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Abstract: The rapid and accurate identification of parasites is crucial for prompt therapeutic inter-
vention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical
diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity
and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and
convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the
clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds
promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of
Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine,
or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages,
including comparable sensitivity and specificity, simple observation of reaction results, easy and
stable transportation conditions, and low equipment dependence. However, a common issue arises
as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction
time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially
weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead
to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and
complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.

Keywords: detection; CRISPR; Cas12a; suboptimal crRNA; light-activated crRNA; tandem repeats; POCT

1. Introduction

Parasitosis, which is infection with parasites, is a prevalent cause of morbidity among
humans worldwide [1–3]. Tropical zones, particularly those that are impoverished, con-
flicted, or unsanitary, serve as endemic foci for a range of parasitic diseases [3–5]. The World
Health Organization (WHO) has reported that annually 48.4 million cases and 59,724 deaths
are attributed to the prevalence of 14 parasites, accounting for a total burden of 8.78 million
disability-adjusted life years (DALYs). Of these, 48% represent foodborne parasitic diseases,
accounting for 76% of the DALYs [6]. Transmission through contaminated food is prevalent
in low- and middle-income countries [6]. Approximately 241 million cases of malaria
and 627,000 deaths resulting from malaria were reported globally in 2020. Innumerable
deaths are caused by other parasitic infections, most notably neglected tropical diseases
(NTDs) [2,5,7].

Unlike the vast majority of bacterial and viral infections, which have an incubation
period ranging from a few hours to days, parasitic diseases tend to have an incubation
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period of weeks or even months. The incubation period of specific parasitic diseases,
like alveolar echinococcosis, can extend up to 10 years [2,8]. Therefore, early and precise
detection of parasitosis is imperative for timely curative interventions and prevention of
pandemics. However, current reliable or commonly used detection methods are limited by
sensitivity, reaction time, and equipment dependence to achieve this purpose [9,10].

A promising new method for nucleic acid detection utilizes the CRISPR-associated
(Cas) nuclease, which can overcome the limitations of instrument dependence and labori-
ous operational processes [11–15]. By meticulously selecting target genes and designing
specific CRISPR crRNAs (crRNAs), precise detection of various parasites can be guaran-
teed [13,15–17]. Due to the precise recognition capability of crRNA, a broad operational
temperature range, and an intuitive result observation method, it is progressively evolving
into an optimal tool for on-site testing [18–21]. When used with thermostatic amplification
techniques like RPA and LAMP, CRISPR/Cas12a shows higher specificity and sensitiv-
ity [22–27]. The main objective of testing in field environments is to decrease the number
of devices and simplify transportation conditions while maintaining both specificity and
sensitivity. To improve the applicability and effectiveness of parasite monitoring in the
field, continuous optimization of existing one-pot detection systems and the development
of convenient biosensors that combine all essential steps into one are crucial.

The present review compares the CRISPR/Cas12a system with alternative molecular
methods for the detection of parasitic diseases. Emphasis is on enhancement of the one-
pot recombinase polymerase amplification (RPA)-CRISPR/Cas12a and improvement of
CRISPR/Cas12b or Cas13 assays.

2. Application of Nucleic Acid Amplification Tests in Parasite Detection

Currently, the diagnosis of parasitic diseases relies on several approaches, such as epi-
demiology and pathophysiology, and methods including microscopy, immunodiagnostics,
and nucleic acid amplification tests (NAATs). Among these, the microscopic detection of
parasites remains the most reliable [9,28]. However, in underdeveloped regions with high
rates of parasitosis, skilled microscope operators are often scarce, making this technique
challenging to implement [29]. Furthermore, this approach is unsuitable for conditions
linked to parasites at different developmental stages, which pose challenges in their detec-
tion within blood or stool specimens.

Immunoassay-based diagnostic procedures have been used for decades and are widely
used for detecting parasites. However, their application for diagnosis of parasitosis has
been limited due to several drawbacks including the possibility of false negatives and false
positives [30–32].

Molecular detection of nucleic acids demonstrates superior sensitivity, specificity,
and reproducibility compared to alternative methods (Table 1). Consequently, NAATs are
preferred molecular detection tools due to their ability to amplify trace amounts of DNA
and RNA, allowing for highly specific detection by complementary nucleotide pairing [2,9].
Polymerase chain reaction (PCR) is currently the most prevalent NAAT tool. Among them,
quantitative real-time PCR (qPCR) has demonstrated the best sensitivity and specificity in
the detection of various parasites and digital PCR (dPCR) can be powerful in quantifying
nucleic acids [2,33–36]. Furthermore, a PCR-ELISA-based detection technique has been
established, reducing the limit of detection (LOD) to 0.3 fg, equivalent to 0.004 parasites;
however, this method takes longer than 4 h [37]. Although these techniques have been
instrumental in establishing dependable diagnostic methods for parasitosis, including
malaria, filariasis, toxoplasmosis, and echinococcosis, they require prolonged reaction
times, intricate handling, expensive laboratory equipment, and a high level of technical
expertise [10,38–41].
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Table 1. Main strengths and weaknesses of different approaches for parasite detection.

