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Abstract: Stroke represents a major health problem in our society. One of the effects of stroke is foot
drop. Foot drop (FD) is a weakness that occurs in specific muscles in the ankle and foot such as
the anterior tibialis, gastrocnemius, plantaris and soleus muscles. Foot flexion and extension are
normally generated by lower motor neurons (LMN). The affected muscles impact the ankle and
foot in both downward and upward motions. One possible solution for FD is to investigate the
movement based on the bio signal (myoelectric signal) of the muscles. Bio signal control systems
like electromyography (EMG) are used for rehabilitation devices that include foot drop. One of these
systems is function electrical stimulation (FES). This paper proposes new methods and algorithms
to develop the performance of myoelectric pattern recognition (M-PR), to improve automated
rehabilitation devices, to test these methodologies in offline and real-time experimental datasets.
Label classifying is a predictive data mining application with multiple applications in the world,
including automatic labeling of resources such as videos, music, images and texts. We combine
the label classification method with the self-advised support vector machine (SA-SVM) to create an
adapted and altered label classification method, named the label self-advised support vector machine
(LSA-SVM). For the experimental data, we collected data from foot drop patients using the sEMG
device, in the Metro Rehabilitation Hospital in Sydney, Australia using Ethical Approval (UTS HREC
NO. ETH15-0152). The experimental results for the EMG dataset and benchmark datasets exhibit
its benefits. Furthermore, the experimental results on UCI datasets indicate that LSA-SVM achieves
the best performance when working together with SA-SVM and SVM. This paper describes the
state-of-the-art procedures for M-PR and studies all the conceivable structures.

Keywords: foot drop; Support Vector Machine; electromyography; label classification;
rehabilitation devices

