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Abstract: Cancer cell lines are important tools for anticancer drug research and assessment. 
Impedance measurements can provide valuable information about cell viability in real time. This 
work presents the proof-of-concept development of a bioelectrical, impedance-based analysis 
technique applied to four adherent mammalian cancer cells lines immobilized in a three-
dimensional (3D) calcium alginate hydrogel matrix, thus mimicking in vivo tissue conditions. Cells 
were treated with cytostatic agent5-fluoruracil (5-FU). The cell lines used in this study were SK-N-
SH, HEK293, HeLa, and MCF-7. For each cell culture, three cell population densities were chosen 
(50,000, 100,000, and 200,000 cells/100 μL). The aim of this study was the extraction of mean 
impedance values at various frequencies for the assessment of the different behavior of various 
cancer cells when 5-FU was applied. For comparison purposes, impedance measurements were 
implemented on untreated immobilized cell lines. The results demonstrated not only the 
dependence of each cell line impedance value on the frequency, but also the relation of the 
impedance level to the cell population density for every individual cell line. By establishing a cell 
line-specific bioelectrical behavior, it is possible to obtain a unique fingerprint for each cancer cell 
line reaction to a selected anticancer agent. 

Keywords: cell immobilization; 3D-printed well; bioelectric profiling; impedance analysis; real-time 
measurements 

 

1. Introduction 

Cancer is the main cause of death in many countries, as it appears in different types, most 
commonly affecting women (e.g., cervical, breast, and lung adenocarcinoma cancers) [1,2]. In medical 
treatment, doctors take steps to anticipate the development of the disease (primary prophylaxis) or 
to minimize its further development (secondary prophylaxis) [3]. Considering secondary prophylaxis 
measures, sophisticated processes are required to detect possible cellular disorders at the very earliest 
stages of the disease’s incubation period, taking into account the dependence of the timeliness with 
which the disease is detected [4]. Due to the fact that many cancer diagnostic methods combined with 
radiological, surgical biopsy, and pathological assessments of tissue samples based on 
immunohistochemical and morphological characteristics [5] are time-consuming, invasive, and 
complicated, and require rigorous laboratory conditions, new cancer detection methods are being 
developed which are minimally invasive, more reliable, cheaper, and easier to use [6]. 
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Chemotherapy, newer immunotherapy, and targeted therapy constitute the various treatment 
strategies that have been proposed and modified in order to increase effectiveness and precision [7,8]. 
Although many approaches for cancer treatments have been developed successfully, sooner or later, 
resistance among the subgroups of cancer cells will emerge as a hurdle to the efficacy of most current 
therapeutic approaches [9]. One of the most commonly used drugs for cancer treatment is 5-
fluorouracil (5-FU). This compound is used in the treatment of many types of cancer, including breast 
cancer, colon cancer, skin cancer, etc., as it intercalates in nucleoside metabolism, leading to 
cytotoxicity and cell death [10]. 

Electrical impedance spectroscopy (EIS) is a technique that measures the electrical impedance of 
living cells in order to identify various cell types. This technique can be used for the successful 
separation of pathological cells from normal ones, taking into account the electrophysiological 
properties of cells based on the frequency range [11,12]. Cell electrical impedance can identify the 
physical, mechanical, and biochemical functions of living biological cells. EIS focuses on the analysis 
and discrimination of cancer cells, utilizing the fact that impedance measurements represent an 
effective approach for cell characterization based on the electrical responses over a particular 
frequency domain. As the impedance value of several tissue parameters (e.g., morphology, growth, 
and differentiation) vary with the frequency of the applied signal, an impedance analysis conducted 
over a wide frequency range provides more information about the tissue interiors, which helps us to 
better understand the biological tissues physiology, anatomy, and pathology [13]. For example, 
researchers have used the impedance technique to measure three dimensional cell cultures for four 
breast cell lines [14–16]. 

Recently, bioimpedance has been able to provide in-depth biological measurement analyses 
from the cell-level to DNA [17,18]. The evaluation of parameters such as cell adhesion, differentiation, 
spreading, morphology, growth, motility, and death for any adherent cell type is possible by 
monitoring the impedance changes at the contact point between the cells and electrodes [19]. In 
addition, bioimpedance research can nominate the pathological status of a single cell, and also be 
used to determine the occurrence of bacterial infections, toxicity, and changes of environmental 
parameters, and in the direct or indirect detection of compounds and other factors [20]. Critical 
changes in cellular behavior, such as the integrity of the extracellular membrane, morphology, as well 
as alterations in intracellular structure, significantly influence the corresponding impedance level 
which can be detected quickly and cost-effectively using electrodes [13,19]. Thus, impedance 
measurements can also be used in studying cell viability, which provides an alternative to slow and 
invasive traditional cytotoxicity assays [21]. 

