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Abstract: As technology advances, electronic tongues and noses are becoming increasingly important
in various industries. These devices can accurately detect and identify different substances and gases
based on their chemical composition. This can be incredibly useful in fields such as environmental
monitoring and industrial food applications, where the quality and safety of products or ecosystems
should be ensured through a precise analysis. Traditionally, this task is performed by an expert panel
or by using laboratory tests but sometimes becomes a bottleneck because of time and other human
factors that can be solved with technologies such as the provided by electronic tongue and nose
devices. Additionally, these devices can be used in medical diagnosis, quality monitoring, and even
in the automotive industry to detect gas leaks. The possibilities are endless, and as these technologies
continue to improve, they will undoubtedly play an increasingly important role in improving our
lives and ensuring our safety. Because of the multiple applications and developments in this field in
the last years, this work will present an overview of the electronic tongues and noses from the point
of view of the approaches developed and the methodologies used in the data analysis and steps to
this aim. In the same manner, this work shows some of the applications that can be found in the use
of these devices and ends with some conclusions about the current state of these technologies.

Keywords: electronic nose; electronic tongue; applications; trends

1. Introduction

Sensors play a crucial role in the industry as they help to monitor and measure various
parameters such as temperature, pressure [1], vibration, and humidity, among others [2,3].
Sensors provide real-time data that can be used to know the current state of a process,
forecast variables [4], optimize processes, and improve efficiency in manufacturing plants,
monitoring systems, and other processes where operational and environmental conditions
can change [5,6]. By collecting and analyzing these data from sensors, businesses can
identify potential problems before they occur, preventing costly downtime and reducing
maintenance costs. Additionally, sensors can be used to monitor environmental conditions
and ensure compliance with regulations. This is a really important feature because it opens
the possibility to control and monitor variables in real time, avoiding long periods caused
by in situ human inspections [7].

Overall, sensors are an essential component of industrial and modern processes, en-
abling businesses to operate more efficiently and effectively. Multiple sensors are currently
used according to the need and the process of monitoring. To analyze these data in most
cases, it is necessary to use multivariable techniques and sensor data fusion strategies.

Among a large number of sensors commercially available, gas sensors and sensors
that can be submerged in liquids such as screen-printed electrodes have gained relevance
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and are the basis for electronic tongue and electronic nose systems. These have emerged as
a promising technology for electrochemical analysis [8], offering a range of applications
in industries such as food and beverage production, pharmaceuticals, and environmental
monitoring [9]. These devices rely on advanced sensors to detect and analyze the chemical
composition of substances and gases, providing accurate and real-time measurements.
By using electronic tongues, companies can ensure that their products are consistent and
meet certain quality standards. Additionally, these devices can be used to identify potential
contaminants or adulterants, which can help prevent costly recalls or other issues. Overall,
electronic tongues are a valuable tool for any industry that relies on precise and accurate
analysis of chemical compositions.

The sensors used in electronic tongues and noses are typically based on different
principles, including electrochemical, optical, and piezoelectricity. Electrochemical sensors
work by detecting changes in voltage or current caused by chemical reactions between
the analyte and the sensing electrode. Optical sensors use light to detect changes in the
absorption, fluorescence, or reflectance properties of the analyte. Piezoelectric sensors,
on the other hand, use a crystal that vibrates when exposed to the analyte, generating an
electrical signal that can be measured [10].

Some examples of specific sensors used in electronic tongues and noses include pH
sensors, ion-selective electrodes, and gas sensors. These sensors are designed to detect spe-
cific chemical properties of the analyte, such as acidity, ionic strength, or gas concentration.
Overall, the choice of sensors used in electronic tongues and noses depends on the specific
application and the properties of the analyte being tested. By using multiple sensors based
on different principles, electronic tongues and noses can provide a comprehensive analysis
of the taste, odor, or composition of a sample. It is common that developments in the
literature can be found separately for electronic tongue applications and electronic nose
applications in specific processes; however, some applications make use of both systems to
improve analysis, as will be shown in the next sections.

These technologies have gained importance in recent years because of the advan-
tages in hardware and software, which are important for the acquisition and analysis of
information. Some advantages of electronic tongues and noses include the following:

• Precision: Electronic tongues and noses can detect subtle differences in liquids and
gases that are not easily detectable by humans, which is fundamental for monitoring
and classification processes.

• Time-saving and cost-effective: Because of the resources used in hardware and soft-
ware, it is possible to acquire a large quantity of data and process it in a short period of
time. In some cases, online monitoring is applicable, and communication capabilities
are also a possibility for remote monitoring.

• Reduction of human interventions: These systems can be used in an automated way,
which results in the benefits of avoiding human bias and opens the possibilities for
monitoring processes or environments where humans are not capable of working, such
as scenarios where contaminants or environmental conditions are not safe for humans.

• These are non-destructive methods: They do not require the destruction of the samples
for analysis because they can interact with liquids and gases without a big particu-
lar configuration.

• Scalability: These systems are easily re-configurable in hardware and software, which
allows their use in different applications.

Some disadvantages of electronic tongues and noses include the following:

• Costs: These devices can be expensive in some cases because of the initial investment
and the maintenance process. However, some multiple commercial solutions and own
solutions offer low-cost developments with excellent results. In industrial applications,
these costs are small compared with the results that can be obtained.

• Standardization: Currently, there is no standardized method, which results in different
solutions depending on how data are analyzed.
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• Human testers are required: In spite of the valuable contributions to automating the
process where these devices are used, it is necessary to contrast the results with human
testers, especially in the alimentary industry.

• Both devices are susceptible to interferences, which has an impact on the final result.
As an example, in the case of gas sensors, these interferences can affect the detection
of some gases [11].

