1 integrons has also been suggested as an underlying cause for clonal
success [31,32].

The analysis performed in this study used previously investigated quinolone and
aminoglycoside resistance markers to study their correlation with high-risk clones. The
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identified high-risk related molecular markers for the studied quinolone group included
ampR, mexZ, armR, nfxB, mexS, nalC, nalD, gyrAT83I, gyrAD87N, nalCE153Q, nalCS46A,
parCS87W, parCS87L, ampRG283E, and ampRM288R.

Interestingly, it was observed that 41 sequences out of 50 within the high-risk group
ST235 showed the following cluster/combination of molecular markers: mexZ, armR, nfxB,
mexS, mexR, and nalC. gyrAT83I was identified in 36/50 sequences and nalCS46A in 43/50
sequences. Both gyrAT83I and parCS87L showed significant links to high-risk clones and
specifically to ST235 and ST111, exhibiting the highest effect sizes for individual mutations
among all those tested.

Similarly observed for ST111, 27 sequences out of 30 showed the same cluster of
molecular markers (mexZ, armR, nfxB, mexS, mexR, and nalC). gyrAT83I was identified in
23/30 sequences and nalCS46A was identified in 24/30 sequences. Both showed statistically
significant associations.

The findings from the current study can be supported by findings from the literature
showing mexZ G195E, leading to MexXY overexpression, and gyrAT83I among the variants
observed in relation to the spread of ST175 XDR phenotype. These were also identified by
Kos et al. [3] among mutational resistance mechanisms showing frequent occurrence in
both ST111 and ST235 high-risk clones [3]. Other findings by Treepong et al. (2017) also
support the link between each of gyrAT83I and parCS87(80)I and the clone ST235 [33] A
recent study has also identified a wide range of mutations in all efflux pump regulators
in relation to high-risk clones including nalCE153Q, thus supporting findings from the
current analysis [34].

Other recent observations also support the same findings, demonstrating the impor-
tance of QRDR-related mutations in high-risk clones [35]. In the same study, Horna et al.
(2019) identified QRDR mutations in all sequences belonging to ST235 and ST357.

The molecular markers identified for the aminoglycoside group in relation to high-risk
clones from the current analysis included armR, ampR, nalC, nalD, mexZ, pmrALeu71Arg,
pmrBGly423Cys, nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A.
The pattern of their distribution seemed to be highly conserved for specific markers in
relation to specific high-risk clones. Markers showing high conservation to specific high-
risk clones with very high effect sizes included phoQY85F and gidB E186A with ST235,
nuoGA890T with ST395, and pstBE89Q, arnAA170T, and arnDG206C with ST233.

Although it was shown by Chowdhury et al. [31] that the presence of resistance gene
cassettes carried by class 1 integrons may be a characteristic of ST235 clonal lineage, there is
no sufficient evidence to show whether this link is related to MDR behavior or whether it is
an inherent character of the ST235 lineage. nfxB gene, the phoQ variant F76Y, and the pmrB
variant V15I were all identified in all ST235 sequences evaluated from the same study [31].
These findings support the findings from the current analysis about the possible important
link of nfxB, phoQ, and pmrAB variants to the ST235 clone.

Findings from the current analysis may also be supported by other recent findings
shown by Pelegrin et al. (2019) [34], who identified the same variant phoQY85F as highly
conserved in ST235. The same study has also shown that pmrALeu71Arg was frequently
identified in both ST235 and ST446. Multiple other variants have also been identified in
nuoG in relation to high-risk clones from the same study [34]. On the other hand, both
arnAA170T and arnDG206C, previously identified as resistance markers to aminoglycosides
(under preparation for publication), have also shown significant links to high-risk behavior,
especially with ST233, showing very high effect size.

Changes in PhoP-PhoQ activity have been implicated in resistance to cationic an-
timicrobial peptides as a result of lipopolysaccharide (LPS) modification [36–38]. Similar
changes may also underlie high-risk behavior, and this could explain the current findings.

pmrALeu71Arg appeared to be highly conserved in some high-risk clones including
ST308 (12/14 sequences), ST233 (12/13 sequences), ST253 (11/13 sequences), ST179 (10/10
sequences), and ST175 (8/8 sequences). These findings are supported by findings from a
recent study showing upregulation of pmrAB and phoPQ in relation to high-risk clones and
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colistin resistance [39]. In addition, some mutations in the two-component sensor-regulator
system pmrAB have been linked to a changed aminoglycoside resistance phenotype. These
include pmrALeu71Arg located within the signal receiver domain of the response regulator.
While activation of each of the two systems separately only showed slight increases in MIC,
combined activation led to a four-fold increase in the tobramycin MIC [40].

These findings collectively support findings from the literature showing that mutations
in several two-component regulatory systems including pmrAB, phoPQ, and the related
overexpression of the arnBCADTEF-pmrE operon can lead to lipid A modification. This
effect proved to be associated with polymyxin resistance in P. aeruginosa [41]. A similar
effect may also lead to aminoglycoside resistance or high-risk behavior, which may explain
the current findings.