Discipline Strength Weakness

Morphology
Accuracy (gold standard)
Can detect multiple
species at the same time

Lower sensitivity
Difficulty distinguishing parasite-like egg
High demand for professional skills

Immunology Robust specificity
Robust sensitivity

High cost and time consuming
False positives for cross-reactivity
False negatives in immunocompromised
patients
Inability to differentiate between ongoing and
past infections

Molecular
biology

Robust specificity
Robust sensitivity
Robust repeatability

High cost
Limitations related to sample preparation
and equipment
Logistics systems requiring fresh sample
analysis (e.g., cryogenic)

Isothermal amplification has been employed in the diagnosis of various parasitic
diseases, addressing the challenges posed by traditional diagnostic methods [42–46]. Com-
pared to PCR, isothermal amplification technology, exemplified by loop-mediated isother-
mal amplification (LAMP) and RPA, significantly reduces the reaction time and dependence
on instruments. RPA is an efficient method for on-site detection due to its simple primer
design, low-temperature requirements, and easy storage [43,44]. Recombinase-aid am-
plification (RAA), based on the same principle, also offers these advantages in rapid
detection [47]. The assay results presentation has transitioned from gel electrophoresis to
using fluorescence, turbidity, color, and lateral flow, which are easier to manipulate and
observe, thus enhancing their field operation applicability [42,48,49].

In various laboratories and regions, qPCR remains the primary or sole standard in
NAAT due to issues with standardizing other assays such as PCR, RPA, and LAMP [50].
Determining the reliability of results and setting a reliable assay time are among the
challenges. Sequencing is a common method of validation, but it significantly extends
the time required to obtain assay results. Environmental factors, such as temperature
and humidity, may also limit the application of these technologies for field monitoring by
affecting the stability and reliability of the reagents. To address this issue, sealed lyophilized
powders can be used to preserve the reagents [20].

In addition to the selection of appropriate detection methods for NAATs, which has a
significant impact on the accuracy and sensitivity of diagnosis of parasitosis, the selection
of target genes is a key consideration. Along with 18S ribosomal RNA (rRNA), Internal
Transcribed Spacer (ITS), and mitochondrial genes, stable tandem repeats have recently
come into focus. In most parasite genomes, repetitive sequences make up a substantially
greater proportion compared to coding sequences, comprising an estimated 20% or even
surpassing 30% [51,52]. Numerous tandem repeats have been used to detect multiple
protozoans and worms, such as Trypanosoma cruzi, Onchocerca volvulus, and Schistosoma
mansoni (Table 2).
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Table 2. List of partial parasitic repeat sequences.

Parasite Repeat
Sequence Name Length (bp) Quantity GenBank

Accession Refs

Protozoa
Trypanosoma cruzi TCNRE 195 12% of the total genome K01772 [53]
Toxoplasma gondii / 529 200–300 copies per genome AF146527 [54]

Plasmodium falciparum Pfr364 716 41 copies per genome / [55,56]
Plasmodium vivax Pvr47 333 14 copies per genome / [55–57]

Cestodes

Echinococcus granulosus EgG1 Hae III
repeat 269

6900 copies per haploid
genome

(1% of E. granulosus genomic
DNA)

DQ157697 [58,59]

Taenia solium Tsol-9 158 / U45987 [60]
Taenia saginata HDP1 1272 0.4% of the T. saginata DNA AJ133764 [61]

Trematodes
Schistosoma mansoni Sml-7 (DraI) 121 12% of the total genome M61098 [62–64]

Schistosoma haematobium DraI 121 over 15% of the S.
haematobium genome DQ157698 [65]

Trichobilharzia ocellata ToSau3A 396

10,000 copies per haploid
genome

(1.5% of the T. ocellata
genome)

AF442689 [66]

Nematodes
Strongyloides stercoralis / 765 / AY028262 [67]

Brugia malayi HhaI repeat 320
several thousand copies

per haploid genome
(about 12% of the genome)

M12691 [68,69]

Wuchereria bancrofti SspI 195 300 copies per haploid
genome L20344 [70]

LDR 1674 / AY297458 [71]

Onchocerca volvulus O-150 149 4500 copies per haploid
genome J04659 [72–74]

Parafilaroides decorus Pd65 689 / MT053285 [75]

Specific information on tandem repeats that have been used for parasite detection, including GenBank accession
numbers and references, is provided. /: No data available.

