Michael V. Kjelstrup, Line D. F. Nielsen, Malthe Hansen-Bruhn and Kurt V. Gothelf

3 4 5

1

2

6

Figure S1: Emission spectra (corrected) of selected data points from experiment seen in Figure 7 (only aD) (λex = 550 nm). After addition of aD to the A, B, and S strand, the intensity of the fluorescent signal from Alexa-555 decreases, while the intensity of the fluorescent signal from Alexa-647 increases, hence an increase in FRET value is observed over time.

Name	Sequence (5'-)	Calculated Mass	Observed Mass
A4-NH	CTCATTCAA(T-Amine1)ACCCTACG	5532,8 Da	5532,5 Da
A4-647	CTCATTCAA(T-Alexa647)ACCCTACG	_*	6373.5 Da
B4_dU_NH	TTCAATACCC(dU-Amine2)ACGTCTC	5410.6 Da	5410.6 Da
B4_dU_D2	TTCAATACCC(dU-Dig)ACGTCTC	5954.3 Da	5953.7 Da
S66-NH	TGGAGACG(T-Amine1)AGGGTATTGAATGAGGG	8349.6 Da	8351.6 Da
S66-555	TGGAGACG(T-Alexa555)AGGGTATTGAATGAGGG	_*	9166.0 Da

Table S1: DNA sequences and mass spectrometry data (Toehold regions are written in italic and
written in color code (red/blue))

13 * The exact masses of Alexa647 and Alexa555 are not publicly accessible.

14 (Two different amine-modified phosphoramidites have been used to synthesize the DNA

15 strands. An Amino C6 dT (Amine1) was used for the synthesis of A4-NH and S66-NH, and an 5-

16 Aminoallyl-dU (Amine2) was used for synthesis of B4_dU_NH)

17

18

19 Table S2: Structure of modified bases and of the modified parts of the DNA strands after conjugation 20 reactions.

21

22 23

24

25

Firgure S2: Emission spectrum of 57 % plasma at excitation at 550 nm. The autofluorescence signal of 57 % plasma (plasma spiked with 1xTAE-Mg buffer) at excitation at 550 nm, is far less than the fluorescent signal from the assay (Figure S1), which makes it possible to use the assay in plasma.

27

28

10 nM (30 min. detection)

29

Figure S3: FRET ratio as a function of the digoxin concentration in the linear range of experiment
from Figure 8 (0-40 nM of digoxin). LOD was calculated from the linear regression function (dashed
line).

33

Figure S4: FRET ratio as a function of the digoxin concentration in the linear range of experiment
from Figure 10 (0-4 nM of digoxin). LOD was calculated from the linear regression function (dashed
line).

37
$$LOD (30 \text{ min. detection}) = \frac{3 * \sigma(10 \text{ nM})}{\Delta FRET \text{ change}} = \frac{3 * 0.442}{0.1614} = 8.2 \text{ nM}$$

38 39

$$LOD (overnight detection) = \frac{3 * \sigma(1 nM)}{\Delta FRET \ change} = \frac{3 * 0.714}{1.9887} = 1.08 \ nM$$

40