Biomaterial research for drug development, cell culture, and tissue regeneration applications 
aims to mimic the natural extracellular matrix (ECM) in order to bridge the gap between in vivo and 
in vitro environments [22]. In the body, nearly all tissue cells are supported by an ECM that comprises 
a complex, three-dimensional (3D), fibrous mesh network of collagen and elastic fibers integrated 
into a high hydrated, gel-like material containing proteoglycans, glycosaminoglycans, and 
glycoproteins. This complex system is responsible for the triggering of various biochemical and 
physical signals [23]. In practice, most cell culture studies are carried out using cells cultured as two-
dimensional (2D) monolayers on hard plastic surfaces due to the convenience, ease, and high cell 
proliferation that these culture techniques provide. On the other hand, cell adaption to an artificial 
monolayer culture on an inflexible surface would lead to metabolic and functional alterations, 
resulting in behavior different from the in vivo environment [23]. Thus, research is focused on 
developing more controllable 3D cell culture matrices resembling, as much as possible, the in vivo 
conditions that are able to support cell growth, differentiation, and organization. Bearing in mind all 
the above, we can define 3D cell culture as the integration of cells into a hydrogel matrix in order to 
receive signals from the scaffold and surrounding cells [23,24]. This procedure initially necessitates a 
cellular suspension in a hydrogel precursor solution, and then entrapment through a gel initiation 
reaction that leads to the formation of covalently- or noncovalently-linked molecules [25,26]. 

A great number of synthetic and natural polymers can be used for cell entrapment gelled into 
hydrophilic matrices under mild conditions with minimal loss of viability [27]. The properties of the 
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gel, i.e., either hydrophobic either hydrophilic, and its porosity, can be regulated. The entrapment of 
cells constitutes one of the most widely used methods for living cell immobilization within spherical 
beads of calcium alginate. This method is considered successful due to the fact that immobilization 
is a simple, quick and cost-effective technique, and is usually performed under very mild conditions 
[28]. 

Three-dimensional (3D) printing is a cheap additive layer manufacturing technology that is able 
to create sophisticated and complex-shaped bodies in a short time, especially for rapid prototyping 
engineering applications [29–31]. In many cases, 3D printing technology uses polymers, depending 
on the specific characteristics that are required for the microfabricated devices (e.g., polycarbonate 
(PC), PLA, nylon, polymethyl methacrylate (PMMA), polystyrene, and polyethylene terephthalate 
glycol (PETG)) [32–35]. Depending on the area of interest, 3D printing technology is increasing 
rapidly and is extensively used in many fields, such as bio-printing, medical devices, the automotive 
industry, soft sensors and actuators, space, art and jewelry, education, and tissue printing [36,37]. 
PETG constitutes a copolymer known for its biocompatibility, chemical resistance, recyclability, and 
transparency [38]. It can be used in different applications in the food and medical industry, with an 
acceptable flammability rating [39]. Unfortunately, it presents low resistance to ultraviolet (UV) light 
and performs weakly against frictional contact and scratching. 

The aim of this study is to develop a proof-of-concept bioelectrical profiling assay to study the 
reaction of various cancer cell lines exposed to a common anticancer drug as a function of the cell 
population density. For comparison purposes, bioelectrical impedance-based measurements were 
taken on both untreated immobilized cells and on cells treated with 5-FU. Thus, two gold-plated (Au) 
electrodes were embedded in a 3D-printed PETG well for impedance measurements on four cancer 
cell lines (SK-N-SH, HEK293, HeLa and MCF-7) immobilized in calcium alginate matrix. Cell cultures 
were realized in three population densities tested with various frequencies. In this way, a more 
detailed application of the bioelectrical analysis on an in vitro system for monitoring different 
responses between various cancer cells (control and treated with 5-FU) was possible. 

2. Materials and Methods 

2.1. Theory 

Bioimpedance, as a passive electrical property, is described as the capability of biological tissue 
to impede electric current. Bioimpedance measurements detect the response to electrical activity 
(potential or current). Bioimpedance is a complex quantity, mainly determined by the resistance (R) 
of the total amount of body water and by the capacitance of the cell membrane [40]. Electrical 
Impedance (Z) is defined by the ratio of the voltage (V) to the current (I), and is quite similar to 
resistance. The basic difference is that impedance extends to the frequency domain, and thus, is used 
in AC circuits, while resistance mainly refers to DC applications. The equation for the calculation of 
electrical impedance is: 

Z = V/I (1) 

The determination of electrical impedance requires not only the application of an alternating 
current across a biological tissue, but also the measurement of the consequential differential voltage 
of the tissue sample, described in the following equations: 

I(ω) = Ι0· cos(ωt + θ)  (2) 

