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Abstract: Virtual Reality Exposure Therapy is a method of cognitive behavioural therapy that aids
in the treatment of anxiety disorders by making therapy practical and cost-efficient. It also allows
for the seamless tailoring of the therapy by using objective, continuous feedback. This feedback can
be obtained using biosensors to collect physiological information such as heart rate, electrodermal
activity and frontal brain activity. As part of developing our objective feedback framework, we
developed a Virtual Reality adaptation of the well-established emotional Stroop Colour–Word Task.
We used this adaptation to differentiate three distinct levels of anxiety: no anxiety, mild anxiety and
severe anxiety. We tested our environment on twenty-nine participants between the ages of eighteen
and sixty-five. After analysing and validating this environment, we used it to create a dataset for
further machine-learning classification of the assigned anxiety levels. To apply this information in real-
time, all of our information was processed within Virtual Reality. Our Convolutional Neural Network
was able to differentiate the anxiety levels with a 75% accuracy using leave-one-out cross-validation.
This shows that our system can accurately differentiate between different anxiety levels.

Keywords: VRET; biosensors; human–computer interaction; machine learning; affective computing;
VR; EDA; PPG; EEG

1. Introduction

Anxiety disorder is an umbrella term for mental health conditions involving excessive
and disproportionate levels of fear or anxiety. Anxiety, although sometimes helpful in
responding to dangerous situations, can be debilitating when excessive. There are many
different types of anxiety disorders, ranging from generalised anxiety disorder to social
anxiety disorder, from specific phobias to selective mutism [1]. The treatment for anxiety
disorders is in response to the particular type of anxiety disorder. The most common
treatments would include psychotherapy methods such as cognitive behavioural therapy
(CBT) and medication such as selective serotonin reuptake inhibitors (SSRIs) or serotonin–
norepinephrine reuptake inhibitors (SNRIs) [2].

Physical symptoms of anxiety disorders can include heart palpitations, shortness of
breath and chest pain. Other symptoms can include restlessness, irritability and inability to
sleep or concentrate. They significantly impair the patient’s life, making it difficult to carry
out daily tasks or work. The aetiology of anxiety disorders constitutes a complex interaction
of psychosocial factors such as childhood trauma, stress and genetic predisposition [3].

Anxiety disorders are one of the most prevalent mental health conditions [3]. Therefore,
screening, diagnosis and treatment of anxiety disorders are crucial to the well-being of
society. There is a growing body of evidence that points to the efficacy of Virtual Reality
Exposure Therapy (VRET) for the treatment of anxiety disorders, particularly social anxiety
disorder and specific phobias.

One recent control study by Anderson et al. [4] investigating the effectiveness of VRET
in treating social anxiety disorder compared to in vivo treatments found no significant
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differences in any outcome measure and no difference in partial or full remission rates.
This has been maintained over a one-year follow-up.

Similarly, a study by Bouchard et al. [5] found improvements to all outcome measures
compared to waitlist controls in both in vivo exposure therapy and VRET. Furthermore,
there were improvements above in vivo in the post-treatment primary outcome and one
secondary outcome. This improvement persisted over a six-month period. Psychiatrists
reported that using VRET is more practical than using in vivo [5].

Meta-analyses show no significant improvement in therapy outcomes for VRET over
in vivo [6,7]. However, they show an improvement over wait-list and placebo controls [6].

Although the treatment methods are generally comparable to in vivo treatments, no
evidence points to improved outcomes using Virtual Reality (VR). They are nonetheless
beneficial due to their cost-efficiency [8] and practicality [5]. An experiment by Garcia-
Galacios et al. [9] shows that 81% of students preferred VRET to in vivo treatment. However,
based on the meta-analysis by Benbow and Anderson [10], the drop-out rates did not show
any significant difference.

Accessibility and the helpfulness of VR led many researchers to seek ways to improve
VR therapy. One such way is tailoring the therapy environment to the patient’s needs. To
do this, however, continuous feedback from the patient is required. Self-report feedback
can be unreliable and challenging to obtain during a VR session. Interruptions to exposure
to fill in questionnaires can take a toll on the immersiveness of the experience and increase
the likelihood of dropout [10]. Therefore, providing objective and non-intrusive feedback
during a VR therapy experience is crucial.

Common approaches to measuring anxiety in VR involve using physiological and
biological markers for anxiety [11]. Standard physiological measures include heart rate
(HR), electrodermal activity (EDA), also known as Galvanic Skin Response (GSR), electrical
brain activity and skin temperature (SKT). Regarding behavioural measures, some popular
measures include head movement, muscle movement, eye movement and respiration
(RESP) [12]. Numerous studies combine machine learning methods and on-body biological
sensors for optimal, accurate and objective feedback on anxiety levels [13–15].