Point-of-care testing (POCT), a priority for strategies relying on mass drug adminis-
tration to control several NTDs, is a medical diagnostic tool that can be used near or at
the point-of-care, allowing for on-site testing [20,76]. In ideal POCT, the steps required to
go from raw sample to understandable result should be minimized, enabling unskilled
operators to perform the analysis. Therefore, it is imperative to develop nucleic acid-based
diagnostic tools that combine the sensitivity and specificity of established NAATs with
the convenience, cost-effectiveness, and speed of isothermal amplification-based POCT
methods. CRISPR-based diagnostics have the potential to fulfill all these requirements
(Table 3).
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Table 3. Comparison of CRISPR/Cas12a and commonly used detection technologies in molecular
biology.

Technology Device
Dependency Specificity

Reaction
Time
(min)

Number of
Primers Quantification Cost Results View

Method
POCT

Potential

PCR Moderate Robust 60–180 2 No High Gel
electrophoresis Moderate

qPCR
(RT-qPCR) High Robust >60 2 Yes Extremely

high
Fluorescent and

computer system LOW

dPCR High Robust >60 2 Yes Extremely
high

Fluorescent and
computer system LOW

LAMP Low Robust <60 4–6 No Low

Gel
electrophoresis

Color
Turbidity

High

RPA/RAA Low Moderate 20–60 2 No Low

Gel
electrophoresis

Fluorescent
Lateral flow

High

Cas12a Low Robust 20–60 2 No Low fluorescent
Lateral flow High

3. CRISPR/Cas12a for POCT
3.1. Discovery of CRISPR

The CRISPR/Cas system was originally discovered by Ishino in 1987 [77] and officially
named as such in 2002 [78]. Subsequently, there has been extensive research focusing on
the identification and characterization of the proteins and molecules associated with the
CRISPR/Cas system [79]. CRISPR/Cas systems are composed of Cas genes organized in
operons and a CRISPR array, which comprises unique genome-targeting sequences (called
spacers) interspersed with identical repeats [80]. These systems exhibit some unprecedented
advantages, including rapid and accurate gene recognition [80,81] and reaction temperature
under physiological conditions [82–84]. Jennifer Doudna and Emmanuelle Charpentier
were the first to illustrate the potential of the CRISPR/Cas9 system as a means of gene edit-
ing [80]. CRISPR/Cas9 is not only the first discovered CRISPR gene editing tool [80,85,86],
but also the first CRISPR-based diagnostic tool [87,88]. Subsequently, Janice Chen and
Feng Zhang played pivotal roles in the primary investigations of CRISPR/Cas12a [82] and
CRISPR-Cas13a [89], particularly in the context of applications in detection.

3.2. CRISPR/Cas12a System

The Cas12a effector protein, also referred to as the Cpf1 effector protein, is a pro-
grammable RNA-guided DNA nuclease that was identified as part of the type-V class II
CRISPR-Cas system [90,91]. This protein may be associated with a distinct TnpB trans-
posase gene family [92]. Cas12a has a bilobed architecture consisting of an N-terminal
recognition lobe (REC) and a C-terminal nuclease lobe (NUC) connected by the wedge
(WED) domain [93]. The REC lobe binds crRNA, while the NUC lobe contains the PAM-
interacting (PI), bridge helix (BH), RuvC, and Nuc domains [93,94]. In comparison to Cas9,
the design of the Cas12a system is simpler and more cost-effective since it only requires
one crRNA and no trans-activating crRNA (tracrRNA) [17]. A tool has been developed that
enables the rapid design of highly specific CRISPR/Cas12 crRNA [95].

The CRISPR/Cas12a system has also been applied to gene editing [96,97], with a
current focus on nucleic acid detection [98,99]. Cas12a accurately identifies single-stranded
DNA (ssDNA) and double-stranded DNA (dsDNA), creating gaps by recognizing T-rich
protospacer adjacent motif (PAM) sequences and catalyzing its crRNA maturation (ssDNA
activator needs no PAM sequence) [17,82,93]. It shows higher tolerance for mismatches and
lower specificity when targeting ssDNA compared to dsDNA [82,100]. It was discovered
that Cas12a also exhibits collateral activity and can cleave ssDNA without the presence of a
complementary crRNA sequence [82,93,101]. The non-target strand and RuvC domains
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are highly flexible, with the target strand being particularly flexible when located at the
nuclease active site. Consequently, the RuvC domain becomes significantly active during
R-loop formation, enabling the entry of ssDNA into the active center of the enzyme, for
degradation [102]. In addition, this cis-recognition-triggered trans-cleavage presents a
multiple turnover behavior [82,103]. This feature enables the Cas12a system to have a
robust signal amplification mechanism [81,82,93,101], prompting the establishment of a
new type of CRISPR diagnostic assay [84,104–108].