1. Introduction

Stroke represents a major health problem in today’s society. One of the consequences of stroke is
foot drop. Foot drop is a weakness that appears in specific muscles in the ankle and foot such as: the
anterior tibialis (AT), gastrocnemius (Gas.), plantaris and soleus muscles. Foot flexion and extension
are normally generated by lower motor neuron (LMN). Lesions in the lower motor neuron (LMN)
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will cause foot drop. Foot drop manifests in 52% to 67% of patients with spinal upper motor neuron
(UMN) [1]. Foot Drop (FD) is a common disorder without specifying to age and affects around 1%
of women and 2.8% of men [2]. Bio signal control systems like electromyography (EMG) are used
devices that target leg rehabilitation. These devices target various leg impairments, including foot drop.
Electromyography (EMG), which records myoelectric signals from muscle activity, has been widely
used to detect the user’s intended action [3]. The EMG electrodes are placed in the subject’s limb,
either in an invasive or non-invasive way. A wide range of people prefer not to implant electrodes
inside the body and instead prefer to use a surface EMG (sEMG). However, the sEMG has numerous
disadvantages such as crosstalk from other muscles and robustness. Furthermore, it is hard to acquire
a myoelectric signal from deeper muscles, so it is difficult to deal with myoelectric signal processing
using EMG. Myoelectric pattern recognition (M-PR) methods can also be applied to artificial intelligent
applications. This system contains multiple steps—first the sEMG data is filtered from the noisy
signal, then it is applied to extract and reduce features, to minimize the large sample data. In addition,
methodologies such as support vector machine (SVM), cSA-SVM, vSA-SVM and label classifications
are studied in this paper. One of the popular machine learning methodologies is the support vector
machine (SVM) method, which is used to classify data. Vapnik [3,4] proposed the support vector
machine as an influential classification method, various forms of SVM were presented in the literature
and applied in several different applications. SVM categorizes class problems into two; classes and
multi-classes. The SVM method gives an ideal decision for the formation of a boundary between two
or multiple classes. The margin created, separates the classes and the decision boundary is maximized.
To theorize the binary classification by a training set of N samples, a vector for the input data should be
considered, which depends on the ith sample. This is labeled related to its class. The purpose of SVM
is to separate the binary labeled training data within the hyperplane that has a maximum distance
from them. This is called a maximum margin hyperplane [3,5]. The standard SVM disregards the train
data that is not separated linearly by the kernels through the training stage, which occurs during the
outline of the tolerance parameters in the impartial function and restrictions. For this reason, it will
be classified incorrectly if the data are similar or match the misclassified data that appears in the test
set. This happens when the data that are close to the misclassified data are unspecified. This results
in a misclassification that is not sensible and not controlled [6]. A non-repeating, self-advising
method for SVM was adapted [7], which extracts consequent knowledge from the training phase
without the addition of extra parameters. The misclassified data is supplied from two prospective
sources. First, from outliers and second, from the data that has not been separated correctly [8].
Many researchers have adapted versions of SVM with the goal of raising the classification efficiency
and performance for some applications. Use of label classification on experienced knowledge is one
of the methods that has been used without increasing the cost since there is no addition of an extra
parameter. For example, they proposed novel methodologies for texture analysis to improve the
single-label classification of facial features [9,10]. Masood, A. et al. [6] suggested to enhance label
classification with class classification techniques. In addition, they dealt with the problem of limited
labeled data available, especially for histopathological images. They proposed a novel learning model,
created on a deep belief neural network and semi-advised SVM to make effective use of labeled
data along with unlabeled data for the training phase. It displayed improved performance when
matched with different state-of-the-art approaches for skin cancer diagnosis. The proposed model
was used for diagnosing skin cancer. Multi-label classifying is a predictive data mining application
with multiple applications in the world, including automatic labeling of resources, including videos,
music, images and texts. The multi-label data can be used as a learning tool and can be achieved by
different methods, such as: the problem transformation method which has two common methods,
the adaptation method, and ensembles of classifiers [3]. Several applications include research work
with the use of label classification methods (LCM) to improve the progression of the search for
related information on Twitter. Five different labels are defined to categorize tweets, including news.
The system was proposed to analyze complex motion in events; it combines the tracking and multilabel
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hypergraphs of moving targets in video sequences [11]. The adaptation methodologies state that some
classification models were primarily intended for resolving binary problems and then were expanded
to solve multi-class problems. By contrast, other methods can easily work with several classes. In this
case study, the novel recognition system, that is an integration of label classification methods with
SA-SVM is used to get LSA-SVM for two-class classification, to overcome the problems and improve
the reliability of the diagnosis process. It is important to develop computational tools for automated
diagnosis that operates on a quantitative measure. Such tools can facilitate objective mathematical
judgment complementary to that of medical experts and help them to identify the affected areas more
efficiently with more accurate diagnosis and less wastage of time in treatment while trying not to lose
the bounder for working in real time standard.

2. Related Work

2.1. The Standard SVM

The basic idea of the SVM, which simplifies the pair (w, b) is described in the hyperplane with the
equation < w, x > +b = 0. SVM can utilize to produce a non-linear decision function, by projecting
the training data to a higher dimensional internal product space, known as feature space, by applying
a non-linear map φ(x) : Rn → Rd.

Although the optimal linear hyper-plane calculates in the feature space, by applying kernels it is
capable to make necessary processes in the input space using k(xi, xj) = < φ(xi), φ(xj) > which is
an internal product in the feature space. In terms of these kernels, the decision function can be written
as the following Equation (1):

f (x) = sign(Σαi>0 yiαik(x, xi) + b) (1)

The decision value for each X of the test sets have either a negative or a positive value, depends
on the situation of X and the hyperplane that has been clarified as Equation (2):

h(x) = Σαi>0 yiαik(x, xi) + b (2)

There are three mutual kernel functions in SVM—Radial Basis Function kernel (RBF), Polynomial
kernel and Sigmoid kernel. This paper has used the RBF kernel as Equation (3):

k(xi, xj) = e−γ|xi−xj |2 (3)

2.2. Self-Advised Support Vector Machine (SA-SVM)

Advised Weighted-SVM treats the neglect of SVM from the information that can be obtained from
misclassified data. By the creation of advised weights, which depends on the distance between the
misclassified train data and the classified train data. In addition, applying these weights together
with decision values of SVM in the test phase, assist the procedure to reduce the outlier data [12,13].
The details of the Self-Advised SVM procedure is demonstrated in the following steps:

