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Abstract: To improve the efficiency and patient coverage of the current healthcare system, user-
friendly novel homecare devices are urgently needed. In this work, we developed a smartphone-
based analyzing and reporting system (SBARS) for biomarker detection in lupus nephritis (LN).
This system offers a cost-effective alternative to traditional, expensive large equipment in signal
detection and quantification. This innovative approach involves using a portable and affordable
microscopic reader to capture biomarker signals. Through smartphone-based image processing
techniques, the intensity of each biomarker signal is analyzed. This system exhibited comparable
performance to a commercial Genepix scanner in the detection of two potential novel biomarkers
of LN, VISG4 and TNFRSF1b. Importantly, this smartphone-based analyzing and reporting system
allows for discriminating LN patients with active renal disease from healthy controls with the area-
under-the-curve (AUC) value = 0.9 for TNFRSF1b and 1.0 for VSIG4, respectively, indicating high
predictive accuracy.

Keywords: colorimetric microarray; smartphone application; clinical diagnostics; biomarker;
image processing; point-of-care testing

1. Introduction

Lupus nephritis (LN), a severe manifestation of systemic lupus erythematosus (SLE),
significantly compromises patient outcomes through immune-mediated renal damage,
characterized by the deposition of immune complexes in the kidneys [1]. The progression
of SLE to LN varies widely among patients, ranging in the degree of renal involvement,
with 40% of these individuals eventually receiving a clinical diagnosis of LN [2]. The clinical
presentations and laboratory parameters of patients with LN demonstrate significant
variability, depending on disease activity. Active lupus nephritis (LNA) is characterized
by ongoing renal inflammation and disease activity, often manifested clinically through
proteinuria, hematuria, hypertension, and renal dysfunction, with significant urinary
protein levels being a primary indicator of its active state [3]. The existing laboratory
markers for LN, such as proteinuria, urine protein-to-creatinine ratio, creatinine clearance,
anti-dsDNA, and complement levels, have challenges in accurately detecting renal activity
and damage due to their limited specificity and sensitivity [4].

Given the complex interplay between the immune response and renal pathology in
lupus nephritis (LN), the detection and management of this condition present significant
clinical challenges. The immune system’s activity in SLE leads to the formation and
deposition of immune complexes in the kidneys, triggering inflammation and damage
that, without precise and early intervention, often progresses to LN with poor prognostic
outcomes [1]. The variability in the progression and presentation of LN among patients
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further complicates its diagnosis and management, necessitating a dynamic and sensitive
approach to detect changes in renal function and disease activity. This diagnostic challenge
highlights a gap in the current diagnostic methodologies and underscores the need for more
sensitive and specific biomarkers or testing approaches in the management of this condition.
To effectively manage the progression of disease in these patients, the development of
diagnostic approaches is crucial in detecting renal flares and consistent monitoring of
disease progression.

Although invasive procedures like kidney biopsies remain the established gold stan-
dard for disease diagnosis, the associated risks and potential for serious complications
underscore the need for safer alternatives [5]. Non-invasive methodologies, using serum,
urine, or saliva samples, offer a promising solution by employing non-invasive techniques
to detect novel biomarkers present in bodily fluids [6]. Identifying the changes in protein
expression in biological fluids presents a viable avenue for early disease detection and
could serve as an adjunctive method alongside histopathology.

Over the past decade, the field of proteomics has significantly advanced clinical re-
search, enhancing our understanding of disease mechanisms, facilitating the discovery of
novel biomarkers for early diagnosis, and improving the monitoring of disease progression.
The combination of two-dimensional gel electrophoresis (2D-PAGE) and mass spectrom-
etry (MS)-based protein identification has served as the leading approach for proteomic
analysis [7]. Recently, the mass spectrometry method has been enhanced by the advent of
protein microarrays, an emerging proteomic technology that allows for the detailed investi-
gation of specific protein–protein interactions associated with distinct disease conditions [8].
Despite the precision of mass spectrometry in identifying specific proteins and peptides,
its application encounters significant challenges, where the presence of highly abundant
proteins can significantly impede the detection of proteins with lower abundance [9].

Conversely, affinity-based methodologies, utilizing high-affinity ligands such as anti-
bodies, offer a solution to these challenges. By selectively binding to their target proteins,
these ligands enable the precise identification and quantification of low-abundance pro-
teins [10]. This specificity is achieved through the use of antibodies or antigens that have
been designed to recognize and bind to specific protein markers, thereby overcoming the
limitations posed by the abundance of other proteins in the sample. Moreover, while
mass spectrometry presents cost-related and operational challenges, the development and
utilization of biomarker panels are notably less expensive and user-friendly, offering a
practical alternative for widespread diagnostic applications [11].