Therefore, the target DNA has the potential to act as an activator, triggering both
cis- and trans-cleavage events of the Cas12a nuclease. The fluorophore/quencher-labeled
(FQ) ssDNA reporter in the system is then cleaved, releasing a fluorescence signal that is
measured to detect the pathogen (Figure 1). In Cas12a-based fluorescent biosensors, the
length of the FQ ssDNA reporter is also an important factor affecting the sensing perfor-
mance [109]. Reporter genes with 8 nt may be optimal for detection to avoid decreased
efficiency of fluorescence caused by excessively long or short ssDNA reporters [109,110].
In addition to the fluorescence output mode, various types of detection methods such
as lateral flow analysis (LFA) [25,111,112] and magnetic pull-down-assisted colorimetric
method [113] have been developed in order to further reduce the dependence on the in-
strument used to observe the results. The CRISPR/Cas12a system has found extensive
application in the detection of COVID-19, with studies demonstrating a detection limit
as low as 5–10 copies [111,114–117]. The sensitivity of the method is comparable to that
of qPCR and results are obtained via naked-eye observation within 45 min. Careful con-
sideration of the mismatch location can also enable highly specific detection of various
COVID-19 variants [118]. These advantages enable the detection of parasites through the
CRISPR/Cas12a system, offering benefits beyond those of other nucleic acid detection
methods (Table 3).
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Figure 1. Scheme of CRISPR/Cas12a one-pot detection assay for parasites. Total DNA is extracted
from samples containing parasite eggs or tissue fragments using either heat/vortex lysis or silica
gel column chromatography. The DNA undergoes processing in a tube that contains a thermostatic
amplification and CRISPR/Cas12a reaction system. Positive signals are generated when probes are
cleaved by activated Cas12a under the target gene sequence recognized by the crRNA, resulting in the
release of intuitive fluorescence under blue or UV light or in a thermostatic amplification instrument.
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Benefiting from the interdisciplinary research of materials, engineering, analytical
chemistry, medicine, and numerous other disciplines, the CRISPR/Cas12a technology has
undergone continuous innovation and development. Initially envisioned as a gene editing
or pathogen detection tool, it is now being or expected to be applied in various fields, includ-
ing nucleic acid quantification [119,120], diverse small molecules detection [106,108,121],
protein detection assay [122,123], telomerase activity assays [124], RNA detection [121],
and other CRISPR/Cas-based biosensors [125].

3.3. CRISPR/Cas12a for Rapid One-Site Detection

Various assays and sensors have been developed for on-site CRISPR-based detec-
tion [20]. With the assistance of various amplification techniques, the sensitivity, specificity,
and time required of Cas12a assays have been significantly enhanced [109]. The RPA
reaction is less specific because it is typically conducted at a lower temperature of 37–42 ◦C.
However, this can be compensated by the process of target gene recognition through crRNA
in the Cas12a assay, further enhancing reaction specificity. The collateral activity of Cas12a
has also replaced the more complex method of observing the results of the RPA reaction.
Furthermore, both reactions can be performed efficiently at the same constant temperature,
in a simple instrument, making this combination highly suitable for POCT [20]. Addi-
tionally, other thermostable amplification methods, such as LAMP, can be combined with
Cas12b at a higher temperature of 65 ◦C [126]. Even without pre-amplification of target
genes, it is possible to detect lower concentrations by combining CRISPR/Cas12a with
hybridization chain reaction (HCR) for amplification-free clinical diagnostics or agricultural
screening [127].

In addition to its combination with isothermal amplification technology, Cas12a can
also interact with other Cas enzymes. After activation by the target gene, the trans-cleavage
of CRISPR/Cas12a cleaves all surrounding ssDNA indiscriminately, which limits the si-
multaneous detection of multiple pathogens. Through orthogonal Cas12a and Cas13a,
dual-gene detection can be achieved by adding a dual-labeled ssDNA trans-cleavage sub-
strate and a single-stranded poly (U) RNA probe to the detection system [128]. This method
allows for the simultaneous detection of multiple genes from the same pathogen to improve
accurate detection [129], as well as individual genes from multiple pathogens for multiple
detections. In addition to CRISPR/Cas effector protein-based [128,130], there are two other
strategies for CRISPR multiplex detection: signaling-based and segregation-based [131,132].
Future CRISPR multiplex assays present challenges in fundamental research and evaluating
the stability of CRISPR/Cas systems [131].