1. Classify the hyper-plane founded by applying the decision function is Equation (4):

f (x) = sign(ΣαI>0 yiαik(x, xi) + b) (4)

2. Misclassified data that samples in the first train phase are recognized. The misclassified datasets
(MD) in the training phase are calculated by Equation (5):

MD = ∪N
i=1Xi|yi 6= sign(Σαj>0 yiαjk(x, xj) + b) (5)
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The MD set may be null but the empirical outcomes appear when the presence of misclassified data
in the training phase is a communal existence. It should be recognized that trying any technique
to benefit from misclassified data should have a control to affect the outlier data. When the
misclassified data is included to resemble samples, the use of misclassified data improved the
classification accuracy [14].

3. The algorithm indicates: If MD is null then go to the testing phase or else compute neighborhood
length (NL) for each Xi of MD. Equation (6), defined NL.

NL(xi) = minimumxi (‖ xi − xj ‖ |yi 6= yj) (6)

where Xj = 1, . . . , N is the training data that does not belong to the MD set. If the training data is
a map with a higher dimension, the distance between xi and xj can be evaluated in Equation (7)
with reference to the related RBF kernel

‖ θ(xi)− θ(xj) ‖= (k(xi, xi) + k(xj, xj)− 2k(xi, xj))
0.5 (7)

4. Calculating Advised Weight AW(xk) for each sample xk from the test set using Equation (8).
These AWs represent the closest test data to the misclassified data.0 ∀xi ∈ MD, ‖ xk − xi ‖> NL(xi)orMD = NU,

Σ1− Σxi ‖xk−xi‖
Σxi NL(xi)

xi ∈ MD, ‖ xk − xi ‖≤ NL(xi)
(8)

5. The absolute value of the SVM decision values for each xk from the test set are considered and
scaled in to [0, 1].

6. Finally, for each xk from the test set in Equation (9):
If AW(xk) < decision value (xk) then :

yk = sign(Σαj>0yjαjk(xk, xj) + b) (9)

which is identified with normal SVM, otherwise:

yk = yi|(‖ xk − xj ‖ (xi), xi ∈ MD)

2.3. Label Classification

Label Classification (LC) contains two types of classifying—Single Label Classification (SLC) and
Multi-Label Classification (MLC)—which are the supervised learning problems where sample data
are connected to single or multiple labels. Applications that use the SLC and MLC have increased
in different fields. For example, text classification, scene and video classification, bioinformatics
and Biomedical Text Data [15]. Generally, Binary Relevance (BR) is a method used for Multi-Label
Classification (MLC). Label Classification LC deliberates every label as an independent binary problem
and its work depends on the lack of appearance for the non-direct modeling label correlations.
Most of the existing methods contribute to complexity of model inter-dependencies between the
labels. Another method used in Multi-Label Classification is to perform problem transformation,
where a multi-label problem transformed into one or more single-labels like binary or multi-class
problems. That activates single-label classifiers and is transformed by their single-label predictions
into multi-label predictions. Problem transformation is used to describe both flexibility and scalability.
They apply Support Vector Machines, Naive Bayes, k Nearest Neighbor methods and Perceptron [16].
Where Xd ⊂ R the input sample domain, the sample feature formed as a vector d. The sample input
forms a vector of d feature X = [x1, . . . , xd], while the l output domain is L = 1, . . . , L. Each sample (x)
related to a subset of these labels, which forms as L vector y = [y1, . . . , yL]. Where y1 = 1, if and only
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if label j is related with sample x and 0 otherwise. They assume a set of training data D of N labeled
patterns as D = (xi, yi)|i = 1, . . . , N. So that the researcher can write multi-label accuracy equation for
a set of N test as follow in Equation (10):

Accuracy =
1
N

ΣN
i=1
|yi ∧ ŷi|
|yi ∨ ŷi|

(10)

Ensemble Classifier Chains (ECC) signifies a vector of absolute outputs Ŵ = [ŵ1, . . . , ŵL] ∈ RL,
while Ŵj signifying the absolute for the jth label. For prediction vectors ŷ1, . . . , ŷm from repeating
1, . . . , m, The absolute equation evaluate as in Equation (11):