V(ω) = V0· sin(ωt + ψ)  (3) 

where I0 and V0 represent the amplitude θ and ψ the phase of the current and voltage signal, 
respectively. Taking into account that both I0 and V0 are calculated at the same angular frequency, 
i.e., ω = 2πf, electrical impedance can be described as Z(ω) = (V(ω))/(I(ω)) [41]. The expression of Z 
(Equation (1)) as a complex function can be used either as the modulus of the absolute value and the 
phase shift, or as the real part, R, representing resistance, and the imaginary part, X, representing 
capacitance and inductance, respectively [42]. In the case of direct current (DC) application, the 
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imaginary part would be zero. The inverse of the impedance is called admittance (Y) and describes 
the current flow. Impedance and admittance constitute AC parameters, and both are frequency 
dependent. The EIS measurement procedure involves the characterization of the complex impedance 
over a wide range of frequencies, as shown in Equation (3): 

Z(ω) = |Z|(cos φ + j sin φ) = R + j X  (4) 

2.2. Cell Culture 

SK-N-SH neuroblastoma cells (ATCC® HTB-11™) were cultured under standard conditions (37 
°C, 5% CO2) in 90% Minimum Essential Medium (MEM) (Eagle) with Earle’s balanced salt solution 
(BSS) (Biowest, Nuaillé, France) and fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, 
MA, USA) to a final concentration of 10%, 2 mM l-glutamine, 1.5 g/L sodium bicarbonate, 0.1 mM 
non-essential amino acids, 1 U μg−1 antibiotics (penicillin/streptomycin), and 1.0 mM sodium 
pyruvate (Biowest, Nuaillé, France). HEK293 (ATCC® CRL-1573™), HeLa (ATCC® CRM-CCL-2™) 
and MCF-7 (ATCC® HTB-22™) cell lines were grown in Dulbecco’s Modified Eagle Medium 
(Biochrom Gmbh, Berlin, Germany), supplemented with 10% Fetal Bovine Serum (Thermo Fisher 
Scientific, Waltham, MA, USA), 2 mM l-glutamine, 0.5 mM sodium pyruvate, and 1% Penicillin-
Streptomycin (Biowest, Nuaillé, France) in T-75 flasks (Sarstedt AG & Co. KG, Nümbrecht, 
Germany). Subcultivation was done in a 1:10 ratio. Cells were detached from culture flasks by 
treatment with trypsin-EDTA for 3–10 min. After detachment, they were resuspended in the culture 
medium to inactivate any remaining trypsin activity. After centrifugation for 5 min (1000 rpm), they 
were resuspended in the medium at concentrations of 106, 2 × 106, and 4 × 106 cells/mL. 

2.3. Cells Preparation/Immobilization 

Cell immobilization was performed in calcium alginate as an immobilization matrix. Briefly, 
sodium alginate in 1.5% concentration, sterilized by autoclave (121 °C, 20 min), was mixed with 5 × 
104, 105, and 2 × 105 cells to a 0.75% final concentration and poured together in the well. Then, a 1% 
CaCl2 gelling solution was added for 10 s for cross-linking, and washed with phosphate buffered 
saline (PBS). After washing, the calcium alginate scaffolds with the cells were incubated in the culture 
medium. The next day, the culture medium was removed and replaced with 1% FBS medium and 
1% FBS with different concentrations 5-FU (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). 

2.4. Cell Viability Assay 

Cell viability was evaluated by a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT) colorimetric assay [43] with 5-FU as the positive control. The concentration of 5-FU for each 
cell line, indicated in Table 1, was selected based on previously published data [44–48]. These 
concentrations gave at least 30% inhibition in cell proliferation after 24 h incubation. The next day, 
the cells were treated with 0.5 mg/mL MTT (Duchefa Biochemie, Haarlem, The Netherlands) and 
incubated with dye for 3 h. After incubation, the medium was removed and the cell containing 
alginate scaffolds were solubilized with 0.1 M ethylenediaminetetraacetic acid per well. Cell 
morphology observations were performed with an inverted microscope (ZEISS Axio Vert.A1, Carl 
Zeiss Microscopy, LLC, White Plains, NY, USA), and pictures were processed using the ZEN lite 
software. The optical absorbance was measured with a PowerWave240 plate reader (BioTek, 
Winooski, VT, USA) at 560 nm. The experiment was repeated independently three times for each 
treatment, and the mean results were expressed as the average OD for each treatment. All values 
were presented as means ± SD, and significance testing in the comparisons was based on Student’s 
T-tests for pairs, as they did not follow a normal distribution. The Student’s T-test gives the 
probability that the difference between the two means is caused by chance. p values < 0.05 were 
considered to be statistically significant. 
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Table 1. 5-FU concentrations added to each cell culture. 