As our understanding of the determinants influencing physiological processes deepens,
there emerges a need for the screening and validation of biomarkers prior to finalizing
diagnostic decisions. Point-of-care (POC) systems represent a pivotal advancement in this
context, offering utility both within clinical environments for patient testing and as integral
components of home-based diagnostic systems. The recent research has seen the development
of specialized protein arrays designed to quantify specific biomarkers indicative of LN [12–14].
By enabling the precise measurement of these markers, such arrays are instrumental in
distinguishing between different stages of LN, thereby offering a more tailored approach to
patient management and prognosis evaluation. The emerging smartphone-based platforms
offer promising solutions by providing portable, cost-effective, and connected alternatives
for patient diagnostics across various medical fields [15]; for example, smartphone-based
point-of-care testing of glucose and cholesterol [16], smartphone-based diagnostic platforms
for rapid detection of viruses [17,18], as well as a variety of commercial smartphone-based
devices and applications for personalized healthcare monitoring and management like Apple
Heath, Premom, SmartBP, etc. Several biomarker detection methods utilizing smartphones,
such as those discussed in [19–21], focus on fluorescence-based microarrays, showcasing the
potential and promise of advancing diagnostic capabilities through accessible and portable
technology. Furthermore, colorimetric detection systems, as applied in our study, offer several
advantages over fluorescence-based methods, especially in resource-limited settings [22].
Colorimetric detection offers a simpler, more cost-effective alternative to fluorescence methods
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without the need for specialized equipment and is unaffected by photobleaching, a common
issue in fluorescence detection systems [23]. This makes it more suitable for low-resource
environments and home-care settings where complex equipment may not be readily available.

In this study, we introduce our smartphone-based analyzing and reporting system
(SBARS) developed for the precise detection and quantification of biomarker signals in
colorimetric microarray images. Based on our literature research [24] and our recent find-
ings [25], two promising protein biomarkers, v-set and immunoglobulin domain containing-
4 (VSIG4) and TNF receptor superfamily member 1 (BTNFRSF1b), were selected for the
development of the smartphone-based multiplexed biomarker detection platform for lupus
nephritis (LN). The rationale behind the development of this smartphone-based detection
platform is rooted in its capacity to facilitate the early detection and ongoing management
of LN, a critical concern in the realm of autoimmune diseases.

The SBARS utilizes advanced image processing algorithms that have been optimized
to measure the intensity of biomarker spots with high precision, ensuring that the results are
in direct correlation with those obtained through conventional scanning devices typically
used in laboratory settings. We determined the optimal thresholds for our application
for key biomarkers, specifically VSIG4, crucial for the prompt and accurate diagnosis of
LN. SBARS is found to distinguish between active LN patients and healthy individuals
with a notable predictive accuracy, evidenced by AUC values of 0.9 for TNFRSF1b and 1.0
for VSIG4. This innovative system represents a significant advancement in home-based
healthcare technologies, offering a solution that is not only adaptable and reliable but also
cost-effective for diagnostics and disease monitoring.

2. Materials and Methods
2.1. Patients, Clinical Samples, and Reagents

All human-subject-related procedures were performed following the institutionally
approved IRB protocol (the University of Houston, IRB #STUDY00001299), and all the
clinical samples used in this study are existing samples from the sample bank at the
University of Houston. Serum samples from 10 healthy subjects and 20 lupus nephritis
patients were used for the protein microarray analysis. Specifically, 10 patients with
active LN (LNA), defined as having a systemic lupus erythematosus disease activity
index (SLEDAI) score of >4 and SLEDAI renal domain (rSLEDAI) score of >0. The renal
component of the SLEDAI (rSLEDAI) aggregates the renal-related aspects of the SLEDAI,
encompassing conditions such as hematuria (>5 red blood cells per high-power field),
pyuria (>5 white blood cells per high-power field), proteinuria (>0.5 g/24 h), and the
presence of urinary casts.