Ŵj =
1
m

Σm
k=1ŷik (11)

Also, threshold function f apply ŵj to get a bipartition of appropriate and inappropriate labels:
ŷ = ft(ŵ) Softmax functions also offer single-label classification. Practically, it applies to the multi-label
scenario by problem transformation. Softmax loss function can modify the multilabel scenario as
shown in Equation (12) [17]:

lso f tmax = Σy∈Yi log
( exp( fy(xi))

Σj∈yxp( fy(xi))

)
(12)

3. Materials and Methods

3.1. Materials

The Myoelectric Pattern Recognition system consists of two main parts—the software and
hardware that are further elaborated in the phases of the real-time M-PR system, as visible in
Figures 1 and 2. Overall, all phases of real-time pattern recognition based sEMG is displayed in
Table 1. For the experimental stages, the system collects the data from healthy and unhealthy subjects.
The collected data is then applied to train the system, resulting in the output of classification; the trained
classifier, the OpenSim prediction and simulation for gait level.

Figure 1. Stages for an Offline myoelectric pattern recognition system.

Figure 2. The hardware and software needed for the off-line application.
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Table 1. The hardware and software needed for the off-line application.

Component Description Picture

Hardware Personal Computer Intel

Hardware
EMG acquisition device, the FlexComp InfinitiTM System
from Thought Technology with frequency sampling
2000 Hz

Hardware Four EMG sensors: MyoScanTM T9503M Sensors from
Though technology

Hardware Four electrodes

Hardware OneProCom Infiniti USB Adapter—TT-USB

Hardware One small piece of Fiber Optic Cable 15ft.—SA9480

Hardware OneProCom Infiniti USB Adapter—TT-USB

Software Matlab R2016b

Software API library from Though Technology connecting the
Flexcomp to Matlab

The collected EMG signals were processed on a Personal Computer Intel Core i7, 2.8 GHz with
16 GB RAM and equipped with a Windows 10 operating system. A band-pass filter was used for
filtering the signals in the frequency band (25–550 Hz). A notch filter was applied to remove the
50 Hz line nosiness. The EMG signals were downsized to 1000 Hz to minimize the size. To estimate
the recommended mSA-SVM, LSA-SVM and ELM-LSA-SVM, the experiment embraced 13 datasets
from the UCI machine learning repository [18,19] These databases were nominated from the most
public benchmarks for classification and diagnosis. The diversity of these databases supports the
authentication in this study. The number of instances and the attributes of each database shown in
the tables in each chapter was used. It should be noted that for a dataset with multi-class we used
6 datasets while for two classes 7 datasets [20].

3.2. Procedure for Collecting sEMG Signal Data

The data wre collected from the hospital, based on the design procedure that received ethical
approval to collect data from FD patients in Metro Rehabilitation Hospital in Sydney, Australia using
Ethical Approval (UTS HREC NO. ETH15-0152). For the experiment, data were collected from
13 subjects. These 13 subjects involved in the offline experiment; consisted of 6 females and 7 males,
aged between 18 to 84 years; the average age being 51 years. Ten of them were affected with Foot
Drop. The other three were healthy with no muscle disorder. During the experiment the subjects were
seated, so that the knee is in a fixed position as shown in Figure 3, to avoid the influence of position
movements on EMG signals. A few digital filters were applied during data collection. The filters
applied were a band pass filter between 25 and 550 Hz and a notch filter to remove the 50 Hz line
noise. The EMG signals were reduced to 1080 Hz.
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Figure 3. Knee Flexion with Flexion Dorsiflexion.