Extensive research shows that it is possible to measure and categorise distinct anxiety
levels using biosensors [12]. However, not all devices used for measuring physiological
signals are suitable for use in VR. The highest priority in VR is to allow for user mobility
and comfort so users can explore and experience the environment at their own pace [16].
However, a lot of on-body sensors, such as electrocardiograms (ECG), photoplethysmo-
grams (PPG), and electroencephalograms (EEG), work best when the user is stationary [17].
Due to the noise introduced by movement and the electrical interference of the head-
mounted display (HMD), it is important to use strategies such as filtering, multi-modality
and normalising to offset the negative effects, and while many preprocessing methods on
physiological data ensure the highest quality results, not all are viable for real-time use.

A study by Šalkevicius et al. [14] used signals such as EDA, blood volume pressure
(BVP), and SKT to classify anxiety levels within VRET. Using public speaking anxiety as
the basis of their exposure and stress stimulus, they achieved an 80% cross-participant
accuracy among thirty participants using a support vector machine (SVM).

Similarly, Petrescu et al. [18] used HR and EDA features with a regression model
and a rule-based system to extract classes from a regression model. They used height as
a stress stimulus. From 7 participants, they were able to achieve 92% accuracy. However,
the accuracy might be biased due to the uneven distribution of classes in their data. They
report that the accuracy for the mild anxiety class was 81%, and for the high anxiety class,
it was 76%, based on a confusion matrix.

Cho et al. [19] took a slightly different approach and combined arithmetic tests with
VR environment stimulus to elicit the stress response. Their kernel-based extreme learning
machine (K-ELM) algorithm was able to differentiate between their two baseline environ-
ments (before and after the stimulus) and three anxiety environments (mild, moderate and
severe) with 95% accuracy.
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Our work focuses on both the comfort and accuracy of our system to seamlessly and
objectively measure the anxiety level of the user, between no anxiety, mild anxiety and
severe anxiety.

2. Materials and Methods
2.1. Participants

Twenty-nine volunteers recruited through a large university campus have participated
in the study. Eleven participants were between the ages of eighteen and twenty-four (38%),
fifteen participants between the ages of twenty-five and thirty-four (51%), two participants
between the ages of forty-five and fifty-five (7%) and one participant older than fifty-five
(3%). Eleven participants were female (38%), and eighteen participants were male (62%).
There were seven participants who had never used VR (24%), fifteen participants who had
used it a couple of times (51%), five participants who had one to two years of experience in
VR (17%) and two participants with two to five years of experience (7%). Seven participants
stated that they had never experienced motion sickness (24%), fourteen participants had
experienced it rarely (48%) and eight participants sometimes (28%). Four participants
were diagnosed with colour blindness (14%), and three participants were diagnosed with
dyslexia (10%).

2.2. Framework Design

Our proposed framework is a generalisable system that inputs different exposure
environments and provides a seamless decision-support system for exposure therapy.
The therapist can pick between different types of anxiety disorders, choose the exposure
environment,and then choose the exposure level. To inform their decision, an information
panel continuously updates with crucial information. The information displayed includes
the predicted current anxiety of the user, the time of last exposure change and the current
exposure level. The therapist can also view the raw data if they please. A diagram
summarising the system can be viewed in Figure 1.

Figure 1. Framework diagram. CNN: Convolutional Neural Network; EEG: electroencephalogram;
GSR: Galvanic Skin Response; HMD: head-mounted display; PPG: photoplethysmogram.

Our current experiment informs the classification part of this framework by seamlessly
supplying the therapist with the predicted anxiety level in the current exposure.

2.3. Experiment Design

This study uses the well-established emotional Stroop Colour–Word Task (eStroop) [20]
as a stimulus for anxiety in the VR environment in order to label classification data. EStroop
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uses words from affective norms for English words (ANEW) [21] to elicit negative arousal
from the user. Users are tasked to mark the colour of the words that appear while the
words vary in emotion levels. We have created a Virtual Reality version of this task, which
we call the emotional Virtual Reality Stroop Task (eVRST). It traditionally has a neutral
condition with neutral words and an emotional condition with negative arousal words. We
added a third condition to the task, between the neutral and emotional conditions. With
this addition, we name the conditions neutral, mildly emotional and severely emotional.
The words we used in the experiment can be found in Supplementary Table S1. Using these
conditions, we aimed to differentiate between three distinct levels of anxiety. To validate,
we used self-report and physiological information. Once the environment was validated
statistically, we used machine learning to classify which condition the participants were
taking based on physiological information.