Two protein biomarkers were used in the array in this study. V-set and immunoglobu-
lin domain containing-4 (VSIG4, catalog no. MAB46461-100) and TNF receptor superfamily
member 1B (TNFRSF1b, catalog no. DY726) antibodies were purchased from R&D Systems
(Minneapolis, MN, USA). BSA-Biotin was used as a positive control, while phosphate-
buffered saline (PBS) was used as a negative control. Based on the prior research [25], we
selected the epoxy-modified polymer slide (STRATEC Consumables GmbH, Birkenfeld,
Germany) for the immobilization of the antibodies and their subsequent detection.

For the detection of these proteins, a cocktail mixture of biotinylated antibodies, anti-
VSIG4 (catalog no. BAD4646), and anti-TNFRSF1b (catalog no. BAF726) was purchased
from R&D Systems. Biotinylated anti-human IgG (catalog no. 109-065-170) was also utilized
in the mixture and purchased from Jackson ImmunoResearch (West Grove, PA, USA). The
serum samples were diluted with Super G blocking buffer (catalog no. 105101) from Grace
Bio-Labs (Bend, OR, USA) at an optimized dilution ratio. Streptavidin-HRP solution was
used followed by SeramunBlau solution (Seramun Diagnostica GmbH, Heidesee, Germany)
for colorimetric detection. Standard curves were generated based on serially diluted protein
standards to determine the protein concentrations in the patient serum.
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2.2. Biomarker Panel Chip

The chips/slides were loaded onto a non-contact microarray printing robot (sci-
FLEXARRAYER S3; Scienion GmbH, Berlin, Germany), and capture antibodies for each
biomarker were printed in triplicate (drop volume: 450 ± 20 pl) on the slide using a PDC90
needle (Scienion GmbH, Berlin, Germany) at 25 ◦C and 60% humidity. After printing,
the slides were dried in the printing chamber overnight and assembled with SecureSeal Hy-
bridization Chambers (Grace Bio-Labs, Bend, OR, USA). Each slide contained 16 identical
arrays separated by the chamber to prevent sample cross-contamination. The assay method
used for this array was the same as previously described [26]. Briefly, once dried overnight,
the slide was brought to room temperature 30 min before testing. All 16 chambers on the
assembled glass slide were blocked with 40 µL of blocking buffer at room temperature for
one hour. Afterward, the blocking buffer was decanted, and properly diluted standards
(recombinant proteins for VSIG4 and TNFRSF1b, serially diluted in 7 wells plus a blank)
or serum samples were added into pre-configured wells for a two-hour incubation, then
washed and incubated with streptavidin-HRP. Following additional washes, the slide was
incubated with the substrate, SeramunBlau, to detect colorimetric signals that correspond
to the printed antibody.

2.3. Instruments and Software

The colorimetric microarray images were scanned by a customized portable micro-
scopic reader (ioLight, Hampshire, UK). The microscopic reader comes with the ioLight
App, which is free for download from the Apple or Google Play app store and enables
users to view, save, and store scanned images (Version 1.5 (224)). The microscope’s built-in
camera captured the images, utilizing the ioLight application. The photos can be securely
archived in a private photo gallery, ensuring enhanced protection and confidentiality.
The size of the scanned color image is 1480 × 972 pixels in the JPEG format. The smart-
phone application was developed using Android Studio Giraffe and installed on a Samsung
Galaxy A13 with Android version 13. The OpenCV 4.8.0 Android version was utilized to
perform the biomarker signal detection task automatically.

The overview pipeline of this paper is shown in Figure 1.

Figure 1. The pipeline of the smartphone-based quantification of biomarker panel signals for disease
monitoring in lupus nephritis. The patient blood samples undergo microarray testing, where biomark-
ers are applied to slides and then imaged by the device. Standard curves are generated using serially
diluted recombinant proteins and assayed side-by-side with the patient samples. The application
processes the image, quantifying the biomarker signals for VSIG4 and TNFRSF1b. The result is
displayed in a user-friendly interface, indicating the LN diagnosis status.
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2.4. Biomarker Signal Detection

Multiple advanced image processing methodologies were employed to enhance the
accuracy and efficacy of biomarker signal detection in our study. The pipeline of the image
processing for biomarker signal detection is shown in Figure 2. The colorimetric microarray
image was first converted to the 8-bit single-channel grayscale image. Then, the grayscale
image was blurred using a (21 × 21) Gaussian filter for better thresholding results that
convolved the source image with the specified Gaussian Kernel. Instead of using global
thresholding techniques like OSTU [27], the adaptive thresholding technique [28] was uti-
lized, which calculates the threshold for each pixel based on its surrounding region, thereby
offering enhanced performance for images with varying illumination conditions. Moreover,
the quality of the resulting binary image is insufficient for direct pixel value extraction
due to the presence of noise. The binary image is further divided into 2 × 4 small areas
to be further processed. The connected component labeling and analysis technique was
implemented to identify the contiguous areas within the image. Components presenting
an area below a predefined threshold were classified as noise and subsequently filtered out,
ensuring a more accurate signal detection. Finally, the intensity for each biomarker was
calculated based on the mean of the pixel intensities of the labeled components.