4. Materials and Methods

As a primary step to explore the specific molecular markers explaining the global
success of epidemic high-risk clones, the population structure of P. aeruginosa in a large
comprehensive dataset was analyzed. A large set of public P. aeruginosa genomes from
the Patric database [22] were studied. The studied sequences are referred to in Supple-
mentary Table S3. The analyzed set included the whole spectrum of resistance profiles
for ciprofloxacin, levofloxacin, gentamycin, and amikacin antibiotics. An extensive panel
of molecular markers studied and identified in a previous work in relation to antibiotic
resistance (data not shown here) were evaluated in this study for their potential relation to
clonal success.

4.1. Multilocus Sequence Typing (MLST) and Serotypes (O-type) Analysis

MLST was performed for all sequences according to the previously described typing
scheme by Curran [23]. An ST was assigned to each unique allelic profile according to
the P. aeruginosa PubMLST database (http://pubmlst.org/paeruginosa/). Whole-genome
sequence data (WGS) for the selected sequences from Patric database (528 genomes) were
used to identify STs using the method publicly available at www.cbs.dtu.dk/services/
MLST [42]. WGS data were also used to determine the serogroups of all studied isolates
based on the sequence of O-specific antigen (OSA) gene cluster using the P. aeruginosa
serotyper (PAst) web tool available on the Center for Genomic Epidemiology (CGE) service
platform (https://cge.cbs.dtu.dk/services/PAst-1.0/) [43].

4.2. Phylogenetic Analysis

Phylogenetic analysis and hierarchical clustering were performed to evaluate the
distribution of the studied set of sequences among all known P. aeruginosa genomes. The
genes encoding the metabolic enzymes, acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE,
which are commonly used for MLST typing, were used. Concatenated sequences of
these genes for the studied set of 528 genomes, as extracted from the MLST output tool
provided by https://cge.cbs.dtu.dk/services/MLST/, and concatenated sequences of all
other known STs for P. aeruginosa, as extracted from the Pseudomonas aeruginosa MLST
website, available at https://pubmlst.org/paeruginosa/, were aligned using the MUSCLE
option [44] implemented in the software MEGA 7 [45]. The phylogenetic tree of the
concatenated genes was constructed using the UPGMA algorithm.

4.3. Population Structure and Diversity Analysis

Strain relationships were analyzed using the geoBURST Full MST algorithm [24],
as implemented in the software PHYLOVIZ [25], to construct a minimum spanning tree
(MST) of the total set of P. aeruginosa strains based on MLST data according to the steps
shown in Phyloviz documentation release 2.0, available at http://www.phyloviz.net/.
Clonal complexes (CCs) were defined in the current analysis as complexes or “groups
of studied sequences” containing at least three STs sharing the same allele numbers in
at least five of seven loci. Isolate-specific metadata, including serotypes, quinolone, and

http://pubmlst.org/paeruginosa/
www.cbs.dtu.dk/services/MLST
www.cbs.dtu.dk/services/MLST
https://cge.cbs.dtu.dk/services/PAst-1.0/
https://cge.cbs.dtu.dk/services/MLST/
https://pubmlst.org/paeruginosa/
http://www.phyloviz.net/
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aminoglycoside resistance data, were then overlaid on top of the minimum spanning tree.
Allelic linkage disequilibrium was assessed with two test options of both Monte Carlo
methods and Parametric with 100 resampling using LIAN version 3.7 [26], available at
http://guanine.evolbio.mpg.de/cgi-bin/lian/lian.cgi.pl/query.

The standardized index of association (IS
A) and the mean genetic diversity (H) were

used to assess the linkage equilibrium and degree of association between alleles [46,47].
Discriminatory power (Simpson’s index) and concordance (cluster agreement) be-

tween 2 typing methods (adjusted Rand index and adjusted Wallace) were evaluated ac-
cording to Carriço et al. [48] using the web source http://www.comparingpartitions.info/.

The degree of concordance between the two typing schemes used was first evaluated.
Simpson’s index of diversity (SID: with 95% confidence intervals) was used as described by
Hunter and Gaston [49]. Inter-method concordance was also evaluated using the adjusted
Wallace coefficient [27].

4.4. Resistance Genes and Markers Correlations

A primary literature review to extract genes and gene variants associated with
quinolone and aminoglycoside resistance was carried out on PMC PubMed Central,
ACADEMIC SEARCH COMPLETE (EBSCO host), and ScienceDirect using the following
search criteria:

“Pseudomonas aeruginosa” [title/abstract] AND “aminoglycosides resistance” [ti-
tle/abstract]

“Pseudomonas aeruginosa” [title/abstract] AND “Quinolone resistance”[title/abstract].

Secondary more specific searches were also conducted using search criteria “Efflux pumps
OR Target mutations AND Pseudomonas aeruginosa”. All search results were analyzed to
extract variants and genes with function related to antibiotic resistance for the studied
antibiotic groups. A large set of data was generated. The correlations of these markers
were further tested in relation to antibiotic susceptibility and were prioritized based on
their diagnostic predictive values (data not shown here).

