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Abstract: This article explores the importance of wearable and remote technologies in healthcare.
The focus highlights its potential in continuous monitoring, examines the specificity of the issue,
and offers a view of proactive healthcare. Our research describes a wide range of device types
and scientific methodologies, starting from traditional chest belts to their modern alternatives and
cutting-edge bioamplifiers that distinguish breathing from chest impedance variations. We also
investigated innovative technologies such as the monitoring of thorax micromovements based on the
principles of seismocardiography, ballistocardiography, remote camera recordings, deployment of
integrated optical fibers, or extraction of respiration from cardiovascular variables. Our review is
extended to include acoustic methods and breath and blood gas analysis, providing a comprehensive
overview of different approaches to respiratory monitoring. The topic of monitoring respiration
with wearable and remote electronics is currently the center of attention of researchers, which is also
reflected by the growing number of publications. In our manuscript, we offer an overview of the
most interesting ones.

Keywords: wearable devices; respiration monitoring; thorax movement; impedance; airflow; acoustic
methods

1. Introduction

Respiratory diseases are significant contributors to mortality and disability within
populations [1], which was especially underlined by the global impact of the COVID-
19 pandemic. In developed nations, asthma holds the position as the most prevalent
respiratory disease, closely followed by chronic obstructive pulmonary disease (COPD),
both significantly compromising the quality of life and frequently resulting in premature
death. The World Health Organization reports that 262 million people worldwide had
asthma in 2019 [2]. In that year, asthma globally caused approximately 460,000 deaths
annually. The trend from 1990 to 2019 has shown no significant variation in the global
mortality rate due to this disease. Throughout Europe, the prevalence of asthma in adults
varies, ranging from 5.1% to 8.2%. The data on deaths caused by asthma in Europe
indicated a total of 14,000 fatalities. The trend in mortality due to asthma in Europe has
decreased by 64%. Furthermore, 212 million people worldwide are fighting COPD. It is
considered the third most common cause of death globally, with over 3 million fatalities
reported in 2019. The mortality rate caused by COPD worldwide has increased by 30%
since 1990 [3]. Among the European population, the prevalence of COPD is 10%. COPD
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represents a mortality rate of 334,000 deaths in Europe annually, signifying 3.74% of total
deaths. Since 1990, mortality in Europe due to COPD has increased by 12.5%. Additional
respiratory afflictions, such as chronic bronchitis, lung cancer, and pneumonia, among
others, contribute also to the burden. Tragically, in less-developed areas, many children
under the age of 5 succumb to acute lower respiratory tract infections from various sources,
including malaria, tuberculosis, or HIV [4]. The COVID-19 virus, as mentioned earlier,
has also added to these health challenges [5]. According to Eurostat’s respiratory diseases
statistics [6], in 2017, nearly 545 million people worldwide suffered from chronic respiratory
diseases, marking a 40% increase since 1990. Despite a global rise in the number of
individuals affected by chronic respiratory diseases during the period 1990-2017, the
European population has experienced a modest decline. Unfortunately, the number of
deaths worldwide caused by respiratory diseases remains high, with 379,000 deaths in
Europe (accounting for 4.25% of total deaths) and almost 4 million deaths globally in the
year 2019 (7% of total deaths) [3].

The diagnosis, detection, and treatment of respiratory diseases typically demand hos-
pital resources, often involving costly and invasive methods. Commonly used methods like
spirometry, pneumography, plethysmography, or capnography are typically invasive, often
inconvenient for patients, and require expensive equipment primarily found in ICUs [7–9].
Monitoring the respiratory rate (RR) serves as a vital sign to track the progression of illness,
and an abnormal RR is a significant indicator of serious health issues. Sufficient evidence
supports the use of alterations in RR to predict potentially severe clinical events, such as
cardiac arrest or admission to the intensive care unit [10–13]. These studies demonstrate
that RR outperforms other vital measurements, including pulse and blood pressure, in
discerning between stable patients and those at risk. By utilizing changes in RR measure-
ments, patients at high risk could be identified up to 24 h before the event, achieving a
specificity of 95% [14].

