Supplementary Materials: Bio-fouling Resistant Impedimetric Sensor Array for High-Resolution Extracellular Potassium Monitoring in the Brain

Ruben Machado, Nima Soltani, Suzie Dufour, Muhammad Tariqus Salam, Peter L. Carlen, Roman Genov and Michael Thompson

Abstract: Extracellular potassium concentration, $[K^+]_o$, plays a fundamental role in the physiological functions of the brain. Studies investigating changes in $[K_+]_o$ have predominantly relied upon glass capillary electrodes with K⁺-sensitive solution gradients for their measurements. However, such electrodes are unsuitable for taking spatio-temporal measurements and are limited by the small surface area of their tips. We propose a novel approach that uses multichannel gold monolayer coated microelectrodes for *in vivo* spatio-temporal measurements of $[K^+]_o$ in the mouse brain.

1. Nuclear Magnetic Resonance(NMR)

Figure S-2: NMR for **(II)** *bis*((1,4,7,10,13,16-hexaoxacyclooctadecan-2-yl)methyl) 2-(5-azidopentyl)malonate.

2. Impedance Measurements

Figure S-3: Impedance measurements for: sodium(top), potassium(middle), and calcium(bottom) in simulated cerebrospinal fluid (CSF). Each solution contained: NaCl 120mM, 10 mM glucose 10mM, NaHCO₃ 22mM, NaH₂PO₄·H₂O, MgSO₄ mM and CaCl₂ 2.6mM. Any compounds containing the cation of interest in the simulated CSF were replaced with a similar cation.

3. X-ray Photoelectron Spectroscopy (XPS)

Figure S-4: X-Ray Photoelectron Spectroscopy (XPS) narrow scans for gold microelectrode for carbon. Bare cleaned gold was compared to gold coated with a mixed monolayer of K⁺ probe and MEG-SH in a 1:10 ratio.