2.4. Metrics and Devices

We used pulse rate, EDA and electrical brain activity as metrics. Pulse rate was
chosen because of the high correlation it shows with anxiety in the literature [22]. It is also
convenient and comfortable to capture. Skin conductivity, similarly, was selected due to
its strong association with arousal levels [23]. Electrical brain activity is a more complex
measure for VR due to HMD electrical inference and difficulty attaining a good signal
without preparation and many channels. However, it is an excellent measure of valence,
essential for indicating the direction of the arousal, whether the user is anxious or just
excited [24]. Heart rate variability (HRV) was not considered for this study because the
results were to be used in real-time, and the calculation of HRV over periods below one
minute is unreliable [25].

The devices used for measuring the selected physiological information were decided
upon based on accuracy, reliability and ease of use. Once again, priority was given to user
comfort. Multiple devices were considered for each measure.

Skin conductivity is a fundamental metric when attempting to predict anxiety. Thus,
the device selection was weighted towards this direction. The options considered for
measuring GSR were the Shimmer GSR+ [26] device and the Empatica E4 [27] device.
Shimmer GSR+ contains two GSR finger electrodes. Empatica E4, on the other hand, is a
wristband that can be attached around the wrist, making it much more comfortable and
easier to attach. Our preliminary tests aligned with the literature on higher accuracy of
signals for the Shimmer GSR+ device. Due to the importance of this signal, the Shimmer
GSR+ device was favoured over the Empatica E4 wristband.

For heart rate, the technologies considered were ECG and PPG. Based on prior research,
ECG is more reliable and accurate in collecting heart rate information. However, they
require multiple electrodes to be attached to the body for an optimal signal. Consecutively,
we chose to use PPG in our research due to its compactness and comfort. PPG might
produce less accurate results, but it is consistent and valuable. When choosing a device
for the PPG, two devices were considered: Shimmer GSR+ and Empatica E4. Empatica E4
provided more comfort and comparable accuracy in heart rate measurements. However, as
Shimmer GSR+ provided better results for measuring skin conductance, it was deemed
optimal to use this device. As Shimmer GSR+ was already being used for skin conductance,
also using it to capture PPG ensured our solution was more lightweight and compact.
Shimmer GSR+ uses optical pulse sensors for measuring PPG. These can be attached either
on the earlobe or around the finger. Based on our preliminary testing, we found that the
earlobe lead was more reliable.

When it came to electrical brain activity, an EEG was used. Picking the right tool for
this task was challenging due to the availability of varying professional and consumer-
grade devices. The first decision was how many channels were appropriate to use. More
channels provide higher-quality signals but also make the system more cumbersome. We
decided to use a single channel to simplify the system. When it came to using dry nodes
or wet nodes for the EEG, similarly, we chose the most comfortable option over higher
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signal quality and decided on dry nodes. Based on extensive research of the literature and
available devices, we decided that the MyndPlay MyndBand [28] was the best fit for us. This
device produces valuable results using a single dry node and a signal channel. MyndPlay
MyndBand features three sensors, a headband and a Bluetooth unit. We removed the
headband and attached the Bluetooth unit and sensors directly to the HTC Vive to make it
more comfortable for the users. This made it easier to use and avoid problems such as the
headband slipping with the HMD movement.

Participants were asked to complete one questionnaire before and one after the ex-
periment. The first questionnaire included demographic questions and a short version of
the State-Trait Anxiety Inventory (STAI-Y1). STAI-Y1 is a standard metric for measuring
anxiety levels. It was first developed by Spielberger et al. [29], and we used the version
modified by Morteau and Bekker [30] to be shorter.

The second questionnaire asked the users to rate each condition in the experiment
between no anxiety, mild anxiety and severe anxiety options. They also were asked for
subjective evaluation of the experience based on several 5-point Likert-style questions such
as “I found the equipment used during the experiment cumbersome”.

During the experiment, subjective units of distress scale (SUDS) was used to rate each
condition after completion. This scale ranks the current distress of the user from 0 to 100,
0 being no stress and 100 being the highest stress imaginable [31].

HTC Vive HMD, modified to include the Myndplay MyndBand, was used to display
the VR experience. A desktop computer with a GeForce GFX Titan X graphics card and an
Intel i7-5820k processor was used to run the experiment. The audio was delivered through
the HTC Vive earphones.

2.5. The Virtual Reality Environment

The environment and the task were modelled using the Unity 3D engine [32]. The
environment was modelled after a standard clinic waiting room to improve familiarity and
comfort, including couches, plants, posters and screens. We used a television screen to
display Stroop prompts and provided a visual platform for users to control by moving the
controllers (Figure 2). Visual, auditory and haptic feedback are provided upon selecting a
button in the form of a yellow button highlight, a clicking sound effect and a short vibration.

Figure 2. The Virtual Reality waiting room environment used for elicitating of anxiety.