 SK-N-SH  HEK293 HeLa MCF-7 
5-FU concentration (μΜ) 7.5 20 150 150 

2.5. Experimental Setup 

In order to perform the bioelectrical measurements, a specifically designed electrode-based 
system was fabricated. Figure 1a illustrates the experimental setup of the system used for the 
measurement procedure. More specifically, two gold-coated (Au) electrodes were placed vertically 
into a custom-made, transparent, 3D-printed PETG well that was designed to be used as a cell 
cultivation vessel. The application of 3D printing technology to the assembly of culture systems can 
provide an appropriate environment for cell growth which is able to mimic physiological and realistic 
cell phenotypes [49]. The well model was designed using the 123D Design software (Autodesk, San 
Rafael, CA, USA). A Cel Robox 3D printer device was utilized for the printing procedure, applying 
the fused deposition modeling technique (FDM). By this method, the filament that passes through 
the heated print head is laid on a construction platform in a layer-by-layer fashion until the object’s 
form is complete [50]. The nozzle diameter of the print head was 0.4 mm and the printing temperature 
for PETG was 190 °C [38]. The PETG filament was obtained by the Formfutura BV (Nijmegen, The 
Netherlands); the filament diameter was 1.75 ± 0.05 mm. After the printing process, the wells were 
sterilized with 70% (v/v) ethanol for 10 min, and then dried for 2 h under a sterile hood. The electrodes 
were connected to the handheld LCR meter U1733C (Figure 1b) from Keysight Technologies (Santa 
Rosa, CA, USA); the instrument is able to measure at three frequencies (1 KHz, 10 KHz, and 100 KHz) 
for the direct extraction of impedance magnitude of the sample tested. For impedance measurements, 
a voltage of 0.74 Vrms ± 50 mVrms was applied via the two terminals to the gold-coated electrodes. The 
best sampling rate of the instrument was 1 Hz (one measurement per sec); each measurement lasted 
one minute; thus, the total values obtained for each run were 60, with a measurement frequency of 1 
Hz. All data were normalized values, presented as the mean of the absolute (ABS) value of the control 
(plain cell culture medium) minus the absolute value of cells, for both cases (treated or untreated with 
5-FU ± SD), as shown in Equation (5). Significance testing in comparisons was based on Student’s T-
tests for pairs, and p values < 0.05 were considered to be statistically significant. 

Normalized value = mean (|control-cell value|)  (5) 

  
(a) (b) 

Figure 1. Experimental setup. (a) Representation of the cell chamber filled with 3D cell immobilization 
matrix; (b) Connection of the LCR meter to the 3D printed well. 

3. Results 

In this study, we evaluated the applicability of impedance measurements for the bioelectric 
profiling of different cancer cell types treated with substance-selected anticancer agents. More 
specifically, four cancer cell lines were immobilized in calcium alginate and cultured in different cell 
population densities (50,000, 100,000, and 200,000/100 μL). Then, 5-fluorouracil (5-FU) was applied, 
as it constitutes one of the most common cancer therapeutic drugs. In each case, three frequencies 
were tested: 1 KHz, 10 KHz, and 100 KHz. 
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3.1. Cell Proliferation 

In order to ensure that calcium alginate was a proper immobilization matrix for the cancer cell 
culture, we assessed cellular viability with the MTT uptake assay. Cells were cultured in the matrix 
for 24 h (with and without treatment with 5-FU), and the proliferation was determined 
microscopically and photometrically after MTT application. Figures 2–5 depict the microscopic 
observations for three different populations of the four cell lines immobilized in calcium alginate 
after incubation with MTT. 

 
Figure 2. Panoramic view of SK-N-SH immobilized cells in 3D matrix after treatment with MTT for 
24 h, showing the viability in three different population densities: (a) 50,000 cells; (b) 100,000 cells; 
and (c) 200,000 cells. Scale bars = 50 μm. 

 
Figure 3. Panoramic view of HEK293 immobilized cells in 3D matrix after treatment with MTT for 24 
h showing the viability in three different population densities: (a) 50,000 cells; (b) 100,000 cells; and 
(c) 200,000 cells. Scale bars = 50 μm. 

 
Figure 4. Panoramic view of HeLa immobilized cells in 3D matrix after treatment with MTT for 24 h 
showing the viability in three different population densities: (a) 50,000 cells; (b) 100,000 cells; and (c) 
200,000 cells/100 μL. Scale bars = 50 μm. 
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Figure 5. Panoramic view of MCF-7 immobilized cells in 3D matrix after treatment with MTT for 24 
h showing the viability in three different population densities: (a) 50,000 cells; (b) 100,000 cells; and 
(c) 200,000 cells/100 μL. Scale bars = 50 μm. 

Viable cells were dyed purple using the yellow formazan (MTT) by intracellular NAD(P)H-
oxidoreductases [43]. We can see that cellular proliferation is affected neither by the immobilization 
matrix, nor by the increase in the cell population density. Contrary to this observation, the results 
from the photometric MTT determination presented in Figures 6–9 showed an increase in the 
absorbance as cell number population densities increase, whereas the addition of 5-FU led to a 
significant reduction in cell viability (see Table 2) in almost all cell lines. Cell population alterations 
in the neuroblastoma SK-N-SH cell line (see Figure 6) appear to have a limited impact in MTT 
absorbance for both cell cases, i.e., treated with 5-FU and untreated. On the other hand, in the case of 
the remaining cell lines (Figures 7–9), we observed an increase in absorbance proportional to the cell 
number. 