Significant developments have also been made in the development of CRISPR/Cas12a-
based POCT sensors [20,133]. According to the WHO, POCT must adhere to the ASSURED
guidelines (Affordable, Sensitive, Specific, User-friendly, Robust and rapid, Equipment-free,
Deliverable to all people who need the test) [20,134]. This requires that the CRISPR/Cas12a
reaction system be stable under any environmental conditions and be integrated into a
simple biosensor to allow non-specialists to perform and interpret the test. CrRNA can be
stabilized upon binding to CRISPR/Cas12a effector proteins, especially in the lyophilized
powder state, and thus can be used in combination with POC devices to form an efficient
nucleic acid detector. The sensors developed to date have incorporated a range of readout
mechanisms, including fluorescence [89,133,135,136], colorimetric [130,132,133,136–140],
and electronic methods [104,141,142], ensuring system stability while improving the avail-
ability of test results. Nevertheless, achieving a balance between cost-effectiveness, quality,
and convenience remains a challenge for these sensors [76]. After addressing challenges
related to quantification, multiple detection, and target amplification, it is important to
continuously optimize the CRISPR/Cas12a system and sensor materials to improve their
applicability in resource-limited regions.
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3.4. Application of CRISPR/Cas12a for Parasite Detection

The application of the CRISPR technique for diagnosing parasitic diseases, like malaria,
has undergone thorough evaluation over the years. Asymptomatic carriers, with low
parasitic load, considerably hinder the control and eradication of the parasite. Achieving
malaria eradication mandates a hyper-sensitive diagnosis of infections with a low parasitic
load [2]. Unfortunately, resource-limited areas experience frequent malarial outbreaks,
posing a challenge to screening carriers. Lee and colleagues developed a nucleic acid
diagnostic method to detect Plasmodium falciparum by combining CRISPR/Cas12a with
RT-RPA [23].

The method involves heating human serum, whole blood, or dried blood spots in a
buffer at 95 ◦C for 10 min, followed by the transfer of the suspended sample to a pre-mixed
Cas12a-RPA system. The mixture is then incubated at 40 ◦C for 30 min. The reaction
outcomes can be observed using a plate reader or a handheld fluorometer, facilitating
on-site detection. This technique significantly lowers the LOD to 0.36 parasites per micro-
liter, which is well within the WHO’s rapid diagnostic test threshold of 200 parasites per
microliter [143].

Additionally, the CRISPR/Cas12a assays has been successfully utilized for detect-
ing Toxoplasma gondii [24,25,144]. These detection systems achieved a sensitivity of at
least 1.5 copies target genes per microliter, surpassing that of real-time fluorescent RPA
(33 genome copies per microliter) and other comparable methods [145]. Furthermore,
this system was utilized to examine a range of parasites, including Schistosoma haemato-
bium [27], Cryptosporidium parvum [26,112], Enterocytozoon hepatopenaei [146], Clonorchis
sinensis [147], and Heterodera schachtii [148] (Table 4). These examples all demonstrate that
CRISPR/Cas12a has comparable specificity and sensitivity to traditional assays. Espe-
cially when combined with thermostatic amplification, both specificity and sensitivity are
doubly guaranteed.

Table 4. Application of the CRISPR/CAS12 system to parasite detection.

Species Method Time (min) LOD Sample Refs

Plasmodium falciparum Cas12a-RPA 30 (+10) a 0.36 parasites/µL Serum/Whole blood/
Dried blood spot [23,136]Plasmodium vivax Cas12a-RPA 30 (+10) a 1.2 parasites/µL

Toxoplasma gondii

Cas12a-RPA
(two steps) 30 + >15 1.5 copies/µL Whole blood [25]

Cas12a-RPA 35 (+20) a 99~115 copies/µL Environmental
samples

(e.g., water and soil)

[24]
Cas12a-RAA
(two steps) 20 + 50 1 fM [144]

Schistosoma
haematobium Cas12a-RPA 40 + (70) a 2 eggs Urine [27]

Cryptosporidium
parvum

Cas12a-RPA
(two steps) 30 + 60 (+20) a 10 oocysts Feces [112]

Cas12a-RPA 90 1 oocyst Water [26]
Enterocytozoon

hepatopenaei Cas12a-RPA 60 50 copies/µL Tissue [146]

Heterodera schachtii Cas12a-RPA 60 10−4 single cysts Tissue [148]
Clonorchis sinensis Cas12a-RPA <60 1 copy/µL Feces/Tissue [147]

a, The time in parentheses is the time required for sample preparation or DNA extraction.

It is estimated that 47% of the global population lacks adequate access to medical
diagnostic tools, particularly in underdeveloped regions [149]. Cas12a and RPA-based
diagnostic technologies are anticipated to effectively address this challenge, as the underly-
ing method aligns with the majority of POCT requirements [134]. Nevertheless, several
concerns need to be addressed due to the relatively short duration of research and the
limited scope of large-scale clinical trials. The improvement in sensitivity of these assays for
POCT, particularly concerning specific sample preparation, requires attention. Moreover,
there is a need to reduce the detection time to obtain results.
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4. Optimization of the CRISPR/Cas12a One-Pot Detection Assay

Due to the low initial concentration of the target gene in a sample and kinetic rates
that result in an amplification-free LOD in the picomolar range under standard assay
conditions [150], Cas12a detection often requires an amplification process before application.
This implies that the signal amplification is usually conducted in two processes [109]. Target
genes are initially amplified using RPA or LAMP techniques. The resulting amplified
products are subsequently transferred to the Cas12a system for cleavage, followed by
fluorescence signal generation.