This work presents a general overview of electronic tongues and electronic noses,
starting with some general concepts about these devices and showing the steps in data
acquisition and analysis. Some important works may not be covered in this overview due
to the vast quantity of literature available. However, this paper aims to present a general
overview by addressing concepts about sensors, data acquisition systems, pre-processing,
feature extraction, and techniques used for data analysis, machine learning, and AI-based
algorithms in both devices. This overview also includes information about some areas
where they are used. Conclusions about the information in the review are also included to
summarize the relevance of these devices in different areas.

2. Electronic Tongues and Electronic Noses

Throughout history, human senses have been used as a quality factor in the alimentary
industry and daily activities. Two examples are the gustatory and olfactory senses, which
provide information using smell and taste. The sense of taste allows the detection of basic
tastes of sweet, sour, salty, bitter, and umami, while the olfactory sense is responsible
for detecting the aromas and flavors of food and other elements. These two senses work
together in a natural way to create a complete sensory experience when consuming food
and beverages. From the point of view of electronics, using sensors to mimic these abilities
adds value to systems in the automation of processes such as quality control in several
industries such as pharmaceutical [12] and alimentary, among others [13]. It implies the
use of sensors that can interact with liquids and gases to provide useful information that
can be analyzed with a determined aim. The idea of the use of some of these systems was
introduced in the literature in the early 1980s [14,15].

Electronic tongues and electronic noses are sensory devices that mimic the human
senses of taste and smell, respectively. They use advanced technology, such as sensors,
advanced signal processing steps, and machine learning algorithms, to detect and analyze
complex chemical and biological compounds in various substances or gases [16]. The key
of these devices is the use of a sensor array [15] because it allows the acquisition of multiple
information from the samples for analysis. Electronic tongues and noses have a wide
range of applications, including food and beverage quality control, environmental moni-
toring, and medical diagnosis [17]. They are also used in drug delivery and therapy [18],
the development of perfumes, and other products that require detailed analysis of taste
and odor.

Figure 1 shows the type of sensors available electronic tongues and noses. As it is
shown in the figure, there are some common type of sensors, but each type of sensor makes
use of different ways to interact with the liquid substance or the gas. Some of the most
used are the electrochemical sensors, where electrochemical techniques are required for
this interaction [19].

How do These Systems Work?

Although both sensors allow for the capture of data, the type of information and the
way they work are different. While electronic tongues capture information from liquids,
electronic noses capture information from gases. Both work as an array of sensors that
can detect different chemical compounds or properties in liquids for the case of electronic
tongues and gases for the case of electronic noses. Figure 2 shows a general flow diagram
of the steps in the work with these devices. During the data acquisition, sensors interact
with the liquid substance or gas by using the sensor array. A multiplexor is required to
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handle the number of sensors, and the data acquisition system allows for the acquisition
and collection of information from each sensor.

Figure 1. Types of sensors used in electronic tongues and noses.

Figure 2. Data acquisition and analysis steps.

During the data analysis setup, the multivariate raw data captured by the DAQ
system is pre-processed by using different strategies [20], some of which include unfolding,
normalization, and filtering. Feature extraction is performed to provide information for the
data analysis, which results in the detection of components, classification, and prognosis
strategies by using machine learning and AI-based algorithms.

The next sections will address some developments and the different elements accord-
ing to the steps shown in Figure 2.

3. Sensor Arrays and Electrochemical Techniques Used for Electronic Tongues
and Noses

Electrochemical techniques are a fascinating area of study from the point of view of
automation and electronics. They involve the use of electrical currents to manipulate and
analyze chemical reactions and currently are a powerful analytical technique [21]. These
techniques have many applications [22], from pharmaceutical quality to environmental
monitoring. One particularly interesting application is in the field of biosensors, where
electrochemical techniques can be used to detect and measure biological molecules. Overall,
electrochemical techniques are a powerful tool for researchers and engineers who are
interested in understanding and controlling chemical reactions at a fundamental level.

Figure 3 present some examples of the data obtained by using some of the electro-
chemical methods in electronic tongues. These techniques are commonly applied through
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a potentiostat that can be used as a system to interact with the sensors. A potentiostat
is designed to apply voltammetric, pulsed, amperometric, and galvanostatic techniques,
among others [23]. There are multiple devices on the market that allow the application of
electrochemical analysis [24,25]. However, most of the commercial devices provide some
basic tools to plot and visualize the information from the sensors. Additional analysis
and the use of strategies to obtain more information from the data is still an open area
for research.

(a)

(b)
Figure 3. (a,b) Two ways to represent the electrochemical phenomena, where (a) shows the infor-
mation as a function of a complex number and (b) expresses it as a correlation as a function of a
given potential expressed in volts. (a) Representation of an electrochemical phenomenon in the
Nyquist plane using electrochemical impedance spectroscopy (EIS) technique. (b) Variation of the
electric current as a function of the given potential in a typical oxidation–reduction phenomenon; this
technique is known as cyclic voltammetry.

In the case of electrochemical impedance spectroscopy, the phenomenon being mea-
sured can present capacitive or inductive behavior, or a combination of both. Figure 3a
shows the behavior of a capacitive phenomenon. This is because the graph is located in the
positive quadrant of the imaginary axis. In the Nyquist plane, it is also possible to identify
the frequency range that describes the behavior of the analyte.

In a capacitive curve, the maximum value of capacitance is given by:

C =
1

Rw(max)
(1)
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where wmax is the maximum frequency of the system and is chosen by design. R = ZR
represents the real value of the impedances when Zj is maximum.

Cyclic voltammetry (Figure 3b) represents the mechanisms that describe some pro-
cesses of oxidation–reduction or the redox reaction (in this reaction, the oxidizing substance
loses electrons and the reducing substance gains electrons), such as organic or metallic
systems with organic compounds. Cyclic voltammetry expresses the speed with which
this process occurs. By applying a potential between a cathodic and anodic range, interme-
diate compounds can be obtained as the oxidation–reduction phenomenon is generated.
However, not all chemical reactions present the same redox phenomenon, so if a solution
only presents the reduction phenomenon, the curve in Figure 3b will only show the upper
continuous part. In the same way, if only an oxidation phenomenon occurs, only the lower
continuous part of the curve in Figure 3b would be displayed, and these systems are known
to be irreversible. The variation between the cathodic potential (initial potential) towards
the change potential and the anode potential in a cyclical manner is one of the properties
that characterize cyclic voltammetry. Figure 4 shows an example of the potential applied to
an electrochemical cell in cyclic voltammetry. This type of signal is known as the excitation
signal and expresses the scan rate at which the system is excited. Its speed is normally
given in millivolts per second.