(a) (b) 

Figure 6. Cellular viability of SK-N-SH cells immobilized in 3D matrix after treatment with MTT for 
24 h showing the viability in three different population densities (50,000, 100,000, and 200,000 cells/100 
μL) ± STD: (a) untreated cells (control); (b) cells treated with 5-FU. ## < 0.01 significantly different 
from 100,000 cells/100 μL. 

 
(a) (b) 

Figure 7. Cellular viability of HEK293 cells immobilized in 3D matrix after treatment with MTT for 
24 h showing the viability in three different population densities (50,000, 100,000, and 200,000 cells/100 
μL) ± STD: (a) untreated cells (control); (b) cells treated with 5-FU. * < 0.05 significantly different from 
50,000 cells, ## < 0.01 significantly different from 100,000 cells/100 μL. 
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(a) (b) 

Figure 8. Cellular viability of HeLa cells immobilized in 3D matrix after treatment with MTT for 24 h 
showing the viability in three different population densities (50,000, 100,000, and 200,000 cells/100 μL) 
± STD: (a) untreated cells (control); (b) cells treated with 5-FU. * < 0.05, ** < 0.01 significantly different 
from 50,000 cells, # < 0.05, ### < 0.001 significantly different from 100,000 cells/100 μL. 

 
(a) (b) 

Figure 9. Cellular viability of MCF-7 cells immobilized in 3D matrix after treatment with MTT for 24 
h showing the viability in three different population densities (50,000, 100,000, and 200,000 cells/100 
μL) ± STD: (a) untreated cells (control); (b) cells treated with 5-FU. * < 0.05, ** < 0.01, *** < 0.001 
significantly different from 50,000 cells. 

Table 2. Significant differences (Student’s T-test) between cell populations before and after treatment 
with 5-FU. **< 0.01, *** < 0.001. 

 50,000 Cells 100,000 Cells 200,000 Cells 
SK-N-SH  - ** - 
HEK293 - ** - 

HeLa - *** - 
MCF-7  - - - 

For further analysis, all cell line combinations were compared using a Student’s T-test in each 
population density, with or without the addition of 5-FU. As shown in Table 3, in the 50,000 cell/100 
μL population density, treatment with 5-FU did not significantly affect MTT uptake. However, it 
seems that the other two population densities contributed to differential viability results, i.e., with or 
without treatment with 5-FU. 
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Table 3. Significant differences (Student’s T-test) in cell viability between different cell lines X cell 
population densities before and after treatment with 5-FU. * < 0.05, **< 0.01, *** < 0.001. 

 Cells Cells Treated with 5-FU 
 50,000 Cells 100,000 Cells 200,000 Cells 50,000 Cells 100,000 Cells 200,000 Cells 

SK-N-SH–HEK293 - - * - - * 
SK-N-SH–HeLa - - ** - - - 

SK-N-SH–MCF-7 - * *** - *** * 
HEK293–HeLa - * - - ** * 

HEK293–MCF-7 - * - - ** - 
HeLa–MCF-7 - ** * - ** * 

3.2. Comparative Bioelectrical Profiling Results among Different Immobilized Cell Lines 

This experimental approach refers to the analysis of bioelectrical impedance-based 
measurements on various cancer cell types in different population densities. Calcium alginate was 
once again chosen as the 3D immobilization matrix used for each cancer cell culture. Figures 10–13 
depict the absolute values of the differences between the mean blank values and the mean impedance 
values for three population densities tested for each cell line chosen in three different frequencies (1 
KHz, 10 KHz, and 100 KHz). 

 
(a) (b) (c) 

Figure 10. Normalized values of the mean impedance magnitude for untreated (control) immobilized 
SK-N-SH cancer cell lines tested at three frequencies (1 KHz, 10 KHz, 100 KHz) for three different 
population densities ± STD: (a) 50,000 cells; (b) 100,000 cells and (c) 200,000 cells/100 μL. 

 
(a) (b) (c) 

Figure 11. Normalized values of the mean impedance magnitude for untreated (control) immobilized 
HEK293 cancer cell lines tested at three frequencies (1 KHz, 10 KHz, 100 KHz) for three different 
population densities ± STD: (a) 50,000 cells; (b) 100,000 cells and (c) 200,000 cells/100 μL. 
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(a) (b) (c) 

Figure 12. Normalized values of the mean impedance magnitude for untreated (control) immobilized 
HeLa cancer cell lines tested at three frequencies (1 KHz, 10 KHz, 100 KHz) for three different 
population densities ± STD: (a) 50,000 cells; (b) 100,000 cells and (c) 200,000 cells/100 μL. 

 
(a) (b) (c) 

Figure 13. Normalized values of the mean impedance magnitude for untreated (control) immobilized 
MCF-7 cancer cell lines tested at three frequencies (1 KHz, 10 KHz, 100 KHz) for three different 
population densities: (a) 50,000 cells; (b) 100,000 cells and (c) 200,000 cells/100 μL. 