Figure 2. Sequence of the image processing for biomarker signal detection. (a) The original image
scans. (b) The grayscale image. (c) The binary images using adaptive thresholding. (d) The threshold-
ing resulted in the grayscale image without the background. (e) The image segmentation result using
the connected component labeling technique. (f) The final result grayscale image without background.

2.5. Quantification of Biomarkers

The intensity of each biomarker was quantitatively transformed into concentration
values through the application of a fitted four-parameter logistic (4PL) curve model. It
has four parameters that need to be estimated. This approach provides a more precise
and robust estimation of the biomarker concentrations based on their respective intensity
measurements. The equation for the model is
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y = d +
a − d

1 + x
c

b (1)

where x is the intensity, and y is the concentration. The four estimated parameters are
the following: a represents the obtained minimum value, b represents the obtained maxi-
mum value, c represents the points of inflection, and d represents the curve’s Hill’s slope.
The fitted 4PL curve of each biomarker is shown in Figure 3.

Figure 3. The fitted standard curves of the biomarkers. (a) The standard curve of VSIG4. (b) The
standard curve of TNFRSF1b.

Given the intensity of a sample biomarker, we use the rearranged Equation (1) to solve
for concentration:

x = c
(

a − d
y − d

− 1
) 1

b
(2)

Based on the analysis of the distribution and performance of each biomarker discussed
in the Results section, we selected the concentration of VSIG4 to classify the samples into
two distinct groups: LN Active (LNA) patients and healthy individuals. This decision was
guided by the differential performance observed in our analysis, where VSIG4 was identi-
fied as the most relevant and effective biomarker for this classification task in accurately
distinguishing between the two groups. While TNFRSF1b was initially considered, its role
in this specific context was found to be less pronounced, leading us to concentrate on the
more indicative biomarker VSIG4 for LN disease monitoring.

Given the need to accurately identify LN patients, we use the following condition
to classify samples as either healthy or LNA patients, where VSIG4_conc represents the
concentration of VSIG4, and VSIG4_thre represents the optimal threshold of VSIG4:{

Healthy if VSIG4_conc ≤ VSIG4_thre
LNAPatient otherwise

The optimal threshold VSIG4_thre was determined at 98.88, obtained through opti-
mization to maximize sensitivity to ensure the system’s capability to accurately and reliably
identify individuals with LNA.

2.6. Android Application

The disease-monitoring Android application was developed using Kotlin (223-1.8.0)
and Jetpack Compose (1.4.0) in the free software Android Studio (Giraffe, 2022.3.1) powered
by Google, Mountain View, CA, USA and JetBrains, Prague 4, Prague, Czechia. The
OpenCV Android version was used to calculate the intensity for each biomarker.

The Android application provides an intuitive and simple user interaction to process
a microarray sample image scanned from the microscopic reader. The application allows
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users to obtain the disease prediction result by clicking the “Test” button and then selecting
the sample image obtained from the microscopic reader stored in the phone’s gallery.
The application initially extracts the intensity data for each biomarker from the image.
This intensity information is converted into concentration metrics utilizing an embedded,
trained standard curve function. Subsequently, the concentration of the two biomarkers
is used to predict if the sample is active, inactive, or healthy. The result includes the
concentration for each biomarker shown in the table and the prediction result shown in the
radial scale. If the sample is categorized as LN Active, the radial scale pointer is directed
toward the “LNA” section highlighted in red. In the case of a healthy sample, the pointer
aligns with the “Healthy” section in green. If the chosen image or sample is invalid, lacks a
positive control signal, or has a mismatched image size with the microarray, the pointer
points to the invalid section in gray.