Figure 4. Representation of the potential applied to an electrochemical cell using cyclic voltammetry.

Chemometric analysis carried out with information obtained from a sensor network is
one of the characteristics of electronic tongues. Qualitative analyses of the phenomena that
occur at each of the electrodes of the sensor network in an electronic tongue are omitted
unless they are presented as an emerging phenomenon that has statistical relevance. Other
electrochemical techniques that could be used in electronic languages are shown in Figure 5.

Figure 5a is also a type of voltammetry technique, same as Figure 3b. Their difference
lies in the signal that excites the system, and this topic will be discussed in depth later.
The response in Figure 5b is known as the chronoamperometry curve because its response
is given in time. However, the excitation signal is also a pulsed potential signal with a
very short time sweep. In the case of differential pulse voltammetry, Figure 5a, a specific
potential pulse is imposed for a given time. The trailing edge of said potential does not
settle at the initial value but stops at a new value, where a new pulse begins. Figure 6
represents the excitation signal of the differential voltammetry.

This signal has a greater number of parameters that can be configured, such as am-
plitude (A), pulse width (PW), increase in potential Eg, period (T), or current sampling
time (τ, τ′).

To obtain the signal response shown in Figure 5b, a pulse like the one shown in
Figure 7 is applied. The oxidation and reduction can be also associated to the changes in
the electric current.

The responses in Figures 3 and 5 are an example of the response of each sensor. Since
the system works as a set of sensors, multiple responses such as the one presented in each
figure must be analyzed and preprocessed. Feature extraction and data analysis strategies
are required to extract important information from a pattern-recognition point of view.
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(a)

(b)
Figure 5. Electrochemical techniques. (a) Response obtained by a sensor using a pulsed sweep signal
in a period of small as excitation signal. (b) Time response of an oxidation–reduction system when a
pulsed potential signal is applied.

Figure 6. Excitation signal corresponding to differential pulse voltammetry.

In the case of the electronic nose sensors, the response by each sensor is a little different.
Figure 8 shows a typical response of one MOS or CP sensor used in an array of an electronic
nose. This response considers some time response and recovery associated to each sensor.
As in the case of electronic tongues, the raw data requires some additional steps to obtain
relevant information [26].
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Figure 7. Excitation signal corresponding to the electrochemical chronoamperometry technique.

Figure 8. Type of response obtained by sensors in the electronic nose [26].

3.1. Electrochemical Sensors

Electrochemical sensors are the largest group of chemical sensors and are characterized
by their operation based on the relationship between electricity and chemical reactions,
which refers to the reaction between the electrode and the analyte [27]. They are divided
into three main subtypes: potentiometric, amperometric, and conductimetric [28]. Elec-
trochemistry involves the transfer of charges to another phase through electrodes, whose
reactions are chemically modulated and are the basis of the sensing process of these ele-
ments [28]. Thus, it is possible to speak of chemical sensors when the sensing element of
the electrode is organic or inorganic so that it has a selective interaction with the substance
to be analyzed. This type of sensor, therefore, detects a certain biological or chemical
reaction with the material to be studied, called the analyte, through the receptors and trans-
forms it into a primary signal of another type (electrical, optical, or thermal, among others)
using some type of transducer, whose main characteristics correspond to the specificity
in its interaction with the compound of interest, its high sensitivity, short analysis time,
and versatility [29]. It is important to remember that the difference between sensors and
transducers corresponds to the fact that the former are always in contact with the instru-
mentation variable, so they take advantage of the properties of the material in which they
are located to quantify some characteristic of interest; while the latter use different methods
to convert the data received into useful information for study by means of an electronic or
computer system [30], providing information about the sample, the process, or the system
to be investigated.

There are three fundamental rules for all electrochemical sensors, regardless of their
type or configuration, as follows:

1. It requires the circuit to be closed. In other words, it needs at least two electrodes in
a single electrochemical cell [28]. Electrically, these are usually called the working
electrode (sensor), where the electrochemical reaction to be studied takes place, and the
reference electrode (return signal), which controls the variable of interest on the sensor.
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2. The electroneutrality condition, which states that the sum of negative charges in an
electrochemical cell must be equal to the sum of positive charges, must be met.

3. The charge transport in the sample can be electronic or mixed (electronic–ionic)
[28], which corresponds to an essential aspect to the sensor performance. If a non-
zero current (charge passing) flows through the mixed interface, electrolysis occurs
according to Faraday’s law, where electronic conduction in the metal is converted to
ionic conduction in the sample.

Table 1 summarizes the operation of the three main types of electrochemical sensors,
considering that there are a large number of classification categories [31].

Table 1. Electrochemical sensors.

Electrochemical Sensors

Potentiometric Amperometric Conductimetric

The sensors use two electrodes,
a working and a reference electrode [32].

Usually these sensors use a working and
reference electrode. An auxiliary
electrode is used to complete the
electrochemical cell [30,32,33].

Sensors have a configuration of two
electrodes of different materials,
a working and reference electrode [32],
but it can work with two equal electrodes,
using an alternating voltage, since the
application of a potential difference
creates an electric field that orders the
movement of the ions. The main
advantage of the differential mode is the
cancellation of interference [34]

The sensors are based on the potential
difference between the working electrode
and the reference electrode [32,33]. This
potential difference is generated by an
ion exchange between the working
electrode surface and the analyte [35].

The sensors measure the electrical current
generated by the electrocatalytic reaction
when a potential is applied between
working and reference electrodes [31,33].