As indicated by many studies, and also in our case, a frequency-dependent impedance response 
is observed. Each cell line x population density combination corresponds to a different pattern in the 
impedance magnitude measured in each frequency. Thus, in neuroblastoma SK-N-SH cells (see 
Figure 10), we can observe that the normalized impedance value drops when we move from 50,000 
to 100,000 cells, and then increases at 200,000 cells/100 μL at each frequency. A similar pattern is 
observed in the case of HEK293 cells, but as shown in Figure 11, at 200,000 cells/100 μL population 
density, the impedance value is higher than the respective impedance in 50,000 cells. However, HeLa 
and MCF-7 cell cultures (Figures 12 and 13) appear to have a totally different behavior. More 
specifically, at a lower frequency (1 KHz), HeLa cells initially demonstrated a high impedance value 
(54, 23 Ohm), and as population density increased, a dramatic decrease was observed (1, 60 Ohm). In 
contrast, MCF-7 cells demonstrated the opposite trend, starting with 66, 72 Ohm at 50,000 cells and 
ending up at 79, 23 Ohm at 200,000 cells/100 μL. Furthermore, at the other two frequencies, we 
observed differential fluctuations for both cell lines. In other words, each cell line x population 
density combination was characterized by its own unique impedance behavior fingerprint. 

3.3. Comparative Bioelectrical Profiling Results among Different Immobilized Cell Lines Treated with 5-FU 

At this experimental stage, the evaluation of 5-FU applied to the previous immobilized cancer 
cell cultures was implemented to investigate the effects of this widely-used anticancer medicine 



Biosensors 2019, 9, 136 11 of 18 

through impedance measurements at specific frequencies. Figures 14–17 depict the normalized 
impedance values after the subtraction of the mean blank values from the mean impedance values in 
three population densities tested for each cell line chosen in three different frequencies, with (yellow 
bars) or without (blue bars) 5-FU. The statistical significances after pair comparisons for all 
combinations of the cell populations are represented in Tables 4–7. 

When the anticancer agent 5-fluorouracil was applied for 24 h, we observed that in most cases 
(18 out of 27), 5-FU treatment gave higher impedance normalized values in comparison to cells with 
no treatment. The SK-N-SH cell line (see Figure 14) followed mostly the opposite pattern when 5-FU 
was applied compared to the rest of the cell lines, especially at a frequency of 1 KHz. In the case of 
200,000 cells/100 μL population density, the cell impedance magnitude followed a downward trend, 
as opposed to cells under 5-FU exposure, that gave higher values in the frequency range of 1–100 
KHz. 

(a) (b) (c) 

Figure 14. Normalized values of the mean impedance magnitude for control immobilized SK-N-SH 
cells (blue bars) and immobilized SK-N-SH cells treated with 5-FU (yellow bars), tested at three 
different cell population densities ± STD: (a) 50,000; (b) 100,000 and (c) 200,000/100 μL for three 
different frequencies (1 KHz, 10 KHz, and 100 KHz). 

Table 4. Significant differences (Student’s T-test) between population densities for the SK-N-SH cell 
line before and after treatment with 5-FU. **< 0.01, *** < 0.001. 

 Cells Cells Treated with 5-FU 
 1 KHz 10 KHz 100 KHz 1 KHz 10 KHz 100 KHz 

50,000–100,000 *** *** ** ** *** *** 
50,000–200,000 - *** - *** *** *** 
100,000–200,000 *** *** - *** ** *** 

Figure 15 summarizes the results for the HEK293 cell line. Similar to the aforementioned 
observations, impedance significantly dropped with an increase in frequency in all population 
densities, and treatment with 5-FU led to higher normalized values (see Table 5). An exception can 
be observed at the frequencies of 10 KHz and 100 KHz in 50,000 cell population density, and also at 
the frequency of 10 KHz in 200,000 cells/100 μL population density, where the values obtained from 
control cells were higher than the respective values with 5-FU. 
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(a) (b) (c) 

Figure 15. Normalized values of the mean impedance magnitude for control immobilized ΗΕΚ293 
cells (blue bars) and immobilized ΗΕΚ293 cells treated with 5-FU (yellow bars), tested at three 
different cell population densities ± STD: (a) 50,000; (b) 100,000 and (c) 200,000/100 μL for three 
different frequencies (1 KHz, 10 KHz, and 100 KHz). 

Table 5. Significant differences (Student’s T-test) between population densities for HEK293 cell line 
before and after treatment with 5-FU. * < 0.05, **< 0.01, *** < 0.001. 