3. Results
3.1. Image Processing Analysis

Binary thresholding plays a vital role in biomarker intensity detection as it signifi-
cantly influences the quality of differentiation between biomarker spots and background.
The thresholding methods can be further divided into global thresholding techniques, like
OTSU, and local thresholding. Although OTSU provides promising results for thresholding
images, it may not be an ideal technique for a microarray image that contains different
intensities throughout the image. Thus, in this work, the local thresholding technique,
specifically adaptive thresholding, is employed to perform the binary thresholding task.
Figure 4 shows the comparison between OSTU and adaptive thresholding. The experiments
were by carried out by using the resulting binary image from OTSU thresholding and adap-
tive thresholding as input to perform the segmentation process. In Figure 4, the original
image, binary images after OTSU thresholding, final segmentation results using OTSU
thresholding, binary image after adaptive thresholding, and final segmentation results
using adaptive thresholding are presented in sequence.

Figure 4. Comparison of OTSU thresholding and adaptive thresholding. The comparison includes
four samples (a–d) showcasing the original image, the binary image result of OTSU thresholding,
the final segmentation result after applying OTSU thresholding, the binary image result of adaptive
thresholding, and the final segmentation result after applying adaptive thresholding. Samples
(a,b) demonstrate instances where OTSU fails to fully capture biomarker spots, while samples (c,d)
depict cases where OTSU misses subtle biomarker spots. The biomarker spots successfully captured
by adaptive thresholding are highlighted using red rectangles.
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OTSU thresholding yields a clearer thresholding outcome compared to adaptive thresh-
olding. However, it struggles to capture the biomarker spots with low intensity. For in-
stance, as depicted in Figure 4a,b, the biomarker spots of TNFRSF1b are not adequately
captured by the OTSU algorithm but exhibit well-defined boundaries with adaptive thresh-
olding. In some extreme cases, such as those shown in Figure 4c,d, the OTSU technique
failed to detect the VSIG4 biomarker spots with relatively low intensity, whereas adaptive
thresholding successfully detects them. Following adaptive thresholding, the presence of
some small dots may be observed, but these small dots were considered noise artifacts and
eliminated after the segmentation step using the connected component detection algorithm.

3.2. Signal Stability and Correlation with Scanner Data

The colorimetric images were additionally obtained six months after the initial experi-
ment, with microarray slides stored at 4 degrees in a dark environment. We demonstrate in
Figure 5 a comparative analysis of the signals collected at two distinct time points: Day 1
versus Day 180. A paired t-test was performed to compare the human samples and stan-
dard mixtures 180 days apart, and the results showed statistically no significant difference
between the two groups, with p-value 0.13. These results illustrate an insignificant variation
in signal intensity between the initial and subsequent measurements, thereby underscoring
the robustness of the microarray signals for long-term preservation and the stability of
the signals.

Paired T.test: N.S.
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Figure 5. Long-term stability of biomarker panel array signals from colorimetric detection. The array
images were captured on Day 1 and Day 180, respectively, and the signals were first quantified
and then compared using a paired t-test. N.S.: statistically not significant.

The colorimetric intensity values, corresponding to each biomarker within the microar-
ray images, were quantified utilizing a laboratory scanner software GenePix Pro 7, a widely
utilized tool for scanning protein microarrays, and our proposed method, respectively.
In order to investigate the potential statistical correlations between the scanner-derived
data and the data obtained from the application, we computed the nonparametric Spear-
man’s rank correlation coefficient [29]. The correlation plot for each biomarker is shown
in Figure 6. The Spearman’s rank correlation between app value and scanner value is 0.85.
The Spearman’s rank correlation for individual biomarkers is 0.65 for TNFRSF1B and 0.94
for VSIG4.

The scatter plots highlight the alignment of concentration values across a logarithmic
scale, with the linear fit indicating the degree to which the app-based method correlates
with the scanner data. For VSIG4, the points cluster tightly along the line of best fit, whereas
for TNFRSF1B, there is greater dispersion, reflecting the variance in correlation strength.
The relatively high correlation observed for each biomarker suggests the potential feasibil-
ity of employing the app-based method as a cost-effective alternative to the conventional
scanner for disease monitoring. The app’s ability to closely replicate the results of conven-
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tional scanners is particularly significant in contexts where access to high-end laboratory
equipment may be limited.

TNFRSF1B VSIG4

2.6 2.8 3.0 3.2 3.4 1.5 2.0 2.5

1.0

1.5

2.0

2.5

2.0

2.5

3.0

3.5

Log10(Concentration by App)

Lo
g1

0(
C

on
ce

nt
ra

tio
n 

by
 S

ca
nn

er

Spearman Correlation rs:0.65 Spearman Correlation rs:0.96

Figure 6. The Spearman’s correlation between scanner concentration and app intensity concentration.
The Spearman’s rank correlation between app value and scanner value is 0.85. The Spearman’s rank
correlation for individual biomarkers is 0.65 for TNFRSF1b and 0.94 for VSIG4.