These sensors are based on the
measurement of conductivity changes at
different frequencies [36]

Sensors are generally classified as ion
selective electrodes (ISE) and are based
on field effect transistors [36].

The measured electrical current is
proportional to the analyte
concentration [31] and is modeled
according to Fick’s law [29,32].

These sensors have been developed using
polymers and metal oxides. Biosensors
are manufactured by modifying the
electrode with biological material [32].

The two most important factors in the performance of electrochemical sensors are
the resistance to charge transfer and the exchange current density [28]. Since the current–
voltage curve is affected by the nature and concentration of the electroactive species, it
is essential to ensure that the electrode surface has an adequate surface area and high
electrical conductivity [37], allowing rapid transfer that makes detection fast and accurate.

3.2. Some Materials Used in Electrochemical Sensors

The materials used in the design of electrochemical sensors are strongly associated
with a specific area of study; however, by taking a redox process as the base electrochemical
phenomenon, some materials present a greater or lesser contribution of electrons to said
process. Some of these materials are palladium, platinum, and alloys such as gold–silver,
nickel, gold, or tungsten, among others. The material selected for a type of electrode
depends on the speed with which the electrochemical phenomenon is to be measured.

3.2.1. Carbon-Based Sensors

The construction of electrodes with high sensitivity values involves the additive
manufacturing of sensors where the high costs in the implementation of materials with gold
or nickel alloys raise the production costs, so the carbon-based additive manufacturing [38],
such as carbon or graphene mixed with thermoplastic materials such as polylactic acid
(PLA), significantly reduces the complexity of the process and its production costs. One
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of the applications where the sensor with carbon-based electrodes presents significant
advantages is in the detection of carbon dioxide [39] CO2 in internal combustion vehicles,
where high temperatures present a significant challenge. In these sensors, a cell with a
carbonate electrolyte is commonly used in the detection and reference electrodes, with a
mixture of carbonates.

Another type of carbon-based electrodes are those called vitreous carbon [40] or glass-
like carbon. This type of electrode is formed by the carbonization of phenol-formaldehyde
resin, arranged in a hexagonal pattern. This type of material provides a relatively high
current density and can be produced in the form of films, sheets, or powder. There are also
screen-printed carbon-based electrodes [41] (SPCE). Their big difference with glassy carbon
electrodes is their disposable nature and low manufacturing cost.

3.2.2. Graphene-Based Electrodes

Graphene is a material that has provided significant advantages to electrochemical
sensors, due to its relative high electrical conductivity and low physical density. Some of
its applications are in the detection of dopamine [42], where this material is used in form of
graphite paste, graphene sheets, or graphene ink. Sensors based on graphene electrodes can
also be designed as biosensors using the chemical vapor dispersion method [43] on nickel or
copper substrates or by developing graphene oxide [44], through which graphene structures
with a lateral dimension of less than 1 µm and a thickness of 2.8 ± 0.2 nm are fabricated.

3.3. Two-Dimensional Materials-Based Electronic Noses

Some of the materials used in electronic noses are conductive polymers, metal oxide
semiconductors, and quartz crystal microbalance.

Graphene is probably the most widely used 2D material for making gas sensors.
An overview can be made for incorporating 2D materials in functional devices. One of the
methods of implementing graphene (bottom-up) involves organic synthesis and chemical
vapor deposition. This process leads to thin plates of graphene and other 2D materials,
which have shown great compatibility with SI-CMOS technology [45].

Speaking about materials, electronic noses can also help in sample enrichment meth-
ods, one of them being “purge and trap”. This method involves passing an inert gas
through a substance that can exist as a gas, liquid, or solid. The volatile components in
the substance are then captured by a specific adsorbent trap. The trap is then heated,
causing the captured molecules to be released and made available for measurement [46].
The most important feature of this method is the load capacity of the trap, because if the
trap is saturated, it can break the volatiles. This overloading can be avoided if the trapping
material is carefully chosen [47]. Electronic noses can be used to determine these materials,
as it will help if the experiments and materials created with this technique are made to
have the highest possible success rate. Moreover, they can increase the efficiency of cross-
selective sensor arrays for gas analysis [48]. In gas sensing applications, MXenes, which
belong to the 2D structures, were discovered in 2011. They are molecular sheets obtained
from carbides and nitrides of transition metals. MXenes are currently widely implemented
due to their high surface-to-volume ratio and high electrical conductivity, enabling a high
gas adsorption and tuning of surface chemistry and functional groups [49]. Additionally,
chalcogenides are applied in sensing devices. They consist of a chalcogen anion (elements
from group 16 of the periodic table, generally sulfides, selenides, and tellurides) and a more
electropositive element [50].

3.3.1. Molecularly Imprinted Polymer (MIP)-Based Electrodes

MIP electrodes consist of printing a synthetic material on a substrate with cavities that
specifically adapt to the anite for which they were designed [51].

MIP-based electrodes have high selectivity, which is why they are widely used in
separation processes. One of the most important developments has been achieved by
applying an MIP to a nanostructured carbon material surface [52]. This is due to its catalytic



Biosensors 2024, 14, 190 11 of 25

properties in redox reactions and improvements in voltammetric response, additionally
providing important improvements in identifying an analyte in complex solutions. MIPs
can also be found in graphene nanostructures to improve the detection sensitivity of the
target analyte [51]. They can also be integrated with metal electrodes [53] in neuroscience
applications using techniques such as differential pulse voltammetry. An example of
this is printed polymeric nanobeads [54] for the detection of sarcosine (SAR) in urine.
In general, MIP sensors are excellent for the detection of biomarkers. MIP electrodes also
have applications in the detection of contaminants in foods where they are known as MIP
electrochemical chemosensors.

With the advancement of technology, the development of new techniques has been
achieved that allow different types of materials to be efficiently integrated, as is the case
of electrodes made with particles of materials in two-dimensional layers (2DLM) [55],
where they use materials such as graphene and its derivatives, MXenes, phosphorene,
transition metal dichalcogenides, and organometallic structures. In this same direction
are nanostructured materials such as those based on CMOS technology [56], the detection
of analytes through fluorescence, as well as electrode sensors based on iron, cerium, or
mercury [57].