 Cells Cells Treated with 5-FU 
 1 KHz 10 KHz 100 KHz 1 KHz 10 KHz 100 KHz 

50,000–100,000 *** *** ** *** *** ** 
50,000–200,000 *** *** * *** - ** 
100,000–200,000 *** *** *** *** * ** 

As depicted in Figure 16, HeLa cells treated with 5-FU follow a frequency-dependent, 
downward motif for every population density. On the other hand, untreated cells do not show the 
same pattern, since a downward trend is observed at 50,000 cells/100 μL, followed by an upward 
tendency at 200,000 cells/100 μL, and general non-linear behavior at 100,000 cells/100 μL. Once again, 
in almost all cases, the response of the cells treated with 5-FU is significantly higher in comparison 
with control cells (Table 6). The only exception is observed in 50,000 and 200,000 cells/100 μL 
population densities at 100 KHz. The latter frequency gave low impedance values for both the treated 
and untreated cell populations. 

 
(a) (b) (c) 

Figure 16. Normalized values of the mean impedance magnitude for control immobilized HeLa cells 
(blue bars) and immobilized HeLa cells treated with 5-FU (yellow bars), tested at three different cell 
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population densities ± STD: (a) 50,000; (b) 100,000 and (c) 200,000/100 μL for three different 
frequencies (1 KHz, 10 KHz, and 100 KHz). 

Table 6. Significant differences (Student’s T-test) between population densities for HeLa cell line 
before and after treatment with 5-FU. * < 0.05, **< 0.01, *** < 0.001. 

 Cells Cells Treated with 5-FU 
 1 KHz 10 KHz 100 KHz 1 KHz 10 KHz 100 KHz 

50,000–100,000 *** *** * *** *** ** 
50,000–200,000 *** ** *** - *** *** 
100,000–200,000 * *** *** *** *** *** 

In the MCF-7 cell line (Figure 17), we observed particularly high impedance values when 5-FU 
was applied for every population density tested when compared with untreated cells, especially at a 
frequency of 1 KHz. These values significantly increased with population density at the same 
frequency (Table 7). The impedance values of cells not treated with 5-FU depicted low variations 
between different cell population densities. A general observation is that as frequency magnitude 
increases, the normalized impedance values decrease. 

 
(a) (b) (c) 

Figure 17. Normalized values of the mean impedance magnitude for control immobilized MCF-7 cells 
(blue bars) and immobilized MCF-7 cells treated with 5-FU (yellow bars), tested at three different cell 
population densities ± STD: (a) 50,000; (b) 100,000 and (c) 200,000/100 μL for three different 
frequencies (1 KHz, 10 KHz, and 100 KHz). 

Table 7. Significant differences (Student’s T-test) between population densities for MCF-7 cell line 
before and after treatment with 5-FU. * < 0.05, **< 0.01, *** < 0.001. 

 Cells Cells Treated with 5-FU 
 1 KHz 10 KHz 100 KHz 1 KHz 10 KHz 100 KHz 

50,000–100,000 - *** ** *** *** *** 
50,000–200,000 ** *** *** *** *** *** 
100,000–200,000 * *** * *** *** ** 

4. Discussion 

Up to now, the development of cancer diagnostics was primarily controlled by direct tumor 
tissue biopsies for either pathologic and/or histologic analyses. Novel advanced molecular biology 
techniques such as next-generation DNA sequencing and genomics bioinformatics analysis represent 
examples of the transition from traditional microscopy of tissue samples to molecular genomics for 
cancer diagnosis. In combination with remarkable advances in drug development and efficiency, 
these exciting new trends have contributed to the transition to the era of personalized cancer 
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diagnosis and therapy. Therefore, these advances in cancer management and treatment have 
incentivized the pursuit of avant-garde, non-invasive approaches for accurate detection and 
monitoring. 

For this purpose, in this study, we investigated the differences between the electrical properties 
of different in vitro 3D cancer cell cultures such as cervical, breast, and kidney tumor models via 
impedance evaluation at various frequencies. In general, several variances are observed in cell 
activities such as morphology, proliferation, and gene and protein expression due to the additional 
dimensionality of 3D culture, compared to the 2D planar culture [51]. Hydrogels such as alginate 
(SA), collagen (COL), fibrin, and agarose (AG) have attracted the most attention as promising 
matrices for bioinks because of their innate biocompatibility, low cytotoxicity, and high water 
content, mimicking natural ECM [52–54]. SA, which offers fast gelling in the presence of Ca2+ or other 
divalent cations, was frequently used as a bioink for cells to be easily and quickly encapsulated, and 
for interlayer adhesion during the layer-by-layer printing process [55–57]. Studies have indicated that 
alginate and agarose bioinks support the development of hyaline-like cartilage tissues, whereas 
GelMA- and PEGMA-based bioinks favor the development of fibrocartilaginous tissues [58,59]. The 
main disadvantage of chitosan is that it provides poor mechanical integrity to the tissue, making the 
3D bioprinted structures brittle and delicate. Finally, the major pitfall with fibrin use is the fast and 
irreversible gelation at body temperature, which makes its bioprinting difficult [60]. 