In response, research teams are directing their efforts toward the development of
wearable and remote devices capable of continuous respiratory monitoring in diverse
environments with a focus on natural physiological conditions. Various research domains,
including sleep monitoring, breathing pattern analysis, and RR detection, call for con-
venient and wearable devices that patients can use at home for continuous monitoring
and data storage [15]. Specifically tailored for respiratory activity monitoring, wearable
and remote devices contribute to expanding medical care services, such as continuous air
quality measurement, lung function monitoring [16], and sleep monitoring for detecting
apnoea [17]. To enhance wearability across different activities, the current trend is also
focused on exploring and developing smart fabrics [18]. Commercially available devices,
as depicted in Figure 1a, indicate that only 1% of wearables actually integrate the detection
of breathing-related events. A few may be also obscured within the cardiac and sleep area
group, but the respiration in these areas is primarily only derived from heart rate variability
(HRV). Contrastingly, pulmonary event detections, encompassing cough detections and
respiration rate measurement, as depicted in Figure 1b, target 22% of all research [19]. This
underlines the growing demand and anticipated surge in respiration sensors in wearable
electronics.

Advancements in electronics design, especially battery technology, low-power embed-
ded processors, and development of the software domain, which can give devices robust
applications and more usable use cases, have enabled the development of new advanced
wearables and remote systems.

Our article delves into motivation and current trends. We explore technological
advancements, challenges, and the potential impact of wearable and remote respiratory
monitors on healthcare outcomes. As the field continues to evolve, the integration of
wearable electronics for respiratory monitoring holds immense promise, shaping a future
where individuals can seamlessly and intelligently manage their respiratory health in
various life contexts. Our main goal is to summarize current knowledge, outline future
trends, and provide scientists with a kind of springboard. A quick overview of the sensors
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that we will deal with is presented in Figure 2. Details are described in individual chapters.
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Reprinted from ref. [20]; (b) Spire Health Tag—force respiratory tracker attached to clothing enhanced
by physical activity and heart rate sensors. Reprinted from ref. [21]; (c) Respiration belt with em-
bedded fiber optic sensors. Reprinted from ref. [22]; (d) Forcecardiography sensor for simultaneous
monitoring of respiration, infrasonic cardiac vibrations, and heart sounds. Reprinted from ref. [23];
(e) soft skin-interfaced mechano-acoustic sensors for real-time monitoring and feedback on respira-
tory and swallowing biomechanics. Reprinted from ref. [24]; (f) Somnofy—ultra-low-power radar
system for contactless analysis of RR and sleep stages [25]; (g) synergetic use of thermal and visible
imaging techniques for contactless and unobtrusive breathing measurement. Reprinted from ref. [26];
(h) respiration derived from ECG amplitude-optimization of sensor placement. Reprinted from
ref. [27]; (i) ePPG—own designed multisensor that calculates respiration from heart rate variability;
(j) digital stethoscope Mintti Smartho-D2. Reprinted from ref. [28]; (k) acoustic and biopotential
multi-sensor patch. Reprinted from ref. [29]; (l) dual-signal NH3 sensor for diagnosis of chronic kid-
ney disease. Reprinted from ref. [30]; (m) continuous transcutaneous monitoring of CO2. Reprinted
from ref. [31]; (n) flexible humidity sensor for sleep apnea monitoring. Reprinted from ref. [32];
(o) soft wearable flexible bioelectronics with bioimpedance measurement using ADS1292R (Texas
Instruments, Dallas, TX, USA). Reprinted from ref. [33].

2. Chest and Abdominal Movement Detection

One of the clever methods to detect respiration using wearable and remote electronics
is the tracking of body movements caused by respiration (Table 1). The most well-known
and, at the same time, the oldest approach entails monitoring the circumference or the
volume of the chest using various forms of respiratory belts. Recently, with the incorpora-
tion of inertial measurement unit (IMU) sensors, it is also possible to monitor respiratory
micromovements. Utilizing methods such as the seismocardiography, ballistography, etc.,
has gained popularity. The primary advantage lies in the cost-effectiveness of these sensors
and their seamless integration into modern hardware designs. Over time, these sensors
have transitioned from being attached to the human body to becoming integral components
of everyday items that people interact with, including smart clothing, beds, chairs, and
mattresses. Optical fiber-based sensors are also commonly embedded in these items. With
the advent of modern bioamplifiers, deriving respiratory parameters from chest impedance
variations has become also convenient. Remote methods include the extraction of chest
movements from the visual signals using precise cameras or the deployment of Doppler
radars. While these devices ultimately allow for monitoring of the temporal progression of
the respiratory cycle and calculating RR, and in more advanced cases, respiratory volumes
(RVs), they do not enable the determination of respiratory metabolism or the chemical and
physical composition of exhaled gases.