The users were provided as much time as they wanted to get accustomed to the
VR environment. After this time, they go through a tutorial to learn the task. Audio
instructions artificially generated by Murf AI [33] are provided, as well as text on the
screens for improved accessibility.
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The task itself is designed to be accessible and intuitive. The user has two seconds to
answer each prompt. We did not implement time pressure as the experiment progressed to
ensure we measured the anxiety produced by the words, not task difficulty.

Each condition has randomly ordered words selected from each list of words: neutral,
mildly emotional and severely emotional. Extraneous variables in the experiment are
controlled, with only the meanings of the words as the independent variable.

The user fills out their anxiety on the SUDS after each condition, including the tutorial.
To do so, they use a VR slider.

An additional scene is used as a fallback should the user get too anxious and decide
to exit the experiment early. They do so by clicking a dedicated button on the platform,
bringing them to a quiet forested area where they can relax until the experimenter removes
the equipment.

2.6. Procedure

Participants read the information sheet that outlined the experiment, data protection,
ethics statement and their rights. If the participants were satisfied, they signed the consent
sheet. The consent sheet also has their participant number. Once they were ready to start,
they were asked to fill in the first questionnaire. Participants were assigned a unique ID to
match their second questionnaire and physiological information. This ID is separate from
their participant number but is linked to a document. We used two sets of identifiers to
allow participants to withdraw within fourteen days, after which we deleted the document
that links their information to their consent form. When the participants completed the
questionnaire, they were instructed to move to the play area, marked by an “X” on the
floor of the VR lab. The experimenter put the HMD on their head, Shimmer GSR+ on their
left wrist with GSR nodes around their left ring and middle fingers and a PPG node on
their left ear. A user wearing the equipment can be viewed in Figure 3. They were asked
to confirm that they were comfortable and were able to see the VR environment clearly.
If they responded with no, adjustments were made until they were comfortable. In the
VR environment, they moved at their own pace, experiencing the environment until they
were ready to start the tutorial. Once the tutorial started, the VR experience took them
through each condition, asking for a SUDS rating after every condition, followed by a
fifteen-second break. The participants were aware that they were free to quit at any stage of
the experiment. Once they completed the VR section of the experiment, the experimenter
removed all the equipment. They were then given the second questionnaire. After the
experiment, they were given time to ask the experimenter questions.

Figure 3. A user with the equipment attached.
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2.7. Data Acquisition and Real-Time Processing

As detailed previously, it was decided that we will use Shimmer GSR+ for PPG and
EDA and MyndPlay MyndBand for EEG. PPG has a training period of ten seconds, whereas
the other measures can be used earlier. The EEG has a refresh rate of 512 Hz, where data
from PPG and EDA stream every second.

The information collection in this experiment was carried out using the official APIs
of the Shimmer and NeuroSky MyndPlay MyndBand devices. As such, it already includes
some real-time processing, which is very useful for our real-time application. In the case of
the PPG, the raw signal goes through real-time R-R peak detection, outputting the HR value.
More information on the estimation can be found in the Shimmer validation paper [34].

Using the Shimmer API, a low-pass filter with a corner frequency of 5 Hz was applied
to the PPG signal. Similarly, a high-pass filter was used to filter frequencies above 0.5 Hz.
The PPG to heart rate calculations were carried out using the filtered signals. These can be
viewed in Shimmer documentation [35].

In GSR signals, the noise is generally contained in high frequencies. Therefore, only
a real-time low-pass filter was applied with a corner frequency of 5 Hz, as per Shim-
mer recommendations [35]. The low-pass filter used was Finite Impulse Response (FIR)
Blackman-windowed-sinc.

All the preparation for the EEG signals was carried out using the NeuroSky software.
The corresponding frequencies for each band are as follows: delta, 1–3 Hz; theta, 4–7 Hz;
alpha1, 8–9 Hz; alpha2, 10–12 Hz; beta1, 13–17 Hz; beta2, 18-3 Hz; gamma1, 31–40 Hz; and
gamma2, 41–50 Hz. An “e-sense” technology was used to compare each band every second.
More information can be found in the Neurosky documentation [36].

As all the devices have different sampling rates, downsampling was required to
synchronise them. The GSR signal was downsampled to 1Hz using the built-in methods
from Shimmer API. In the case of EEG signals, the e-sense calculations from MyndPlay
MyndBand ThinkGear software are outputted at 1 Hz. The heart rate calculations are also
carried out in 1 Hz.

2.8. Statistical Analysis

We ran repeated measures ANOVA to compare the means of user skin conductivity,
self-reported anxiety, and reaction time to detect the differences between three conditions:
neutral, mild emotional, and severe emotional. We applied Greenhouse–Geisser correction
to account for non-spherical data.

The skin conductivity levels averaged an increase of 31% between the neutral and
severe emotional stages, and self-reported anxiety averaged an increase of four. Based on
ANOVA results, there is a significant difference trend between conditions based on GSR
(F = 20.182, p < 0.001) and self-reported anxiety (F = 3.877, p < 0.05). Bonferroni’s post
hoc results revealed significant pairwise differences between stages for GSR (Table 1) but
not for self-reported anxiety.