An optical inverted microscope was used for the observation of the differences in cell 
morphology between the four different cell lines after conducting the MTT colorimetric assay [43]. 
Similar observations were reported for studies on epithelial cancer cells in 3D culture [61–63]. Our 
results indicated that the immobilization matrix did not affect cell viability. Furthermore, the 
photometric MTT determination revealed an increase in cellular proliferation relative to the cell 
population density. On the other hand, when the anticancer agent 5-fluorouracil (5-FU) was added 
to the cell medium, viability was significantly reduced, suggesting that the 3D immobilization matrix 
does not influence the influx of the compound in the alginate hydrogel. 

After completing the biochemical cytotoxic assays, a bioelectrical analysis by means of 
impedance measurements was performed on each cancer cell line coupled with its corresponding 
electrodes in the 3D alginate matrix. The measurement protocol was divided into two cases, based 
on different aspects of the cell cultures we wanted to investigate. In the first stage, impedance 
measurements were recorded for different population densities (50,000, 100,000, and 200,000 cells/100 
ul) of the aforementioned cell lines in 3D cultures in plain medium. In the second step, the respective 
measurements were evaluated for 3D cultures after 24 h application of the anticancer compound, 5-
FU. 

We used the resulting characteristic features to determine contrasts between distinctive cell 
types by means of normalized impedance magnitudes. The method has been particularly effective in 
discriminating not only cells of different tissue origin, but also the cytotoxic impact of the anticancer 
compound. 

The method can provide useful information as the assay provides information about the 
response of cells in specific frequency values, giving us the opportunity to utilize it as a putative 
cancer diagnostic technique. For further research, this methodology could efficiently be expanded to 
additional cell lines, i.e., cancerous or normal ones. Similar studies have been conducted on skin [64], 
breast [65], esophagus [66], and cervical cancer cells [6]. 

The discrimination method in this study describes a measurement procedure and data 
processing which is quite easy to handle, although its application for cancer diagnoses or assessments 
of efficient chemotherapy treatment would require samples that can, in reality, be obtained only by 
invasive means. Nevertheless, in most cases a definite diagnosis of a malignant tumor depends upon 
assaying a real tissue sample. That said, the results of the present study demonstrate that even a small 
number of cells (obtainable through, e.g., liquid biopsy) could be bioelectrically profiled in order to 
determine their behavior with respect to their susceptibility to selected anticancer agents. While this 
has not been investigated in the framework of this study, it may be possible to achieve an even higher 
sensitivity in terms of detecting a low number of cells (i.e., much fewer than 50,000/mL, in the order 
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of a few hundreds or thousands), especially if a considerably wider range of impedance frequencies 
is used (see also below). 

Specific frequency values in the range of 1 KHz–100 KHz were selected to study the electrical 
properties of the different cell types. Particularly high impedance normalized values were observed 
at 1 KHz for both treatments, with or without 5-FU, in almost all cell types. At this frequency value, 
the contribution of cell structure becomes relevant, as the cell-hydrogel interface is influenced by the 
properties of either the plain cell culture medium and/or the anticancer drug. Hence, cell structure 
might play an important role in detection sensitivity. For cancerous tissues, a decrease of impedance 
at frequencies higher than 1 kHz was observed, while in the frequency level up to approximately 100 
KHz, these changes were not visible [67]. In addition, it has been reported that the impedance of 
abnormal tissues, such as breast cancer tissue [68], has lower values compared to those for healthy 
tissues [69]. 

Moreover, supplementary investigations could evaluate the prospect of performing a 
complementary assay on in vivo samples. Our consideration focuses on the fact that these results can 
begin to highlight the diversities in the electrical behavior of normal and cancerous 3D cell cultures 
during the whole measurement procedure. The assessment of more heterogeneous models with 
additional characteristic features, such as resistance or capacitance, could help the enhancement of 
the system’s resolution capacity. Although our methodology has succeeded in effectively 
determining various cancer cell types, our next goal is to adjust it to specify the existence of cancer 
cells in cocultures with normal ones in a single well containing a set of suitably-placed electrodes. 

5. Conclusions 

In this study, we present the proof-of-concept development of a complementary, non-invasive 
cell analysis method to assess the responses of 3D cultured cancer cell lines derived from various 
tissues following treatment with cytotoxic concentrations of the well-studied anticancer compound, 
5-FU, using bioelectricalal evaluation. A key-feature of the cell-based bioelectrical sensor was the 3D 
printing of a PETG well, assembled with two gold-coated electrodes, perpendicularly wall-mounted 
at the bottom, allowing for impedance measurements. The evaluation of our cell bio-system 
configuration showed good efficacy towards different cell type determination with adequate 
sensitivity. In order to obtain higher levels of selectivity, and sensitivity based on very low cell 
populations (up to single-cell analysis), it is necessary to fabricate a different electrode configuration 
(e.g., screen-printed) which is suitable for single-cell impedance spectroscopy [70–72]. As a next step, 
we plan to conduct more detailed impedance spectral analyses by using a considerably wider 
continuous frequency range, rather than the discrete values that were used in the present approach, 
as well as to investigate the effect of different cell immobilization agents on the bioelectric profiling 
process. 
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