2.1. Chest Belts and Their Modern Alternatives

Direct respiratory monitoring relies on the detection of humidity, pressure, and tem-
perature of exhaled breath, but it is prone to environmental interference, leading to reduced
accuracy and increased noise. On the other hand, indirect respiratory monitoring pre-
dominantly involves the use of strain or pressure sensors, typically employing stretchable
electrodes or functional materials attached to the skin of the chest and abdomen [34].

The most basic and “oldest” chest belts for measuring respiration use resistance-based
sensors. Each change in resistance values, caused by the expansion and contraction of
the chest wall during breathing, corresponds to a detectable fluctuation in the current,
registered by the sensor. This method is already very well known, so we present only a few
pieces. The wearable Airgo belt [35], for example, utilizes a resistance-based system placed
on the ribcage’s bottom, which detects chest circumference. The Airgo band, composed of
stretchable materials with a silver-coated yarn, uses a microprocessor for data collection,
Bluetooth for wireless communication, and inertial measurement for motion detection. A
study involving 21 healthy subjects compared Airgo with a metabolic cart, focusing on key
parameters.
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A similar approach is used by piezoresistive sensors. In the context of respiration,
piezoresistive sensors are often integrated into wearable devices or patches. One advantage
of piezoresistive sensors is their ability to capture subtle variations in chest or abdominal
movements with high sensitivity. Chu et al. [36] developed a wearable sensor to measure
RR and RV simultaneously using low-powered piezoresistive sensors integrated with
wireless Bluetooth units. The sensor, composed of a piezoresistive thin metal film, set in a
silicone elastomer substrate, demonstrated high fidelity and linear responses. The sensors,
with small footprints, were placed on the chest and abdomen and could record respiration
signals even during walking and running. However, challenges include sensitivity to
additional motions and artifacts, with proper sensor placement being crucial. Yuan et al. [37]
developed a flexible piezoelectric sensor for respiratory monitoring based on thin-film
polyvinylidene fluoride (PVDF) on fish lateral line structure. The monitoring system has
been tested under various conditions, which provides a prerequisite for wide applications
in daily health monitoring. Another interesting study on the use of a PVDF polymer
was published by Lei et al. [38]. In this study, a piezoelectric PVDF film encapsulated
in polydimethylsiloxane was used. The feasibility of using the suggested sensor patch
for RR measurements was validated. The outcomes of these measurements showed no
statistical differences compared to those obtained using a commercial respiratory effort
transducer. In future wearable applications, piezoelectric sensors based on PVDF can be
used in respiration monitoring for their high sensitivity, flexibility, and light weight.

Another measuring method, respiratory inductance plethysmography (RIP), is a non-
invasive technique used to measure respiration by detecting changes in the inductance of
coils or bands placed around the chest and abdomen. RIP is widely employed in wearable
devices for continuous respiratory monitoring. The technology offers advantages like
comfort, ease of use, and minimal interference with natural breathing, making it suitable
for various applications, including sleep studies, physical activity monitoring, and respi-
ratory health assessments. Wu et al. [39] proposed a wearable device that utilizes proven
RIP technology, wireless body sensor networks, and accelerometers for sleep respiration
monitoring. The textile RIP sensor, integrated into a suit for thorax or abdomen placement,
incorporates a smart signal-processing algorithm for dynamic respiration rate extraction.
Monaco et al. published a review that includes several studies of sensors working on resis-
tive and RIP principles. The review is also supplemented by optical sensors and individual
acoustic, electrical impedance, ECG-based sensors, etc., which we will discuss in detail in
later chapters. [40].