The classification was dependent on the sample data from which it was acquired. The data were
collected under the Supervision of the Stroke Coordinator at the Metro-Rehab Hospital. The data
was collected in three phases at each posture (flexion or extension) of the knee joint. The healthy and
unhealthy subjects, went through the following:

First trial: To move (with help, if required) his/her lower limb at the knee joint. Flexion and
extension (bend and straighten) from the actual position while sitting on a chair. Each set of trials
took 3 s and a 5 s rest was given between two trials (two sets of trials were done for this case) as
shown in Figures 4 and 5.
Second trial: To move (with help, if required) his/her foot up and down as much as possible from
rest position while sitting on the chair. Each set of trials took 3 s and a 5 s rest was given between
two trials. (Five sets of trials were done for this case) as shown in Figures 6 and 7.
Third trial: To move (with help, if required) his/her lower limb (foot and leg) at the knee joint,
to flex or extend (bend and straighten) with Extension Plantar flexion and Flexion Dorsiflexion
from the rest position while sitting on the chair. Each set of trials took 3 s and a 5 s rest was given
between two trials. (Two sets of trials were done for this case) as shown in Figures 8 and 9.

Data for 12 s was collected for each subject’s trial and data for 156 s were collected for all repetitions
by the subject. Three-fold cross-validation was conducted with the offline classification. To measure
the Dorsal Plantar Flexion range for the leg, we used the Goniometric Measurement such as Protractor
(Angle Finder and Bevel Square Head) as shown in Figure 10. Table 2 presents the characteristics for
sick and healthy subjects collected from Metro Rehabilitation Hospital.

Figure 4. Collect data signals from the leg using sEMG device.
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Figure 5. Knee Extension with Flexion Dorsiflexion.

Figure 6. Knee Flexion with Flexion Dorsiflexion.

Figure 7. Knee Flexion with Flexion Dorsiflexion.

Figure 8. Knee Flexion with Extension Planter Dorsiflexion.
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Figure 9. Knee Extension with Extension Plantarflexion.

Figure 10. Measure Dorsal Plantar Flexion range for the leg [21].

Table 2. Characteristics for sick and healthy subjects collected for the hospital.

Gender Age (Years) Height (cm) Weight (kg) Min KFA(deg) Speed (m/s) T (Months) BPL300

F 45 155.7 54.9 15 — 48 Yes
F 52 160 54.7 22 — 18 Yes
M 61 176 108 18 — 15 No
M 64 162 102 15 — 36 No
M 84 147 78.2 300 0.175 1 Yes
F 68 165 89.4 45 — 3 No
M 82 172 70 38 — 3 No
M 22 134.6 47 50 0.454 24 Yes
M 68 153 64.7 50 — 36 Yes
F 60 154.5 81 65 — 30 Yes
M 60 165 65 0 1.20 No
F 45 160 71 0 1.02 No
F 18 163 64 0 1.17 No

For the Metro-Hospital dataset, we collected the Surface electromyography (EMG) signals from
13 subjects, from Rectus Femurs (RF), Gastrocnemius (Gas), Soule (Sol) and Tibias Anterior (TA).
The OpenSim dataset for CG, provides Surface electromyography (EMG) signals which recorded
from ten subjects. sEMG collects signals from the Medial Hamstrings (mH), Biceps Femurs long head
(BF), Rectus Femurs (RF), Gastrocnemius (Gas) and Tibias Anterior (TA). Each trial was 5 s with 2
repetitions, which makes 10 s in total. Three trials were done for each subject = 30 s 1000 in each class
= 30,000 and there were 4 classes, so data = 120,000/channel. There were 4 channels, which makes the
entire sample data = 480,000. The data collected were divided into training data and test data using
3-fold cross-validation.
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3.3. Method: Label Self-Advised Support Vector Machine (LSA-SVM)

The following concepts describe the LSA-SVM, where the misclassified data was based on
calculating the neighborhood length using the label of data instead of the value for single classification
method. This procedure would minimize the time process and large data can be processed.

1. Applying the decision function as in Equation (10), to classify hyperplane:

f (x) = sign(Σαi>0yiαik(x, xi) + b) (13)

where xi is the input vector for ith sample labeled with yi related to its class, while αi is the
non-negative Lagrange multiplier, which conflicts with standard SVM training.