The following section will address in more depth the components that are at the
forefront of the development of highly sensitive electrodes for electrochemical sensors.

3.3.2. New Emerging Materials

The current development of electrochemical sensors emphasizes miniaturization,
heightened sensitivity and enhanced biocompatibility of materials, efficient detection of
specific analytes, and selective determination of natural and biological components, con-
taminants, and additives. [58]. In general, the electrochemical sensors can be modified and
tailored involving nanocomposites, conducting polymers, biosensors, and nanoparticles.
Nevertheless, the discovery and combination of new materials challenge a conventional
classification, as materials are progressively being intermixed. Among the trends in the
development of sensors is the use of biosensors, taking advantage of the biological in-
teractions and responses that can be converted into an electrical signal, providing high
sensitivity, lower cost, and versatility in various applications such as healthcare, environ-
mental monitoring, and food [59,60]. Table 2 summarizes some of the materials used.

Table 2. Materials used for Electrochemical sensors.

Electrochemical Sensors

Elements Application

Nanocomposites featuring gold nanoparticles and
catechol Uranyl ion detection, addressing nuclear cycle contamination concerns [61]

Polyaniline-based nanocomposites Detection of biomolecules and environmental pollutants and can be used to
develop supercapacitors [62,63]

Polyaniline, Polypyrrole, Polythiophene, and Poly
(3,4-ethylenedioxythiophene)

Are the most frequently used conducting polymers due to their customized
and enhanced electrical conductivity by electronic doping, high
environmental stability, and biocompatibility [64–67]. They impart
selectivity to the sensors, enabling them to identify particular
substances. [68]. Differentiating varieties of coffee and black tea has been
achieved using electronic tongues that combine conductive polymers on
nickel-immersion-gold electrodes and a copper matrix on layer-by-layer
nanostructured materials [69,70].
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Table 2. Cont.

Electrochemical Sensors

Elements Application

Carbon, metallic, and metallic oxide nanoparticles

Allow the building of electrodes and assist matrices, with metal oxide
nanoparticles offering superior conducting properties [71]. Electrodes based
on glassy carbon with different modifying materials detect glucose and
tartaric acid in red wine [72]. Combinations of nanoparticles in membranes
have shown promise in applications such as wine and milk detection [58].
Detection of toxic substances such as pesticides and disinfectants through
metal oxides Fe3O4, ZnO, Au, CuO, MnO2, y TiO2.

Graphene oxide plus epoxy resin electrodes,
enzymes including different catalysts Glucose detection [60,73,74]

4. Pre-Processing and Feature Extraction

Preprocessing is a crucial step in the context of an electronic tongue before applying
classification or machine learning algorithms because it helps enhance the quality of the
input data by reducing noise, normalizing variables, and removing irrelevant information.
Electronic tongues and noses often generate complex, multi-dimensional data from the
array of sensors. Preprocessing techniques like unfolding, noise reduction, normalization,
and scaling ensure that the data is in a suitable form for analysis, improving the performance
and interpretability of the subsequent classification or machine learning algorithms [75].
This step aids in extracting meaningful patterns, enhancing the accuracy of taste analysis,
and enabling more effective discrimination and identification of different substances from
the point of view of multivariate analysis.

4.1. Dimensionality Reduction

The use of a dimensionality reduction technique is essential for data analysis when
using electronic tongues and noses because of the complexity of datasets obtained by the
sensor array. The combination of both systems can be an ideal step for applying sensor data
fusion strategies. This step aims to transform high-dimensional data into lower-dimensional
data without losing essential information by identifying relevant features that capture the
essential characteristics of data [76]. Some of the strategies used in these systems include
Principal Component Analysis (PCA) [77,78], Kernel principal component analysis [7],
project pursuit [79], isomap [7], Laplacian Eigenmaps, Locally Linear Embedding (LLE),
modified LLE [79], Hesian LLE [80], t-distributed Stochastic Neighbor Embedding (t-
SNE) [79], and Linear Discriminant Analysis (LDA) [77,81], among others.

4.2. From the Time Domain to the Frequency Domain

The use of some techniques such as the Fast Fourier Transform or the wavelet
transform [82,83] has also been addressed in the work with these devices. These techniques
are useful to extract features by changing the original time-domain data to frequency-
domain data [84].

5. Data Analysis

Following data preprocessing and dimensionality reduction, the subsequent step in
data analysis involves an automated learning process. In terms of learning strategies,
these processes can be categorized into three main groups: supervised, semi-supervised,
and unsupervised learning. Supervised learning algorithms are a specific category of
machine learning algorithms where the model is trained on a labeled dataset. These
algorithms learn from the labeled data to make predictions or decisions on unseen data.
Some of the most known algorithms are decision trees, neural networks, Naïve Bayes,
partial least squares (PLS), k-nearest neighbors (KNN), and support vector machines
(SVM). Supervised learning algorithms are commonly used for classification and regression
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tasks in electronic tongues and noses. Their objective is to predict the class or value of
a target variable based on input features. In contrast to supervised learning algorithms,
unsupervised learning algorithms are trained on unlabeled data, meaning that there are
no corresponding target labels for the input data points. These algorithms learn patterns
and structures from the input data without explicit supervision. Some of the most used
are Principal Component Analysis (PCA), Kernel PCA, t-Distributed Stochastic Neighbor
Embedding (t-SNE), Laplacian Eigenmaps, and Locally Linear Embedding (LLE). They
are commonly used for clustering, dimensionality reduction, and anomaly detection tasks
in electronic tongues and noses, where the objective is to uncover hidden patterns or
structures in the data.

To perform the aforementioned analyses, various multivariate techniques have been
developed and can be broadly classified into two main categories. The first category com-
prises chemometric statistical techniques, while the second encompasses various artificial
neural networks (ANN).