Table 1. Bonferroni post hoc results of ANOVA for measuring differences in Galvanic Skin Response
level between neutral, mildly emotional and severely emotional conditions.

Measure (I) Stage (J) Stage Mean Difference (I–J) SE Sig.

GSR

1 2 −0.579 0.154 0.002
3 −1.000 0.214 <0.001

2 1 0.579 0.154 0.002
3 −0.421 0.074 <0.001

3 1 1.000 0.214 <0.001
3 −0.421 0.074 <0.001

Reaction time decreased by 29 ms on average. There were no significant differences
based on ANOVA results (F = 1.996, p > 0.05).
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These results are in line with previous eStroop tests and VR Stroop tests [37–41].
A clear trend of increased arousal between conditions based on physiological information
shows that our environment is suitable for machine learning (ML) classification.

2.9. Creating the Dataset

Data preparation was completed in real time, as detailed in the data acquisition subsection.
The values from before baseline detection and after the end of the experiment were

manually removed using timestamps. All the separate .csv files for experiments were
processed and combined into a single .csv file.

A simple method of train–test split was applied to compare different classification
methods. The dataset was split into 80% training data and 20% testing data using the
GroupShuffleSplit method.

The normalisation was applied for Artificial Neural Network (ANN), SVM, K-nearest
Neighbour (KNN) and Convolutional Neural Network (CNN). The method used for
normalisation is (value − mean)/std. It should be noted that the baseline-adjusted values
are redundant in the case of normalised datasets, such as in the case of Neural Networks.
Therefore, the baseline values were removed for these models, leaving only 15 features
instead of 23.

Windowing was applied separately for CNN. All models except CNN took rolling
means and standard deviations with window sizes of 3 s, 5 s, 10 s and 30 s and step sizes of
1 s, 1 s, 2 s and 10 s, respectively. Baseline-adjusted values were calculated by dividing each
value by the mean of baseline recordings of the same metric.

For CNN, the dataset was iterated in window sizes of 3 s, 5 s, 10 s and 30 s and step
sizes of 1 s, 1 s, 2 s and 10 s, respectively. The raw values of the window size of the rows
were used as input. Each matrix of the window size × feature shape was labelled with the
correct condition.

2.10. Feature Extraction

Firstly, relevant features were identified from previous literature. As our input is
time-series data, we used all our metrics’ mean values and standard deviation over our
sliding window. Since every person has different reactions and baseline values, we also
included the mean values adjusted by the baseline. These were applied to the HR, GSR
and EEG band wave values. The resulting features can be viewed in Table 2.

Adding minimum and maximum values was considered but decided against due
to the short nature of the time windows and the results of direct experimentation with
their inclusion.

Different feature extraction methods were applied to the CNN input. Instead of getting
mean, baseline-adjusted mean and standard variation throughout the time window for
our metrics, all metrics containing the row were used, forming matrices in the shape of
time window × metrics. In this case, the extracted features were GSR, HR, delta, theta, low
alpha, high alpha, low beta, high beta, low gamma and high gamma.

2.11. Feature Selection

An ANOVA test was used to determine the relationship between each feature and
the condition to identify the most valuable features. The features with non-significant
F values were discarded. These features were HR standard deviation, delta mean, delta
mean-adjusted by baseline, delta standard deviation, high alpha mean adjusted by baseline,
high alpha standard deviation and low gamma standard deviation. Features and their F
values can be viewed in Table 2.
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Table 2. The extracted features and their ANOVA F-values.

Measure Feature F

GSR

GSR_mean 115.3 ***

GSR_baseline 2379.1 ***

GSR_SD 3.9 *

HR

HR_mean 15.2 ***

HR_baseline 18.4 ***

HR_SD 0.5

EEG

delta_mean 2.4

delta_baseline 1.8

delta_SD 1.2

theta_mean 7.1 ***

theta_baseline 4.0 *

theta_SD 3.6 *

lowalpha_mean 10.9 ***

lowalpha_baseline 9.0 ***

lowalpha_SD 4.5 *

highalpha_mean 5.8 **

highalpha_baseline 2.8

highalpha_SD 1.1

lowbeta_mean 6.2 ***

lowbeta_baseline 4.7 **

lowbeta_SD 3.1 *

highbeta_mean 15.4 ***

highbeta_baseline 17.3 ***

highbeta_SD 7.2 ***

lowgamma_mean 9.8 ***

lowgamma_baseline 4.2 *

lowgamma_SD 1.7

highgamma_mean 7.8 ***

highgamma_baseline 8.8 ***

highgamma_SD 4.6 **

*** p < 0.001, ** p < 0.01, * p < 0.05.

In the case of the CNN, the selected features were GSR, HR, theta, low alpha, low beta,
high beta, low gamma and high gamma. Delta, high alpha and low beta were eliminated
due to no relationship being found with the stage using ANOVA.