2. Misclassified data samples in the first train phase are recognized. The misclassified data sets (MD)
in the training phase are calculated by Equation (11):

MD = ∪N
i=1Xi|yi 6= sign(Σαj>0yiαik(xi, xj) + b) (14)

3. The algorithm indicates that: If MD is empty, then go to the testing phase, or else calculate
neighborhood length (NL) for each yi of label MD. Equation (12) defined NL.

NL(yi) = minimumyi (‖ yi − yj ‖ |xij) (15)

where yj, j = 1, . . . , N is the label of training data that do not belong to the label of MD set.
The label of the training data is mapped to a higher dimension, the distance between you and
yj is computed according to the following Equations (13) and (14) with reference to the related
RBF kernel.

‖ φ(yi)− φ(yj) ‖= (k(yi, yi) + k(yj, yj)− 2kk(yi, yj))
0.5 (16)

that is, RBF will be:
k(yi, yj) = e−γ|yi−yj |2 (17)

4. For each label yk from test data, the Lab Advised Weight LAW (yk) figures out as Equation (15).
These LAWs represent how close the label test data are to the label of misclassified data.

LAW(yk) =0, ∀xi ∈ MD, ‖ yk − yi ‖> NL(yi) orMD = NUL,

Σ1− Σyi ‖yk−yi‖
Σyi NL(yi)

, xi ∈ MD ‖ yk − yi ‖≤ NL(yi)

(18)

The absolute value of the SVM decision values for each xk from the test set is calculated and scaled
to [0, 1].

5. For each yk from the label of the test set,
If (LAW(yk) < decision value (yk) then yk = sign(Σαj>0yiαjk(xk, xi) + b) which is compatible
with normal SVM labeling, otherwise yk = yi|(‖ yk − yi ‖≤ NL(yi) and xi ∈ MD). Figure 11,
explain the flow chart for the steps above.
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Figure 11. Flowchart of the LSA-SVM methods steps.

4. Experiments and Results

The experiments check the performance of LSA-SVM for a single class as conducted through
the state of the art pattern recognition system shown in Figure 12. This Flowchart describes each of
the methods that were applied to get the output; classifying subjects as healthy and unhealthy using
the novel.

Figure 12. Flowcharts for each stage of M-PR.
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4.1. Experiments on Hospital Datasets

Various experiments were done to test the performance of LSA-SVM in the Myoelectric pattern
recognition. First, we adjusted the parameters of C and g from the range of (2-9, 2-8, . . . , 29,210),
as shown in Table 3, then we examined the performance of accuracy while we apply v-SVM, c-SVM,
v-SA-SVM, c-SA-SVM and LSA-SVM. We compare all the classifiers. Some analysis is given in each
experiment; in the first experiment we used the first data set FD and the second data set CG to estimate
accuracy for each classifier. The second experiment applies the third datasets from UCI.

Table 3. Optimal parameters for all classifiers.

Dataset
C-SVM v-SVM Feat

Type
Win. Size,
Win. Inc.C γ C γ

Hospital 100 0.003 100 0.003 14 50, 15
crouch gait 100 0.003 100 0.003 14 20, 5

Figure 13 and Table 4 specify that the accuracy of LSA-SVM was higher than SA-SVM and other
classifiers in all types of dataset. The average accuracy for vLSA-SVM as compared with all other five
classifiers is a little higher—equal to 99.06%—while in vSA-SVM it was equal to 98.75% for the FD
Hospital dataset. However, for the CG OpenSim dataset vLSA-SVM gives 82.01% and vSA-SVM equal
to 80.01% with five-fold cross-validation training.

Table 4. The average classification accuracy of LSA-SVMacross two datasets using five-fold
cross-validation compared with other classifiers.

Dataset
Accuracy (%)

SVM
C

SVM
v

SA-SVM
C

SA-SVM
v

LSA-SVM
C

LSA-SVM
v

Hospital 92.18 93.26 98.86 98.75 98.99 99.06
crouch gait 76.20 70.10 81.73 80.01 81.97 82.01

Figure 13. The average classification accuracy of LSA-SVM across two datasets using five-fold
cross-validation compared with other classifiers.