Capacitive stretch sensors can also be used to measure respiration. They typically
consist of a flexible material integrated with conductive elements. As the material stretches
or contracts with the movement of the chest during breathing, the distance between the
conductive elements changes. Whitlock et al. [41] proposed A-spiro, a wearable device for
estimating respiratory flow, RV, and RR. Worn as a chest belt, it features a capacitive stretch
sensor and IMU, transmitting data over Bluetooth. The sensor data processing involves
three modules: data preprocessing for capacitance and accelerometer readings, breathing
signal reconstruction using empirical mode analysis, and hysteresis modeling and flow
estimation for predicting respiratory flow. Enokibori et al. [42] introduced Spiro Vest, an
e-textile-based spirometer, which employs two length sensors on the chest and abdomen
to detect torso expansion and contraction, calculating changes in torso and lung volume.
The e-textile sensor features conductive fibers as warps and stretchable fibers as wefts.
This textile can be expanded width-wise, altering the spacing between adjacent conductive
warps. The changes in distance lead to electronic capacitance variations among the warps,
which the device transforms into length changes in the sensor. Park et al. [43] integrated
a flexible capacitive pressure sensor into a waist belt for detecting real-time respiration
signals through capacitive transduction. The sensor consists of polydimethylsiloxane-based
silver nanowires and carbon fibers, which demonstrated high sensitivity (0.161 kPa−1), a
wide working range (up to 200 kPa), and durability (over 6000 cycles). Signal processing
involved a low-pass filter and MATLAB-coded finite impulse response (FIR) filter to remove
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noise. Despite some voltage peaks during upper body movement, the wearable sensor
proved effective for non-contact real-time respiration monitoring.

The rising field of self-powered sensing methods has brought significant attention
to wearable technology in recent years. One of the most promising technologies in this
area is triboelectric nanogenerators. Li et al. [34] employed a lightweight retractable self-
powered sensor (RSPS), which incorporates a miniature rotating thin-film triboelectric
nanogenerator (RTF-TENG) capable of enduring over 1 million stretching cycles. The RSPS
is part of a wireless multifunctional wearable respiratory monitoring system, facilitating
daily portable monitoring of various respiratory parameters. This system includes an
adjustable nylon strap and integrates a Wi-Fi module, STM32 (STMicroelectronics, Geneve,
Switzerland) controller, analog-to-digital (AD) acquisition module, and charge amplifier
for wireless communication. The RTF-TENG, the key component, produces AC signals
during stretching.

There are various commercially accessible medical devices used for monitoring respi-
ration, equipped with proprietary sensors, designed to be user-friendly for both clinical
and home settings. Resmetrix [20] introduces a novel wearable system employing a chest
strap to continuously monitor breathing patterns, vital signs, and disease progression. The
wireless connection to a smartphone app enables real-time monitoring and detection of
respiratory issues. Proprietary sensors with an AI-powered algorithm can effectively detect
changes in respiratory patterns during a mild asthma attack and monitor respiratory signals
during exercise. Spire Health [21,44] has introduced the commercially available Health Tag
(Spire, Inc. San Francisco, CA, USA) respiratory tracker, designed to predict exacerbations
and hospitalizations in severe COPD patients. With sensors attached to clothing, it offers a
set-it-and-forget-it approach, recording respiratory data, physical activity, HR, and sleep.
The proprietary respiration force sensor measures respiratory effort, the expansion and
contraction of the thoracic cavity and lower abdomen, to provide a highly detailed view
of the full respiratory waveform. The machine-washable, dryer-safe device is specifically
designed for elderly individuals. Fourth Frontier offers another interesting commercial
device called Frontier X2 (Fourth Frontier Technologies Ltd., London, UK) [45], which is
a wearable chest band optimized for heart rate and respiration rate monitoring during
exercise or sleep.

Different methods can be employed to sense chest movement, and as an example, we
can also cite an alternative where the change in the circumference of the chest affects the gain
of the textile antenna. Wagih et al. [46] proposed an e-textile sensor that utilizes a broadband
monopole antenna with high gain and efficiency, fabricated using conductive fabric attached
to a textile substrate. Experimental characterization of the sensor demonstrates accurate
breath detection.