3. Results

Multiple models and window sizes were tested based on the properties data and
prior literature.

For model comparison, 3 s time windows were used. A test–train split of 20–80 was
applied, and the same validation and training groups were used to test each model. We
used scikit-learn [42], TensorFlow Keras [43] and XGBoost [44] libraries for the models.

Our first tree model was a simple binary tree. We used parameters with twenty-four
features and a maximum of twenty leaf nodes for baseline comparisons. When trained
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on our training set, it had 51% accuracy on our validation set. We next used a random
decision forest. We used the default hyperparameters of the RandomForestClassifier
method, with a maximum tree count of 100. We achieved 53% accuracy on the validation
set. Finally, an extreme gradient boosted tree (XGBoost) classifier [44] was applied with
default hyperparameters. We achieved 50% accuracy.

We used the K-Nearest Neighbours Classifier method with default hyperparameters
and the number of neighbours set to 3. The training resulted in an accuracy of 62% on the
validation set.

We used the SVM classifier with kernel set to poly and regularisation to 100. For the
other hyperparameters, the defaults were used. Our training resulted in an accuracy of 63%
on the validation set.

Considering our simple numerical dataset, we used a shallow neural network. We
used the Keras Sequential model for training. The input layer has 64 neurons and uses
activation relu. We have three dense layers with ten neurons each, and we use relU
function for the activation. For the output layer, we used the softmax function. The selected
hyperparameters were categorical_crossentropy for the loss function, Adam for optimiser
and categorical_accuracy for metrics. We trained the dataset for 20 epochs with a batch
size of 256 and used our validation set. There was slight overfitting, presumably due to
the size of the training set. To overcome this problem, we added a dropout layer and
performed the training with only 21 features, meaning a dropout of 0.1. This setup resulted
in a 72% accuracy.

Due to the similarity of data formats, our CNN architecture closely followed our ANN
architecture. Our first layer was a 0.2 dropout layer to combat overfitting. The second
layer is a one-dimensional (temporal) convolutional (Conv1D) layer with 64 neurons, two
kernels, and an input size of 5, 6. Five for our input shape represents the rows of data, in
this case, 5 s of data. The six represents the number of features. We include six features in
the training because we use a 0.2 dropout. We have our first dense layer with ten neurons
and the relU activation function. This is followed by a pooling layer (MaxPooling1D) to
downsample the features with a default pool size of 2. It has three more dense layers with
a neuron size of 10 and finished with the activation layer, using the softmax function. The
next layer is a flatten layer. We trained the dataset for 20 epochs with a batch size of 256 and
used our validation set. We achieved 73% accuracy.

3.1. Leave-One-Out Cross-Validation

Although we used a simplistic approach of a 20–80 train–test split to compare different
models as a means of determining accuracy, this approach has its drawbacks. As the
dataset is not very large, how the split is made can greatly affect the accuracy found. This
technique is sufficient when comparing models but not necessarily a good indicator of the
model’s accuracy.

To achieve results with less bias, all parts of the data must be equally represented.
There are several methods to achieve this. One of them would be k-fold cross-validation.
K-fold cross-validation works by selecting k% of the data as validation data, training
the model on the rest, saving the accuracy and then repeating k times for each section
of the data. The accuracies calculated by each iteration are then averaged to obtain the
final accuracy. A typical application would be 10-fold cross-validation, which trains and
evaluates a model 10 times with a 10–90 split.

Similarly, leave-one-out cross-validation (LOOCV) works by splitting one data point
or group and using the rest to train the model. This approach is a lot less prone to biases
and gives us more information by taking every case into account. However, this can take a
very long time in the case of extensive datasets. Since we do not have a large dataset, we
decided to use LOOCV.

We have applied LOOCV on both ANN and CNN, as they had similar accuracies.
In the case of CNN, we achieved 75% accuracy across all participants, while this was the
mean of all the accuracies, there were many outliers. If we look at the median score to
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represent the accuracy for most participants, it was 87%. The lowest accuracy was 9%, and
the highest was 97%. We had similar results for ANN. The mean accuracy was 74%, with
the highest accuracy being 94% and the lowest 10%. CNN performed better by a small
margin. Figure 4 shows the distribution of accuracies per test participant.

Figure 4. Classification accuracy for the each participant using leave-one-out cross-validation.
ANN: Artificial Neural Network; CNN: Convolutional Neural Network.

To better see the distribution of class predictions in our model, we aggregated confu-
sion matrices from each LOOCV iteration to create an overall confusion matrix. As shown
in Figure 5, class predictions were evenly distributed with minimal bias.