Numerous comparative studies have been conducted to determine the most effec-
tive technique for pattern recognition and multivariate analysis using electronic tongues
and noses. The learning algorithms that are usually used include Decision Trees, Neural
Networks, Naïve Bayes, PLS [85], KNN, SVM, SFA, PLS-DA, DFA, SLDA, and Rule learn-
ers [76]. Table 3 shows some of the applications and algorithms used for data analysis
during the last year as an example to show the big quantity of approaches and applications
in electronic tongues and noses.

Table 3. Some of the methodologies developed for data analysis of electronic tongues and noses
during the last year.

Methodologies

Device Application Methodology

electronic tongue Detection of bovine mastitis
with milk samples

multidimensional projection technique interactive document
mapping (IDMAP) + parallel coordinates + Decision Trees [86]

electronic nose
Determination of quality of
tea from different picking
periods

Adaptive pooling attention mechanism (APAM) (Adaptive
multi-scale pooling structure + concatenation + convolutional
neural network) [87]

electronic tongue Detect synthetic antioxidants
edible olive oils

Low level data fusion (LLDF), mid-level data fusion (MLDF) +
Discrete wavelet transform (DWT) + Artificial neural network
(ANN) [88].

electronic nose prediction of tomato plants
infected by fungal pathogens

PCA + Discriminant Functions Analysis (DFA) + Backpropagation
neural network (BPNN) [89]

electronic tongue Liquor beverage
classification

unfolding + mean centered group scaling (MCGS) + (Hessian
LLE/Isomap, Laplacian Eigenmaps/LLE/LTSA/and modified
LLE) + Multi-layered perceptron (MLPN) [90]

electronic nose Determination of Pitaya
quality Autoscaling + PCA + Linear discriminant analysis [91]

electronic nose detection and identification
of subterranean termites PCA + Quality factor analysis (QFA) [92]

electronic tongue classification of honeys
unfolding + mean centered group scaling (MCGS) +
(PCA/t-SNE/Laplacian Eigenmaps/Isomap/Locally Linear
Embedding(LLE)) + k-nearest Neighbors (KNN) [80]

electronic nose and
electronic tongue

prostate cancer detection in
exhaled breath and urine
samples

Mean-centering function + Orthogonal Signal Correction (OSC) +
PCA + Discriminant Function Analysis + (Quadratic
discrimination analysis (QDA)/Naïve Bayes/Support Vector
Machine (SVM)/k-nearest Neighbors (KNN)/Random
Forests/Decision Trees) [93]
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Table 3. Cont.

Methodologies

Device Application Methodology

electronic tongue +
electronic nose Flavor perception

This work proposes an Olfactory–Taste Synesthesia Model (OTSM)
and compares the results with PCA-ELM, WF-LPP, VIP-ELM,
VIP-RF, VIP-GA-SVM, BPNN, ELM, GS-SVM, and RBFNN [94]

electronic tongue +
electronic nose + electronic
eye + near-infrared
spectroscopy

Authenticity and species
identification of fritillariae
cirrhosae

PLS-DA for authenticity and PCA-DA for species
authentication [95]

6. Applications of Electronic Tongues and Electronic Noses

Electronic tongues, or e-tongues, are becoming indispensable to the industry and to
monitoring systems. Their applications cover several fields, some of which still need to be
explored. Generally, they are used for quality analysis and verification of food, beverages,
dairy products, pharmaceutical products, and cosmetics. Moreover, there are investigations
around using e-tongues in disease detection and checking the state of the food [96].

On the other hand, electronic noses or e-noses are sensors with great potential in
the perfume and the food industry as well. The combined use of electronic noses and
tongues can allow one to obtain a broad information spectrum without biased data. Biases
in data can arise due to the use of sensor panels comprised of groups of both trained and
untrained individuals. Moreover, people cannot be used for the detection of toxic gases or
non-consumable substances [97]. This is a wide area where these sensors, in combination
with a proper discrimination algorithm and a machine learning approach, can provide a
low-cost, on-site, highly effective, and almost immediate alternative to other traditional
qualitative and quantitative analysis techniques. The following subsections show some of
the areas where these elements have been used.

6.1. Health Care

Various researchers have used the sense of smell to determine the physical condition
and the general health of patients throughout history. Many of the diseases produced in
humans give off odors that are recognizable in a person’s day-to-day life. Some of these are
well identified by the literature and Table 4 shows some of them as explained in [98].

Table 4. Descriptive aromas previously used for diagnosing human diseases [98].

Disease Body Source Descriptive Aroma

Anaerobic infection Skin, sweat Rotten Apples

Bladder infection Urine Amine-Like

Gout Skin Gouty Odor

Liver failure Breath Musty fish, feculent

Pseudomonas infection Skin, sweat Grape

Scrofula Body Stale Beer

Yellow Fever Skin Butcher’s Shop

Taking advantage of the human body to produce some specific odors associated to
some illnesses, which are relevant, for instance, in diseased body parts or fluids obtained
from these tissues, it is possible to identify biomarkers for the detection of volatile organic
compounds (VOC). Table 5 shows some of these VOCs according to [98].
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Table 5. Volatile Chemical Biomarkers used for diagnosing human diseases [98].