3.3. Disease Monitoring of Patients

The box plots depicted in Figure 7 outline the quantified concentrations of TNFRSF1B
and VSIG4 across two distinct groups: LN active (LNA) and healthy controls (HC).
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Figure 7. The box plot for concentration and two groups of data for each biomarker. LNA stands for
LN active, and HC stands for healthy control. Asterisks designate the level of statistical significance:
** p < 0.01; **** p < 0.0001.

Each box plot serves as a visual summary, capturing the central tendency, spread,
and presence of outliers within each group. Specifically, for the VSIG4 biomarker, there
is a discernible trend indicating the feasibility of differentiating LNA from HC, so it was
identified as the most distinct and effective biomarker for LNA disease classification. This
consistent elevation in VSIG4 levels among LNA patients compared to the HC group, along
with a high degree of statistical significance, reinforces the discriminative power of this
biomarker in reflecting disease activity. In the TNFRSF1B plot, there is a visible spread of
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concentrations among the LNA group, which suggests a variation in the expression levels
of this biomarker in the disease state compared to the tight clustering seen in the HC group.

We further employed each biomarker as a feature for classifying samples into two
groups: LN patients and healthy controls. The receiver operating characteristic (ROC)
curve for each biomarker is displayed in Figure 8. The ROC curve for VSIG4, shown in
blue, has an area-under-the-curve (AUC) of 1.0, indicating perfect discriminative ability,
meaning it correctly identified all LNA cases and HC without any overlap. On the other
hand, the TNFRSF1B curve, in red, with an AUC of 0.9, also shows high discriminative
power, albeit with some overlap between the two groups. Both elevated AUC values signify
a robust capability to accurately discern LN patients from those in the HC group.
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Figure 8. The ROC curves with AUC for individual biomarkers when performing the task of
classifying LN active(LNA) and healthy control patients.

4. Discussion

SLE is a complex autoimmune disease influenced by various factors, including genet-
ics, environmental triggers, medications, hormonal changes, and gut microbiota composi-
tion [30]. As a result, no single biomarker can capture the diverse molecular and cellular
pathways involved in the pathogenesis of LN. LN is associated with a wide range of clinical
manifestations, including autoantibody production, proinflammatory cytokine release,
organ damage (especially renal), immune cell subset activation changes, fatigue, fever,
and proteinuria [31]. These diverse manifestations reflect the complex interplay of immune
dysregulation and tissue damage in LN, making it challenging to assess disease activity
and predict flares using a single biomarker.

A biomarker panel composed of multiple biomarkers reflecting different aspects of
LN pathophysiology can enhance diagnostic accuracy compared to individual biomarkers
alone. By integrating information from multiple pathways, such as immune activation,
tissue damage, and inflammation, a biomarker panel can provide a more comprehensive
assessment of disease activity and severity. Biomarker panels can also improve the predic-
tion of disease progression and flares in LN by capturing subtle changes in disease activity
over time. By monitoring dynamic changes in multiple biomarkers, clinicians can identify
patients at increased risk of flare and intervene early to prevent disease exacerbation and
organ damage. Advances in omics technologies, such as genomics, transcriptomics, pro-
teomics, and metabolomics, have enabled the identification of novel biomarkers and the
development of sophisticated biomarker panels for LN [32]. Machine learning algorithms
can integrate the data from multiple omics platforms to generate highly accurate predictive
models that account for the complex interactions between different molecular pathways
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in LN pathogenesis. In summary, a biomarker panel composed of multiple biomarkers
reflecting various aspects of LN pathophysiology offers several advantages over individual
biomarkers, including improved diagnostic accuracy, enhanced predictive value, and better
monitoring of disease activity and progression. Omics research and machine learning
modeling hold promise for the development of highly accurate and clinically relevant
biomarker panels for LN diagnosis, monitoring, and prediction of flares.