Figure 5. Confusion matrix for the Convolutional Neural Network. 0: no anxiety; 1: mild anxiety;
2: severe anxiety.
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3.2. Window Selection

Deciding the sliding window size is one of the most crucial steps of time-series
classification. Increasing the window size may improve accuracy. However, getting a
more time-precise output from the classification method is critical for real-time usability.
Therefore, we used the smallest time window while maintaining accuracy. We have
experimented with 3 s, 5 s, 10 s and 30 s time windows.

We will benchmark the results of the windows using our best-performing algorithm,
the CNN. We used LOOCV for each window size. Table 3 shows the accuracies achieved for
each window size. It can be seen that different window sizes performed similarly, giving
us a reason to use smaller window sizes for more precision in real-time.

Table 3. Time windows used and the corresponding classification accuracy.

Time Window Accuracy

3 s 74.50%

5 s 74.82%

10 s 74.74%

30 s 76.47%

4. Discussion

The protocol followed in this paper goes through the steps of data acquisition, data
preparation, feature extraction and anxiety classification for use in real-time VR applications.
It has many similarities to methods used in the literature for anxiety classification using
biosensors. The methodology follows past examples of using well-established cognitive
tasks to label data. It uses established metrics for classification as features: HR, GSR, alpha,
beta and gamma EEG bands.

Convolutional neural networks are a common classification approach for time-series
data, and they have the advantage of reducing data preparation time by not needing
rolling windows. Many examples in the literature use simple convolutional network
structures to analyse biosensor data for outputs such as emotion recognition and stress
recognition [45–47].

The current work, however, differs in a few accounts. Firstly, for the purpose of
real-time use, we used smaller windows and different data-cleaning methods. For example,
applying Blackman filters per second can make extracting meaningful data more challeng-
ing than applying such filters over a long period. An instrumental metric, HRV, was also
deemed impractical due to our short window lengths.

Additionally, our work has to deal with additional noise and unreliable signals due
to VR electrical interference and excessive arm movements. Although biosensors produce
much more accurate results when stationary, allowing arm movements is crucial for controls
in VR. Our dataset was collected in a VR state-of-the-art emotional Stroop task environment
to (1) guarantee that we are measuring mental anxiety and not task load and (2) that the
data we collect will be similar, therefore applicable to our use case of VR therapy, and
(3) while it is applicable to our scenario, it will also apply to different types of therapy by
being a generalisable task.

We evaluate our model based on classification accuracy. Based on the leave-one-out
cross-validation results, the model successfully predicts the correct label 75% of the time.
However, it must be noted that based on the LOOCV results, there can be vast variations
based on the specific participant, and while the median score was higher than 90%, the
accuracy suffered with levels of around only 10% for two participants.

Our model correctly predicted the “no anxiety” condition 80% of the time and the
“high anxiety” condition 76% of the time. Where the model has difficulties was the “mild
anxiety” condition. In total, 15% of the mild conditions were incorrectly labelled as no
anxiety, and 17% were incorrectly labelled as high anxiety. A total of 69% of the mild
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conditions were correctly predicted. This reflects the difficulty of clear-cut separations of
fluid emotional anxiety levels.

The outliers in the model were examined for any possible explanations. Looking
through the demographic information of these two participants, only one participant was an
outlier in a category. They were one of the two people diagnosed with dyslexia in the dataset.
Their dyslexia could be why they are an outlier; however, there is insufficient information
to draw any conclusions. It must be noted that this method of anxiety classification might
not be ideal for participants with dyslexia.

It must be noted that prior to machine learning analysis, it was planned that the
neutral level of eStroop would be used for baseline analysis in practical applications.
However, using real-time analysis simulations seems implausible due to not representing
a wide range of anxiety. The dataset’s standard deviation and mean must be known for
normalisation reasons. However, the mean is a lot lower in the neutral condition. Therefore,
the normalisation and analysis are only accurate with the administration of the complete
eStroop task.

4.1. Comparison to Similar Work

The literature that focuses on real-time anxiety detection for VR is limited due to com-
plications with real-time signal processing as well as the limited research on VR. Some stud-
ies employed longer time windows, making it unsuitable for real-time predictions [48–50].
Many studies with shorter time windows have limited participant numbers or are prelimi-
nary studies [18,19,51,52]. Generalisation can be challenging in such studies. A summary
of the comparison of our results with previous studies can be viewed in Table 4.

Table 4. Comparison to similar studies.