Disease Volatile Chemical Biomarkers

Allograft rejection Carbonyl sulfide

Breast cancer C4-C20 alkanes

Diabetes Acetone, ethanol, methyl nitrate

Lung cancer Alkanes, ketones, specific aromatic
hydrocarbons

Necrotizing enterocolitis 2-Ethyl-1-Hexanol

Schizophrenia Pentane, carbon disulfide

One example of how these aromas are used is the use of non-selective gas sensors for
the analysis of breath in lung cancer detection [99]. Health care and disease prevention
have also used electronic tongues to detect illnesses such as cancer in urine samples. This
application is studied due to its practicality, since it is a non-invasive method, and due
to its cost-effectiveness compared to other methods used for the same purpose, such as
Raman spectroscopy, infrared spectroscopy, and fluorescent spectroscopy. Furthermore,
electronic tongues can discriminate, classify, and analyze information with high complexity
in a shorter amount of time [96]. Electronic noses have been also used in the analysis of
volatile organic compounds such as those that can be found in urine, blood, and exhaled
breath [100]. Colorectal cancer detection is other interesting area where electronic noses can
detect volatile organic compounds (VOC) [101]. In these applications, the VOCs are used
as a non-invasive biomarker for early cancer detection [102]. The combination of electronic
tongues and noses has also been explored in the health care area. As an example, these
devices were combined for the early detection of liver cirrhosis as a non-invasive method,
considering that the effectiveness of both devices increases the early detection [103].

Recently, and as a strategy for COVID-19 detection [104], an array of paper-based
electronic tongues has been used, which is friendlier for the user, and employed compounds
like nanoparticles, metal ion compounds, and organic dyes as sensing materials that react
with human serum samples [105] to detect the presence of acetylsalicylic acid (ASA) in
human physiological fluids using a chitosan-based electrochemical sensor and a voltam-
metric electronic tongue. This approach aims to prevent ASA poisoning. The PCA and DFA
methods were used to ease the visualization of the dataset, and the PLS regression method
was employed to implement predictive models [106]. This approach was also used for the
diagnosis of cancer through saliva using supervised and unsupervised machine learning
with a voltammetric e-tongue. This method could determine if a patient had cancer or not,
with an accuracy above 80% in the binary discrimination [107]. COVID-19 detection has
also been assisted by electric noses. As an example, in [108], the combination of clinical
signs and symptoms, laboratory tests, imaging measurements, and an electronic nose was
developed as a non-invasive method to rapidly detect COVID-19 by using metal oxide
semiconductor gas sensors. The detection considers the VOCs in the exhaled breath and
can be used in combination for the classification of patients according to the pulmonary
diffusion capacity [109].

Other applications include the palatability evaluation of Traditional Chinese Medicine
(TCM) oral formulations including syrup, mixture, oral liquids, tincture, and granules,
evaluated by combining human sensory evaluation, e-tongue evaluation, and saliva amount
evaluation [110].

6.2. Food Industry

e-Tongues and e-noses have also been widely used in research to check the quality,
taste, and state of food. For instance, e-tongues have been employed in the qualifying
process of the taste of umami in Hanwoo meat [111]; in the comparison between Koji-mold
ripened cheese and Camembert cheese flavors, utilizing different strains of Koji for this



Biosensors 2024, 14, 190 16 of 25

purpose [112]; for the discrimination of honey based on its botanical origin, using a poten-
tiometric electronic tongue to specifically distinguish between monofloral, polyfloral, and
honeydew honey [113]; and in the discrimination between Lager Beer types, considering
their electrochemical active compounds, through an array of screen-printed electrodes [114].
Precision agriculture is vital nowadays to produce more food and optimize the growing
space. Soil monitoring is fundamental for this purpose. In this way, there have been
some developments, such as the proposed microfluidic system based on an array of four
Layer-by-Layer sensors made of films deposited onto gold interdigitated electrodes (IDEs)
inside a microchannel made of polydimethylsiloxane (PDMS), to discriminate different
soil samples rich in sulfur, nitrogen, phosphorus, magnesium, calcium, and potassium.
The PCA, Interactive Document Map (IDMAP), and Sammon’s Mapping methods were
employed to analyze and discriminate the sensor data [115].

6.3. Product Authenticity and Identification

In the market, it is common to find many food products that claim to be authentic
or 100% natural but they are imitations or adultered versions of the products with lower
quality, which have caused great damage to the trust and health of consumers. In this
field, electronic noses and tongues are beginning to be used as tools to strengthen quality
controls and be able to guarantee the authenticity of products in a faster but equally reliable
way [116]. Most of these works are based on potentiometric and voltammetric multi-sensor
devices’ point of view. Some of the processes considered by electronic tongues and noses
include the following:

• Authenticity and species identification of Fritillariae cirrhosae [95].
• Determination of synthetic antioxidants in edible olive oils [88].
• Honey authenticity determination [80,117–119].
• Detection of Monilia Contamination in Plum and Plum Juice [81].
• Assessment of authenticity and adulteration of sausages [120].
• Detection of characteristics for origin region classification. As an example, tea classifi-

cation, where fermentation processes and growing conditions are different [121].
• Fruit freshness classification. As an example, Huang et al. [122] developed an elec-

tronic nose to classify fruits in three classes—fresh, sub-fresh, and spoiled—using a
zynq 7000 SOC and Labview for processing including PCA + LDA and PCA + KFDA
to obtain 96.2% accuracy when the system was evaluated with jackfruit, strawberry,
Hami melon, pear, apple, grape, and banana. The system takes advantage of the
sugars in the fruits that decompose into alcohol by using alcohol gas-sensitive sensors.

6.4. Product Quality

Regarding the identification of qualitative features in food and beverages, e-tongues
and e-noses as an example have been employed to evaluate the taste characteristics and
composition of Italian wines, due to the sensors’ capability to identify components and
patterns in complex substances [123]. Similarly, an electronic tongue multi-sensor system
(ET) was employed for age estimation and compound identification of Madeira wines.
The results indicated that the e-tongues system yielded significant results in estimating the
age of the wines [124].

6.5. Environmental Applications

The monitoring of environmental conditions is a big area where electronic sensors
have multiple applications, allowing a better understanding of ecosystems and the im-
pact of human activities on them. Several developments are available for environmental
engineering applications.