To streamline operations and prevent cross-contamination during field tests, the
one-pot method is now predominantly utilized. This assay allows the simultaneous ampli-
fication and cleavage of Cas12a. Freeze-drying all components and integrating them into
the sensor ensures consistent performance in various environmental conditions [27,125].
However, this leads to the cis-cleavage of Cas12a, which reduces the concentration of the
target genes while RPA enhances it. Therefore, it is crucial to optimize amplification in the
initial phase of the reaction.

POCT sensors that use amplification followed by detection strategy often require
multiple liquid transfers during testing, which reduces their user-friendliness [20]. The
CRISPR/Cas12a one-pot detection system shows promise in replacing reagents in more ma-
ture amplification-free POC sensors, which can further improve the sensitivity of detection.
However, significant challenges remain in terms of cost and complexity of devices.

4.1. One-Pot One-Step Reaction
4.1.1. Determinants of Cas12a Enzyme Kinetics

Several studies have reported rapid single-turnaround, cis-cleavage reactions at low
target concentrations, with typical reaction times of approximately 100 s [151]. A Michaelis–
Menten model for Cas12a trans-cleavage activity was established and validated by a
team from Stanford University. This was achieved through the utilization of varying
concentrations of substrates, targets, and crRNAs [150,151]. The authors suggest that the
concentration of the trans-cleavage product formed over time can be described using the
following scaling equation:

[P](t)
S0

≈ (1 − exp
(
− t
τ

)
) (1)

The production efficiency of the trans-cleavage product P is influenced by both reaction
time and τ. To refer to the target-activated Cas12-crRNA-target DNA complex, we use E,
and subsequently, [E] represents the concentration of this complex. The characteristic time
required to complete trans-cleavage is governed by the time scale τ, which is proportional to
KM and inversely proportional to kcat and [E] [151]. The rate constant kcat/KM of enzymatic
reactions is affected by the Cas type, crRNA, incubation time, pH, and temperature [150].
During the early stages of the reaction, [E] equals the concentration of the target molecule (c),
which depends on c0, amplification, and cis-cleavage. Therefore, one could use suboptimal
crRNA to weaken cis-cleavage or employ other methods to ensure that amplification
dominates the pre-reaction period, resulting in a rapid increase of [E] (Figure 2).

In the CRISPR/Cas12a system, the crRNA binds to the Cas12a effector protein to form
a binary complex (ribonucleoprotein). This complex then locates the PAM sequence and
verifies the adjacent spacer sequence, thereby initiating both cis- and trans-cleavage [91,94].
When using crRNAs with suboptimal structures or suboptimal PAMs, their cleavage
activity may be impaired by affecting the efficiency of binding or recognition [22]. With
these methods, amplicons can be rapidly accumulated for the activation of large numbers
of Cas12a–crRNA–target ternary complexes (Figure 2). Sensitivity and detection time
were significantly improved without compromising specificity. It is important to note that
suboptimal crRNAs will also affect their collateral activity, thereby reducing the rate of
fluorescence signal growth. Therefore, it is necessary to fully compare and screen the use of
such suboptimal crRNAs.
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Figure 2. Effect of amplification and cleavage on detection efficiency. E is the target-activated
Cas12-crRNA-target DNA complex. During the initial stage of the one-pot procedure, cis-cleavage is
immediate, and the enzyme concentration is substantially greater than the target concentration. As
amplification becomes more dominant, including instances when amplification efficiency is increased
and cis-cleavage speed is reduced, the amount of [E] becomes substantially larger and can be rapidly
increased, resulting in a significant improvement in reaction efficiency. Conversely, if the target is
rapidly depleted in the initial stage, the emission of the fluorescent signal will decrease.

4.1.2. Reduced crRNA Efficiency by PAM

In the CRISPR-Cas system, the effector nuclease must identify the PAM adjacent to
the target site for initiation of target recognition [152]. Studies of the crystal structure of
the LbCas12a–crRNA binary complex [153] and AsCas12a–crRNA–target DNA ternary
complex [94,154] reveal the mechanisms involved in Cas12a and crRNA recognition, as well
as the operations of crRNA-directed DNA targeting and PAM recognition. In Cas12a, the
PAM duplex is enveloped within a PAM-binding channel formed by the WED, REC1, and
PI domains. The sequence and conformation of PAM duplexes are primarily recognized
by two conserved lysine residues (i.e., base and shape readout mechanism) [155]. These
findings suggest that the PAM-binding channel of Cas12a is flexible in conformation,
allowing for the identification of both canonical and non-canonical PAMs [155]. LbCas12a
and AsCas12a identify TTTV and CTTV/TCTV/TTCV as canonical and suboptimal PAM,
respectively [155,156].