Ref. Sample Size Features Ground Truth Highest
Accuracy Model Number of Outputs Accuracy

[48] 8 HRV (ECG) VR Content LSTM 2, 3, 4

90.5% (2-Level),
67.5% (3-Level),
58.8% (4-Level),

30 s

[51] 4 PPG, EDA, EEG SUDS ANN 11, 4, 2
78.3% (2-Level),
38.8% (4-Level),
26.5% (11-Level)

[19] 12 PPG, EDA, SKT VR Content,
STAI-Y1 K-ELM 3 96.3%

[52] 6 ECG, PPG VR Content LDA 3 79%

[53] 28 EEG, EMDR SCWT MLP 2 96.42%

[18] 7 EDA, PPG SUDS Regression 2, 3 94.3% (2-Level),
92.4% (3-level)

[54] 20 ECG, RESP STAI-Y1 Neuro-fuzzy 4 83%

[14] 30 BVP, EDA, SKT VR Content,
SUDS SVM 4 86.3%

[55] 19 EDA, RESP,
ECG, EEG SCWT SVM 3 84%

Our Study 29 EDA, EEG, PPG eVRST CNN 3 75.38%

Note: ANN: Artificial Neural Network; BVP: Blood Volume Pressure; CNN: Convolutional Neural Network;
ECG: Electrocardiogram; EDA: Electrodermal Activity; EEG: Electroencephalogram; EMDR: Eye Movement
Desensitization and Reprocessing; EMG: Electromyogram; HRV: Heart rate variability; K-ELM: Kernel Extreme
Learning Machine; LDA: Linear Discriminant Analysis; LSTM: Long Short-Term Memory; MLP: Multi-layer
Perceptron; PPG: Photoplethysmogram; RESP: respiration; SKT: skin temperature; SCWT: Stroop Colour–Word
Task; SUDS: Subjective Units of Distress Scale; STAI: State-Trait Anxiety Inventory; SVM: Support Vector Machine.
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It can be seen that previous studies with three output levels and short time windows
(3–30 s) range between 67% and 96% accuracy. The closest condition to our study was
one conducted by Wu et al. [55], using the Stroop Colour–Word Task (SCWT) for stress
inducement and classifying between three output levels. They also had 19 participants,
closer to our study than the others. They achieved 84% accuracy using an SVM. However,
it must be noted that in the case of traditional SCWT, it is difficult to differentiate mental
load from emotional anxiety.

It must be noted that all of the studies in the literature use different methods for
ground truth and labelling anxiety, which makes direct comparisons challenging. Our
study differs from previous studies because we introduce a new way of measuring ground
truth, which makes it implausible to do a direct comparison. Our study also avoids using
computationally heavy processing or processing that requires full datasets so that it can be
applied in real-time.

4.2. Limitations

There are some limitations due to the representation of the dataset sample. The dataset
includes 29 participants recruited from a large university campus, which may not accurately
reflect the general population. Additionally, our method of separating anxiety based on
emotional words might not reflect the full breadth of the anxiety spectrum, making it
challenging to separate very high levels of anxiety from high-level anxiety.

Furthermore, this study only addresses methods for decreasing noise in real-time using
filters and does not propose any physical methods to account for noise in signals. We also
do not have noise cancellation for possible scalp tension contamination of the EEG signal
in 8–12 Hz frequencies [56]. We ensure our methods are validated by using validated APIs
and software by publishers. However, we do not contribute to data acquisition methods.

We use raw signals for GSR and convert PPG to HR in real time. We also extract band
information from raw EEG signals in real time. For ideal results, developing an algorithm
that can separate phasic and tonic skin conductivity signals within a five-second timeframe
would be necessary. Similarly, developing an algorithm that can reliably measure HRV
from the raw PPG signal in this short time would be optimal.

5. Conclusions

This study showcases our real-time anxiety classification system for seamless and
objective feedback in VRET. We were able to achieve 75% accuracy between three output
classes, showing that we can predict anxiety in real time with no access to signal processing
tools that rely on complete datasets.

We also emphasised the real-time aspect of our algorithm by keeping the sliding
windows small at only 5 s. This increases the reliability of our results by showing more
recent information. Some algorithms may claim real-time results, but their data use time
windows of around a minute.

It must be duly noted that our results show that it can be challenging to apply the
classification to some users with the same accuracy, as evidenced by our LOOCV results.
For some participants, the classification accuracy was as low as 9%. It is essential that
factors that cause such outliers are investigated for the general applicability of these results.

We plan to integrate our model into the Unity environment for real-time classification.
By doing so, we aim to accomplish seamless decision support for the therapist. We aim
to create a generalisable system for anxiety detection. However, thus far, we have only
tested the system in the eVRST system. Therefore, the first step after integrating into the
VR framework will be to validate it within the exposure environment.

There is some evidence of anxiety classification within VRET providing optimal results.
However, no research exists to see if such systems with seamless feedback improve therapy
outcomes. It is crucial to conduct experiments with actual patients to see the effect of such
decision-support frameworks.
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