High-risk clones studied here included the most well-known and well-studied groups
as extracted by Oliver et al. (2015) [11] and relevant review articles. The final set of
the previously identified and prioritized antibiotic-resistance-related markers were then
explored for their correlation with the well-studied P. aeruginosa high-risk STs in order
to study their potential to explain the success of epidemic high-risk clones. Markers
that have been previously identified from the literature in relation to antibiotic resistance
and those novel ones are listed in Table 5. Chi-square test for independence (with Yates’
continuity correction) was used to compare groups. A p-value of < 0.05 was considered as
statistically significant.

The panel of previously tested ciprofloxacin and levofloxacin resistance molecular
markers was analyzed for possible correlation with high-risk clones. These markers in-
cluded mexZ, nalCS46A, nalCS209R, nalCG71E, gyrAT83I, gyrAD87N, parCS87W, parCS87L,
nalCE153Q, nalCThr50pro, mexS gene, nalD gene, nfxB gene, armR gene, parEV460G,
ampRD135N, ampRG283E, and ampRM288R.

For gentamycin and amikacin, the molecular markers tested included phoQY85F,
nuoGA890T, pstBE89Q, lptAT55A, lptAR62S, faoAT385A, arnAA170T, arnDG206C, mexRR79N,
mexRE70R, mexRL130T, mexRG97L, mexRL29D, mexZ, ampR gene, pmrBGly423Cys,
pmrALeu71Arg, fusA1D588G, gidBE186A, armR (PA3719), nalC gene, nalD, nalDser32Asn,
gidBQ28K, gidBE97Q, nalCE153Q, and ampRA51T.

http://guanine.evolbio.mpg.de/cgi-bin/lian/lian.cgi.pl/query
http://guanine.evolbio.mpg.de/cgi-bin/lian/lian.cgi.pl/query
http://www.comparingpartitions.info/
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Table 5. Markers tested for their correlation with high-risk clones.

Molecular Markers Previously Identified in
Relation to Antibiotic Resistance Newly Identified Molecular Markers

mexZ
nalCS46A
nalCS209R
nalCG71E
gyrAT83I

gyrAD87N
parCS87W
parCS87L

nalCE153Q
nalCThr50pro

mexS gene
mexSA175V
mexSE181D
nalD gene

nfxB
armR

parEV460G
ampRD135N

nalC
ampR

pmrBGly423Cys
pmrALeu71Arg
nalDser32Asn

ampRA51T
ampRG283E
ampRM288R

phoQY85F
nuoGA890T
pstBE89Q
lptAT55A
lptAR62S

faoAT385A
arnAA170T
arnDG206C
mexRR79N
mexRE70R
mexRL130T
mexRG97L
mexRL29D

fusA1D588G
gidBE186A
gidBQ28K
gidBE97Q

5. Conclusions

The findings from the current study point to the importance of membrane protein
variants and efflux pump regulators in the success of high-risk clones. The functional
modifications caused by these variants may give the clones their success in addition to
being related to resistance or virulence characteristics. Although inactivating enzymes were
not assessed in the current study, a new group of mutational variants in chromosomal genes
related to efflux pumps, efflux pump regulators, and membrane proteins showing strong
correlations in a large diverse set of sequences can support the assumption that horizontally
acquired elements, whether through plasmids or integrons, are not the sole underlying
molecular elements behind the success and spread of epidemic high-risk clones. Variants
identified from the current analysis can represent biologic markers showing increased
fitness and leading to the acquisition of specific adaptive or beneficial traits. These variants
may also represent an adaptation to chronic infections. However, this needs to be further
investigated by studying the variants’ biologic effect, which is beyond the objectives of
this work.

P. aeruginosa sub-lineages have been previously observed to show independent sig-
natures of adaptation that may result into distinct biologic activities [50] and this support
the assumption from the current study. Although not much information is available on
the mutation rate of high-risk P. aeruginosa clones, it has been suggested that the mutator
phenotypes observed in high-risk clones may play a role in the adaptability required for
the global success and dissemination of high-risk clones showing markers similar to those
observed in chronic infections [51–53]. This assumption can also be supported by findings
from the current analysis. Further evidence suggesting the independent acquisition of
adaptive characters is in the findings of mutational resistance arising independently across
distinct phylogenetic lineages and contributing to the mutation-driven evolution of the
P. aeruginosa population structure [54].
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In conclusion, armR, ampR, nalC, nalD, mexZ, mexS, gyrAT83I, gyrAD87N, nalCE153Q,
nalCS46A, parCS87W, parCS87L, ampRG283E ampRM288R, pmrALeu71Arg, pmrBGly423Cys,
nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A can all be
considered as molecular markers of high-risk behavior, while other markers including
lptAT55A, mexRR79N, mexRE70R, mexRL130T, mexRL29D, mexSA175V, mexSE181D, and
mexRG97L can indicate the absence of risky clones and, consequently, better prognosis.
Figure 9 shows a graphical summary of the main conclusions, representing the role of
different genes within the cell. Finding risk-associated markers during hospital molec-
ular surveillance or outbreak investigation necessitates applying more infection-control
precautions to prevent transmission of such risky clones.
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