In 2022, a Chinese team conducted a one-pot test called sPAMC, which refers to
a suboptimal PAM of a Cas12a-based test [22]. A comparison of the collateral activity
revealed that crRNAs utilizing suboptimal PAMs demonstrated lower potency and slower
kinetics in comparison to those utilizing canonical PAMs. Nevertheless, over 80% of
the 120 suboptimal PAMs displayed quicker reactions than canonical PAMs in the one-
pot reactions.
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The appearance of the target amplicon was observed 2 min after the one-pot reaction
utilizing suboptimal PAM, in contrast to the 8–10 min required for canonical PAM. Utilizing
a suboptimal PAM with varied concentrations of Cas12a/crRNA ribonucleoprotein yielded
steady kinetic curves, in contrast to reactions with traditional PAMs. In one-pot reactions,
several uncommon PAMs (such as VTTV, TCTV, and TTVV) and some TRTV, TTNT, and
YYYN PAMs (excluding TTTV) outperformed canonical PAMs. The SARS-CoV-2 diagnostic
method established using suboptimal PAM demonstrates a sensitivity comparable to that
of qPCR, with a reaction time of merely 15 min [22]. However, it seems that this approach
is not applicable to AapCas12b [157]. This may be due to the PAM sequence of AapCas12b
(TTN) being potentially less adaptable than that of LbCas12a (TTTV), and even a single
nucleotide mutation within AapCas12b’s PAM could significantly impair its activity [157].

Substituting residues within the PAM-interacting domain of Cas enzyme can achieve
a similar effect in adjusting its activity. This idea has been applied to Cas12b by the same
team and proved to be effective [157].

4.1.3. Reduced crRNA Efficiency by Structure

Suboptimal crRNAs can be selected based on their structure while ensuring specificity.
If CRISPR/Cas9 cleavage is an energy-driven process, its efficiency relies substantially
on nucleotide hybridization and changes in folding-free energy [158,159]. The stability of
guide RNA (gRNA)-DNA for gRNAs exhibiting different efficiencies significantly varies.
When local sliding is examined, an energy model accurately predicts the efficiency of
gRNAs. In CRISPR/Cas12a, research has shown that the activity of the Cas12a system is
positively correlated with the stable binding between the activator and the crRNA [160].
The structure of the single ssDNA activator has also been found to affect the Cas12a trans-
cleavage activity [160,161]. Furthermore, engineering a hairpin secondary structure in
the crRNA spacer region can greatly improve its specificity [162]. Therefore, it is crucial
to consider the use of suboptimal crRNAs when developing a one-pot detection method.
Additionally, the efficiency of the RPA-CRISPR/Cas12a one-pot and one-step reaction can
also be enhanced by using crRNAs that are not restricted by the PAM sequence [117] or by
reducing the dosage of Cas12a [163].

4.2. One-Pot Reactions with Two Steps
4.2.1. Light-Activated crRNA to Initiate Cleavage

Control of chemical reactions through photocontrolled techniques can be achieved in
a non-contact manner within seconds. This technology has been used extensively in both
CRISPR/Cas9 research and practice [164–166], and has also been progressively refined for
CRISPR/Cas12a detection [167]. Initially, the CRISPR/Cas12a system is blocked by a photo-
cleaved linker containing crRNA to ensure optimal RPA performance. After amplification,
the Cas12a detection system is activated via light to initiate trans-cleavage and produce
fluorescence signals [167]. However, the constant optimization of the ratio between the
photocleaved linker and crRNA, along with the compromised stability of the Cas12a-crRNA
complex due to the lack of pre-binding of crRNA to Cas proteins, hinders the effectiveness
of this approach.

The same group of researchers subsequently developed a novel CRISPR/Cas12a de-
tection assay that uses 6-nitropiperonyloxymethyl-caged thymidine (NPOM-dt) to modify
crRNA [168]. This method involves caging crRNA to prevent base pairing between itself
and the target, rather than binding it to the Cas enzyme. Rapid activation can be attained
by photoinduced decaying, which makes this approach simpler, faster, and more stable. It
should be noted that optimization of the irradiation time and the number and position of
NPOM may need reconsideration for different pathogens. In the context of POCT, chal-
lenges persist with reagent storage conditions, actual amplification time, and the portability
of illumination devices.
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4.2.2. Physical Separation of the Two Processes

In addition to performing two reactions simultaneously in one tube, it is also possible
to physically separate the two reaction systems in one tube, to allow for sequential progres-
sion [20,169–171]. The CRISPR/Cas12a reagents are spun down for cleavage after DNA am-
plification by leveraging the enhanced surface tension of the protein-containing liquid [172].
Initially, the RPA reaction takes place at the base of the tube, while CRISPR/Cas12a is
positioned at the lid, separate from the reaction. After amplification for 20 min, the
CRISPR/Cas12a reagent is briefly spun into the reaction mixture without opening the tube.
The reaction continues, and the RPA amplicon activates the Cas12a nuclease to trans-cleave
the fluorescent ssDNA-FQ molecule, resulting in a fluorescent signal. However, this method
is cumbersome, particularly in the context of large-scale POCT.