Table 5 and Figure 14 show that the training times of vSA-SVM in two groups of datasets are much
faster than those of vLSA-SVM. In that case, the LSA-SVM method did not achieve the best performance,
whereas time consumption was equal to 69.4 msec for vLSA-SVM and 46.3 msec, for vSA-SVM but it
still reached a real time that is less than 300msec as a standard real time measurement [22,23]. Overall,
in most cases, the adaptation of the Label function used in LSA-SVM can improve the performance of
the classical support vector machine and SA- SVM.
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Table 5. The training time consumption for each type of classifier.

Dataset
Training Time (ms)

SVM
C

SVM
v

SA-SVM
C

SA-SVM
v

LSA-SVM
C

LSA-SVM
v

Hospital 55.3 54.3 107.9 46.3 70.7 69.4
crouch gait 48.5 55.1 36.3 38.0 48.9 48.4

Figure 14. The training time consumption for each type of classifier.

4.2. Experiments on UCI Datasets

LSA-SVM proved that it is capable of classifying four classes of leg movements consisting of a
combination of three classes of the unhealthy leg (Mild, Moderate and Severe patients) and the fourth
is the healthy class. This section investigates the performance of LSA-SVM on the benchmark dataset
that is accessible online on the UCI machine learning website. The experiment depends on the size of
the data. We implement 3-fold cross-validation on the larger sized data, while we executed 5-fold cross
validation for the small and medium-sized data. Table 6 shows the data specification for a benchmark
for 2-Classes dataset types.

Table 6. Data specification for benchmarking for 2-Classes datasets.

Dataset Group # Data # Attributes

Iris Small size 100 4
Parkinson 195 22

Australian Credit Approval (Statlog)
Medium size

689 4
Breast Cancer 699 9

Pima Indians diabetes 768 8

Spambase Large size 4601 57
Skin Segmentation 245,057 3

This experiment involved six classifiers—v-SVM, c-SVM, c-SA-SVM, v-SA-SVM, c-LSA- SVM,
v-LSA-SVM. The optimal parameters are established and noted its effects on the accuracy and time
performance of the classifier. Table 7 provides all parameters that were utilized in this experiment.

Table 8 and Figure 15 show that LSA-SVM had performed reasonably through a seven different
data sets with 2 classes. The comparison of LSA-SVM and SA-SVM shows that average accuracy are
quite similar in some dataset. As for LSA-SVM, the accuracy of v- LSA-SVM is significantly better
than c-LSA-SVM only in “Breast Cancer” equal to 92.09 dataset. From the results, recognized that
LSA-SVM is the most accurate classifier across seven datasets equal to 96.42 in “Australian Credit
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(Statelog)” except “Pima Indians diabetes” and “Spambase” datasets that is equal to 83.31% and
62.52% respectively.

Table 7. The optimal parameters used by each classifier in the UCI [19] dataset experiments
for 2-classes.

Dataset
C-SVM v-SVM Feat

Type
Win. Size,
Win. Inc.C γ C γ

Iris 1 1 1 0.25 11 20, 5
Parkinson 300 0.125 3000 0.003 14 50, 15

Australian Credit Approval (Statlog) 0.5 0.125 214 0.003 14 20, 5
Breast Cancer 8200 0.003 214 0.003 13 50, 7

Spambase 3000 0.003 2050 0.005 14 500, 120
Pima Indians diabetes 8200 0.0078 2050 0.002 14 50, 15

Skin Segmentation 100 0.003 1 2 14 500, 150

Figure 15. The accuracy of seven classifiers on different data using 5-fold cross validation for small
and medium-size data and 3-fold cross validation for large size data for 2 classes.

Table 8. The accuracy of seven classifiers on various data using 5-fold cross validation for small and
medium-size data and 3-fold cross validation for large size data for 2 classes.