Protein microarrays are increasingly utilized for detecting disease-specific autoan-
tibodies or antigens, with significant implications for diagnostics and monitoring [33].
In this study, we examined 20 samples from LN patients and a healthy control group.
Employing an image processing method, we quantified the intensity of each biomarker
spot and compared it with the results from a conventional scanner. The results of our
image processing analysis underscore the critical role of binary thresholding in biomarker
intensity detection. Our findings revealed that while global thresholding techniques like
OTSU are generally effective, they fall short in microarray images with varied intensities.
To address these challenges, we implemented adaptive thresholding along with segmen-
tation, which has shown superior performance in accurately separating biomarker spots
from the background compared to traditional global thresholding methods [34]. This was
particularly evident in the detection of low-intensity spots. The proposed image process-
ing method for detecting colorimetric images can be adapted to fluorescence images with
proper adjustment when converting the original image to a grayscale image. However,
the colorimetric signal is more suitable for point-of-care situations with a portable micro-
scopic reader because the traditional fluorescent system requires additional laser excitation
components to capture signals.

Furthermore, the designed app incorporates a user-friendly interface that allows
for easy navigation and operation, making it accessible to all users. This is crucial for
widespread adoption, especially in resource-limited settings where sophisticated laboratory
equipment may not be available [35,36]. The app also includes features for image capture,
processing, and data analysis, all integrated seamlessly to provide a comprehensive solution
for biomarker analysis. The robustness of our app-based method is further exemplified
by its performance in preserving the integrity of biomarker signals over extended periods.
Colorimetric images were additionally obtained six months after the initial experiment.
The analysis revealed that a significant majority of the signals remained well-preserved,
demonstrating minimal degradation over the six-month timeframe. The preservation
of signal integrity over such an extended period is indicative of the robustness of the
colorimetric method employed. This finding is particularly relevant in the context of
longitudinal studies, where the ability to obtain reliable and consistent measurements over
time can significantly enhance the understanding of chronic diseases. This aspect of the
methodology is critical for ensuring that the app can be used reliably for long-term disease
monitoring and study. This combination not only ensures high accuracy and reliability in
biomarker intensity quantification but also makes the technology accessible and practical
for widespread use.

Employing noninvasive methodologies, particularly serum-based assays, necessitates
addressing the inherent challenges posed by serum constituents such as proteins, lipids,
and electrolytes [37]. The presence of such interferences poses a challenge to biomarker de-
tection as they can lead to non-specific binding or obscure the signals of the low-abundance
biomarkers crucial for LN diagnosis. To mitigate these potential confounding effects, our
approach involved the optimization of sample dilution protocols alongside the use of
positive and negative control spots to ensure the specificity of our assay. Negative control
spots (PBS) confirmed the absence of non-specific binding, while positive control spots
(BSA-biotin) validated the assay’s ability to detect the intended targets. In the event of a
testing failure, such as non-specific binding or failure to detect the biomarker signal accu-
rately, the application is programmed to present an ’Invalid’ result. This feature is a critical
safeguard designed to ensure that each assay’s validity is maintained, with positive and neg-
ative controls integral to this verification process. The inclusion of these controls is essential
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for discerning true biomarker signals from potential background noise or assay anomalies,
thereby enhancing the reliability of the test outcomes and preserving the integrity of the
diagnostic process. Additionally, immunoaffinity-based depletion methods can be applied
to the serum prior to testing, further refining the sample by selectively removing abundant
proteins and enhancing the detection sensitivity for target biomarkers [38].

In terms of correlation with conventional scanner data, our application demonstrated
a Spearman’s rank correlation of 0.85 overall. This indicates a strong correlation between
our app-based method and the conventional scanner, underscoring the potential of our
approach as a viable alternative for disease monitoring. Notably, individual biomarkers
showed varying degrees of correlation, with TNFRSF1B at 0.65 and VSIG4 at a notable 0.94.
The data points for TNFRSF1B display greater scatter when compared to VSIG4, indicating
variability in the correlation. This dispersion could arise from several factors inherent to
the nature of the TNFRSF1B biomarker, the quality of the antibodies used, the sample
preparation, or the inherent variability in the serum samples tested. The variance in cor-
relation strength for TNFRSF1B suggests that certain samples may have characteristics,
such as variations in protein structure or concentration, that affect how well the biomarker
binds to the antibody, leading to less consistent detection. Additionally, the performance
of TNFRSF1B itself may be influenced by the dynamic range of the biomarker within
the samples, potential cross-reactivity, or differing affinities of the antibodies used in the
microarray construction, which can impact the robustness and reproducibility of the assay.
The differential correlation strengths underscore the importance of selecting appropriate
biomarkers for disease monitoring and diagnosis. Robust biomarkers like VSIG4, with high
correlation strengths across different measurement platforms, are likely to be more reliable
for clinical applications. In contrast, biomarkers like TNFRSF1B, which show more variabil-
ity, may require additional consideration in assay development and data interpretation to
ensure diagnostic accuracy.