In brief, cis-cleavage plays a crucial role as the rate-determining step for overall per-
formance in one-pot reactions [22,151]. During the initial stage, low-concentration targets
are diminished due to cis-cleavage, which results in a slow and unstable accumulation
of amplicons. Consequently, the growth of the signal decreases or may even disappear
altogether (Figure 3). The kcat/KM of the enzyme can be reduced by utilizing a suboptimal
PAM or structure, which slows cis-cleavage. This results in a balance between the two-
signal amplification processes of RPA and trans-cleavage. Through careful engineering
of enzyme engineering [157,173], primer design, crRNA design [22,121,174,175], reaction
system [125,130,174,176–180], and reporter selection [181,182], isothermal amplification
and CRISPR detection can be effectively combined in a one-pot reaction [50]. The optimized
Cas12a assay even has the potential to achieve the same detection performance at room
temperature [157].
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5. Conclusions

Parasites are prevalent in the natural world, particularly in underdeveloped regions,
and result in high DALYs and substantial economic losses. This necessitates the devel-
opment of rapid, sensitive, and accurate diagnostic tools for detecting parasites. The
emergence of CRISPR, and specifically recent examinations of Cas12a, compensates for
the limitations of isothermal amplification and presents a fresh approach for POCT. With
the collateral activity of Cas12a, results can be evaluated intuitively via the inclusion of
fluorophores. Combined with RPA, samples with even small numbers of pathogens can be
quickly and accurately tested at the POC.

For POCT, the one-pot method is the best option due to its ability to prevent cross-
contamination and the significant simplicity of the procedure. Nonetheless, current one-pot
detection techniques are associated with several limitations, including extended reaction
times, low sensitivity, complicated operation, and reliance on sample pretreatment. Addi-
tionally, the utilization of RPA has restricted the advancement of CRISPR assays to some
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extent. As the most commonly used partner for the CRISPR one-pot method, RPA kits are
only sold by a few companies, with high prices and an unstable supply [48].

By balancing the two processes of amplification and cleavage with a suboptimal PAM
or structure, the detection performance of the one-pot method can be improved. With
suboptimal conditions, the limitation of PAM or crRNA on target genes can also be reduced,
thereby expanding the pool of target genes. In addition, light-activated crRNA and spatial
isolation enable two reactions to proceed in one-pot sequentially without the requirement
for opening the lid. Furthermore, incorporating tandem repeats as targets can significantly
enhance the amplification efficiency and sensitivity of detection, regardless of sample
preparation methods. These modifications can potentially enhance not only RPA-Cas12a
but also all Cas12a detection methods involving amplification. Furthermore, it is important
to assess these concepts not only concerning Cas12a, but also in other CRISPR systems,
including Cas12b, Cas13, and even Cas9.

The samples used for parasite testing are primarily blood and feces, and their nucleic
acid extraction often relies on silica gel column chromatography that takes at least 45 min.
In POCT, there is an increasing need for nucleic acid extraction methods that provide
shorter operating times, simpler devices, and products with minimal inhibitors. Several
POC nucleic acid extraction platforms have been developed to meet these requirements, in-
cluding microfluidic chips, paper-based devices, microneedle patches, digital microfluidics,
and hand-operated microfluidic systems [183]. However, these techniques are primarily
focused on bacteria and viruses and have not been validated for parasite detection, and
present challenges in extraction of high-quality RNA.

Although the sensitivity and accuracy of most CRISPR-based assays greatly exceed
those of antigen test kits and isothermal amplification assays, which are currently more
suitable for POCT, CRISPR still cannot replace them as the preferred choice for POCT,
either due to their high cost or due to the complex storage and transportation conditions.
In the future, for the application of CRISPR/Cas12a to POCT, it is necessary to continually
optimize the one-pot method detection efficiency and identify a more compatible isother-
mal amplification technology. Alternatively, the existing amplification-free CRISPR/Cas
detection technology can be further optimized [121,177,179,184].

Future studies should include larger-scale CRISPR/Cas12a clinical assay experiments
and validation of sensor stability to ensure their effectiveness in various environments and
conditions. Both artificial intelligence and machine learning are also expected to contribute
to the rapid growth of the CRISPR system and parasite detection [185–189]. Academic
institutions conduct research, industries engage in industrial production, and governments
and organizations (e.g., WHO) allocate resources, invest, and establish ethical guidelines
to ensure universal access to CRISPR/Cas12a diagnostics in low-resource settings where
parasitic diseases are most prevalent.
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