Dataset
Accuracy (%)

SVM
C

SVM
v

SA-SVM
C

SA-SVM
v

LSA-SVM
C

LSA-SVM
v

Iris 92.85 90.12 85.71 85.84 92.85 92.86
Parkinson 72.32 70.0 71.43 64.29 71.43 74.10

Australian Credit (Statelog) 81.6 80.8 88.07 88.53 91.28 96.42
Breast Cancer 89.88 88.76 90.96 90.33 92.09 91.01

Pima Indians diabetes 82.5 80 78.4 77.5 80.95 78.3
Spambase 61.17 62.52 61.18 62.53 62.19 61.26

Skin Segmentation 83.31 72.26 60.50 67.47 84.23 84.43

The processing time (time consumption) of classifiers also calculated. Table 9 provides the training
time. Figure 16 clarifies that the training time of LSA-SVM is one of the slowest classifiers, equated to
other classifiers in overall datasets. Its performance worsens when vLSA-SVM works on big data
like the “Skin Segmentation” dataset equal to 133.1 msec. The cLSA-SVM is the slowest classifier,
taking around 267 ms to learn “Skin Segmentation” datasets while vSA-SVM shows the faster time,
equal to 0.537 msec.



Biosensors 2019, 9, 114 15 of 17

Figure 16. The training time consumption for each type of classifier.

Table 9. The training time consumption for each type of classifier.

Dataset
Training Time (ms)

SA-SVM
C

SA-SVM
v

LSA-SVM
C

LSA-SVM
v

Iris 0.837 0.701 3.6 4.1
Australian Credit (Statelog) 1.10 1.60 4.6 5.2

Breast Cancer 3.20 3.3 7.20 8.70
Pima Indians diabetes 0.901 0.836 5.0 4.7

Spambase 25.8 16.1 34.8 33.4
Skin Segmentation 121.4 86.3 267.2 133.1

5. Conclusions

LSA-SVM has an advantage over SA-SVM as it works on label data instead of data value.
In addition to the Myoelectric leg motion classification, LSA-SVM has been applied to a wide collection
of classification problems using a UCI machine learning dataset. The experimental results show that
LSA-SVM performs on a wide range of dataset sizes (small to large). Overall, LSA-SVM is a promising
classifier for several classification applications, particularly for Myoelectric pattern recognition. In the
training test, which was executed to compare the results of LSA-SVM with all other algorithms,
the p-value correlated to the ANOVA test by a level of impact α = 0.05 was 0.038, which shows good
statistical difference between these groups. Therefore, it can be concluded that LSA-SVM achieved
better results than these algorithms. In addition, 68.80 percent sensitivity and 76.5 percent specificity
was achieved to classify the testing data for the Hospital. Label Self-Advised Support Vector Machine
(LSA-SVM) was implemented and projected the Self-Advised Support Vector Machine (SA-SVM) for
leg motion recognition using sEMG signals. Overall, LSA-SVM could classify four leg movements
with an accuracy of 99.06 percent, deeming it comparable with renowned classifiers such as SA-SVM,
SVM. Therefore, LSA-SVM could improve the performance of the advised-based SVM.

This study presented a new Label classification method, called the Label Self-Advised-Support
Vector Machine LSA-SVM, to diagnose leg movements for foot drop patients. Data were collected using
a surface electromyography (sEMG) device from Foot Drop Patients from the Metro Rehabilitation
Hospital in Sydney, Australia using Ethical Approval (UTS HREC NO. ETH15-0152). Also,
the experimental results for the sEMG dataset, UCI and OpenSem benchmark datasets prove
its assistance.
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The following abbreviations are used in this manuscript:

LAW Lab Advised Weight
AW Advised Weight
SVM Support Vector Machine
FD Foot drop
SA-SVM Self Advised Support Vector Machine
LMN Lower Motor Neuron
FES Function Electrical Stimulation
M-PR Myoelectric Pattern Recognition
SA-SVM Self-Advised-Support Vector Machine
LSA-SVM Label Self-Advised-Support Vector Machine
LCM label classification methods
RBF Radial Basis Function
MD Misclassify Datasets
EMG Electromyography
sEMG surface EMG
TA Tibias Anterior
RF Rectus Femurs
Gas Gastrocnemius
Sol Soule
TA Tibias Anterior
CG Crouch Gait
LDA Linear discriminant analysis
TD-AR Timing Domain-Autoregressive
SCC single class classification
SLC Single Label Classification
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD linear dichroism
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