6.5.1. Detection of Substances in Water

Water quality monitoring is an important issue nowadays, due to several contaminat-
ing agents present in water resources. For this reason, it is crucial to inspect the water’s
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integrity. Due to the capability to identify several characteristics and discriminate complex
substances, electronic tongues have been used to detect substances, the measurements
of chemical species in solutions [125], and qualitative features in the water. For instance,
electronic tongues have been employed for the detection of taste and odor compounds
originating from algae in water, due to their practicality and low cost [126]. The analysis
of mineral water was also explored to compare different brands [127]. Moreover, it was
proposed the employment of voltammetric e-tongues for the identification and classifica-
tion of microplastics in water, because electronic tongues can provide a rapid, low-cost,
and on-point analysis of components in water with a high accuracy [128]. Microplastic
monitoring is important because of the risk in human health [129] associated with ingestion
because of bad treatment of water for the food industry [130]. In this sense, the iden-
tification and quantification of microplastics in the marine environment have also been
explored [131]. Other approaches include the development of systems for quantitative
analysis of inorganic ions in aqueous media by using sensor arrays composed by graphite
and zeolites to evaluate samples in rivers [132].

6.5.2. Environmental Contaminants Detection

The use of ionic liquids for electrochemical sensors was explored for drug residues,
pesticides, and heavy metals [133].

Heavy metals are another polluting agent in water bodies due to anthropogenic
activities. They threaten marine ecosystems and public health because the heavy metal
ions can accumulate in living beings. There are several investigations in this specific area
of study. For instance, through cross-sensitivity analysis, an array of 33 potentiometric
electronic tongues made of vitreous and crystalline membranes were used in research
where data was analyzed with partial least squares and artificial neural network [134].
Solvent polymeric and chalcogenide glass membranes used as potentiometric sensor arrays
to detect ultra-low activities of copper, zinc, lead, and cadmium ions found in seawater
have also been used for this aim [135]. Electronic tongues have also been tested with
ternary nanocomposites based on cellulose nanowhiskers (CNW), electrospun nanofibers,
and silver nanoparticles in their layers. They were set in an array of sensors and submerged
in contaminated water with lead, cadmium, nickel, and copper ions [136].

Photoelectric electronic tongues-based colorimetric sensors using pyridyl azo and
porphyrin indicators to detect heavy metal ions in fishes commercialized in Zhenjiang,
China, is another application that can be found in the detection of heavy metals oriented
to the alimentary industry and ecosystem monitoring. In this work, the data analysis
and modeling were developed through partial least square regression (PLS) and extreme
learning machines (ELM) [137].

Another major contaminant found in water is pesticides, because it is extensively used
in agriculture. An electronic nose has been demonstrated to be capable of detecting these
substances in groundwater, showing its advantages as a monitoring system. [138]. This
kind of contaminant has been also explored with the use of an electronic tongue for soil
pesticides pollution detection and specific recognition, showing the advantages of its use in
in situ detection [139].

6.5.3. Odor Detection

The authors of [140] showed, for instance, the application of MOX sensors in water
quality monitoring, air quality applications, process control, and verification of odor control
systems efficiency.

6.6. Criminalistics and Rescue

One potential use of electronic noses is in criminal investigations to locate missing
persons. The decomposition of corpses is relevant to these types of criminal cases, as it
can indicate how long the person has been dead. However, in criminal cases, the body
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is always hidden. Although detection dogs are currently the most effective tool, they are
limited by their cost and operational limits.

In an experiment conducted by Amber Brown and company, together with a corpse
donated for research, they programmed a NOS-E type electronic nose to see how it behaved
in the decomposition process of the corpse. During the first phase, the corpse was giving
off odors around the torso and head that the nose was able to detect without any problem,
and in more advanced phases where the head presented a more advanced decomposition
than the whole body, the electronic nose had a peak of detection. In summary, the nose
was able to detect the body at all stages of decomposition. For more detailed information
see [141].

Electronic noses can also be used to detect people who have been kidnapped. The char-
acteristics of the gases that can detect the location of live-trapped persons can be seen in
the Table 6.

Table 6. Application: Location of live-trapped persons [142].

E-Nose Detection Substrates Compounds Present Chemical Classes

Respiration gases Inorganics Small mol. wt, gases Oxides

Stress compounds Ketosis (Starvation) Aliphatic HC Ketone

Wound compounds Contusions,
lacerations Aliphatic VOC mixture

Waste excretion Urination Aliphatic Carbamide

7. Conclusions

Electronic tongues and noses have proven to be invaluable tools in various scenarios
due to their ability to accurately and quickly analyze features in liquid substances and
gases. An important feature that allows their versatility is the use of sensor networks
and specialized data analysis techniques. With the development of better sensors, data
acquisition systems, and hardware tools for processing and analyzing data in real time,
these systems are expected to tackle more sophisticated applications and developments.
Although electronic tongues and noses can interact differently because of the sensors,
information analysis follows similar steps. This is an important feature because it allows
the use of sensor data fusion strategies. The literature provides examples of applications
that combine both systems and confirm that this is an active area for further research. In
most cases, dimensionality reduction is necessary because of the multivariate nature of
data and to facilitate the use of AI strategies. The most common strategy in the revised
works is Principal Component Analysis. However, for identification and classification
tasks, multiple strategies are developed, and there is no common method for managing
the data.

Electrochemical sensors are essential for the development of this kind of device and
continue to be an active research area. This is because of the way they interact and
because electronic developments allow the addition of important features for their use.
In this sense, it was found that both devices have an essential use as monitoring systems.
From our point of view, automated and intelligent electronic tongues and noses will
appear shortly as smart devices with online capabilities. Each system has developments in
multiple applications, including but not limited to health care, environmental monitoring,
criminalistics, and rescue, among others. However, they can be used in all the areas where
smell and taste sense are a solution. Some problems related to the use of these devices
as a commercial and accepted solution are interferences caused by changes or failures in
hardware and changes in operational conditions. This area continues as a problem to solve
with the aim of providing robustness to the system.

Although the systems can be used in separate ways, multiple works show that com-
bining these devices improves the analysis of the information captured. In the same way,
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the trend is to develop a multisensor system similar to the human sense system due to the
multiple applications that require a combined analysis to produce a more accurate result.
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