In the selection of biomarkers integrated in our application, the rationale for focusing
on VSIG4, while initially considering TNFRSF1b, stemmed from their complementary
diagnostic properties. However, through rigorous testing and evaluation, we discovered
inherent differences in their diagnostic efficacy when applied within the constraints of our
mobile application platform that led to its exclusion. The decision to prioritize VSIG4 over
TNFRSF1b emerged primarily due to the distinctive diagnostic attributes each biomarker
presented. VSIG4’s high sensitivity was ideal for detecting active LN, a key factor for
the intended application of our SBARS in early disease detection and management. This
sensitivity is crucial for a condition like LN, where early detection can significantly influence
treatment opinions and outcomes. On the other hand, TNFRSF1b, despite its initial promise,
presented substantial challenges in achieving consistent and accurate detection within the
mobile application framework. Upon examination of the scanner data, VSIG4 outperforms
TNFRSF1B as a biomarker in this context for two primary reasons. First, VSIG4 exhibits
a relatively higher median intensity value (median = 11,955.58) compared to TNFRSF1B
(median = 8572.74). This difference is not trivial, as it directly impacts the reliability
and sensitivity of the detection algorithm, which is designed to operate efficiently within
a specific intensity range. Second, VSIG4 displays a wider distribution with a standard
deviation of 5252.25, indicating a more balanced spread across the measured intensity range,
in contrast to TNFRSF1B with a standard deviation of 2725.15. This broader distribution
suggests that VSIG4’s signal variability, while higher, remains within an acceptable range
for accurate detection by our smartphone-based system.

The compatibility of VSIG4 with the technical specifications of our point-of-care
system is further underscored by the scanner data resolution and the image processing
algorithm’s capacity. Given that the scale of measuring the signals is different in the two
devices (0∼65,000 arbitrary units for the desk-top scanner and 0∼255 arbitrary units for the
portable reader), the ability of the reader to capture lower signals may not be comparable
to that of the scanner. VSIG4’s signal characteristics render it more compatible with the
specifications of this POC system.
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Then, with closer inspection of the original microarray image itself, it was observed
that TNFRSF1b often appeared faded, a phenomenon attributed to its location at the
lower end of the slides. Future studies could explore different image processing methods or
adjustments in microarray design to improve its detection [21,39]. The issue with TNFRSF1b
highlights an area for future methodological improvement, particularly in ensuring uniform
sensitivity across different regions of the microarray slides. This exploration is crucial for
enhancing the overall efficacy of microarray analyses in clinical diagnostics.

Moreover, the disease monitoring capabilities of our method revealed a clear distinc-
tion in VSIG4 levels between LN active and healthy controls, establishing its efficacy in
distinguishing between these groups. The high AUC value of 1.0 for VSIG4 and 0.9 for
TNFRSF1b further solidifies their potential as reliable biomarkers for LN classification.
Such a high AUC value for VSIG4 suggests that this biomarker has excellent sensitivity and
specificity for identifying lupus nephritis; nonetheless, the exceptional AUC value of 1.0 for
VSIG4 warrants further investigation to confirm its validity in clinical settings. This high
AUC value is likely due to the small cohort size utilized in this study. VSIG4’s diagnostic
utility in lupus has been rigorously evaluated with a larger cohort in a previous study [25].
To further validate these findings, our portable smartphone-based diagnostic system will
be subjected to a larger cohort in subsequent investigations to enhance the robustness of
our results and conclusions.

5. Conclusions

In conclusion, our study not only demonstrates the efficacy of an app-based method
for biomarker intensity quantification but also opens up new possibilities for its applica-
tion in clinical diagnostics and monitoring. Our findings suggest that such mobile-based
approaches could significantly contribute to personalized healthcare, particularly in fa-
cilitating home-based monitoring systems. Future research will focus on expanding the
sample size, exploring a wider range of biomarkers, and integrating advanced data analysis
techniques to further validate and enhance our method’s application in home-care based
systems. This progression is aimed at establishing a robust home-care system that can
adapt to the dynamic needs of patients and healthcare providers alike, facilitating early
detection and ongoing management of various health conditions.
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