Chest straps are primarily designed for recording RR or RV and are known for their
high accuracy in measuring these parameters compared to alternative wearables. This
precision is thanks to their proximity to the chest or abdomen, where respiratory movements
are more notable. For simple applications, they can also be placed over clothing. To
achieve the highest accuracy, it is recommended to utilize dual breathing belts, capturing
both chest and abdominal breathing. Chest belts offer great stability, particularly during
physical activities, which makes them well-suited for sports and fitness applications where
body movements are dynamic. Their proficiency in continuous monitoring allows a
comprehensive perspective on respiratory patterns throughout the day and during specific
activities. However, some users may feel chest belts are less comfortable, especially during
prolonged wear, and tight straps might induce discomfort or affect natural breathing
movements. Ongoing research aims to address comfort problems by transforming sensors
into patch formats. Particularly suitable for this task are piezoresistive sensors. The
drawback is that these patches need closer contact with the body’s surface and demand a
more precise selection of the body location. It is excellent that chest belts outshine other
wearables in battery life. Their focused functionality, primarily centered on respiration
monitoring, contributes to extended battery life. Additionally, the dynamics of respiration
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impose less demand on sampling frequencies, further contributing to prolonged battery
life.

2.2. Seismocardiography, Ballistocardiography, and Similar Methods

Seismocardiography (SCG), introduced in 1961 by Bozhenko [47], involves the record-
ing of body micro-vibrations produced by the cardiovascular and respiratory systems at
the thorax [48–52]. This method shares fundamental principles with technologies such as
forcecardiography, gyrocardiography, vibrational cardiography, kinocardiography, etc. The
SCG signal continuously reflects the activity of both the cardiovascular and respiration
systems. SCG components are presented in all three axes of the accelerometer, with each
axis revealing a distinct pattern [53]. The low-frequency component matches the chest wall
motion induced by respiration and a high-frequency component matches the heartbeat. [54].
The SCG signal is affected by respiration in three ways: first, by shifting the SCG baseline
due to the chest wall movement; second, by SCG amplitude variation caused by changes
in pressure inside the chest; and third, through respiratory sinus arrhythmia in HRV [55].
Current research teams are either working on proposing extraction algorithms [56] or
enhancing the quality through quantitative analysis of motion artifacts [57,58]. This in-
volves utilizing an adaptive recursive least-squares filter [59] or time–frequency distribution
analysis [60] or employing two cooperating accelerometers [54,61]. Using SCG, we can
detect mechanical aortic opening, aortic closure, the point of maximal blood acceleration in
the aorta, opening of the mitral valve, closure of the mitral valve, rapid filling of the left
ventricle, accelerometer-derived respiration, RR, HR, and respiration amplitude.

Another relevant method is ballistocardiography (BCG), introduced by Gordon in 1877.
This technique captures the motions of the entire body induced by blood flow during cardiac
contractions [62]. Subsequent researchers, such as Henderson [63], Heald and Tucker [64],
Starr and Krumbhaar [65], and Rubenstein [66], among others, have explored the influence
of respiration on the BCG signal. Unlike SCG, micro-motion is not limited to the chest but
extends to the entire body surface [67]. The BCG component also encompasses movement
along all three axes and can be measured as acceleration, velocity, displacement, or force
signal [53]. While the impact of respiration on ECG [68] has been extensively studied,
research on the effects of respiration on SCG and BCG lags. According to a systematic review
by Han et al. [69], only a small percentage of studies focus on respiratory monitoring [67].
BCG is primarily influenced by cyclical changes in intrathoracic pressure resulting from
pulmonary ventilation [18], serving as a source of respiratory-cardiovascular coupling [70].
Pulmonary stretch receptors stimulated during inspiration activate the Hering–Breuer
reflex of motoneurons in the nucleus accumbens [71]. The thoraco-abdominal respiratory
pump, in turn, generates oscillations in venous return and left ventricular afterload, leading
to arterial pressure oscillations [71–73], consequently triggering the baroreflex. Additionally,
there is a direct interaction between the brainstem respiratory oscillator and cardiac vagal
preganglionic neurons in the nucleus accumbens [67,70]. The latest literature reflecta
a significant enthusiasm for employing these techniques in extracting respiratory data.
The potential for concurrent monitoring of respiratory and cardiovascular signals using
BCG or SCG opens avenues for observing vital physiological functions during routine
activities outside the hospital setting, such as demanding sports, mental tasks, sleep, etc.
A notable advantage of SCG and BCG techniques in respiration detection lies in their
cost-effectiveness and straightforward implementation. However, akin to several other
methods, a notable drawback is the lack of information about the composition of respiratory
gases.

If we now move on to specific products currently available, we can start with a typical
representative of SCG monitoring, a MagIC vest system from Marco Di Rienzo et al. [55,74].
This system presents a modified version of a textile-based wearable device designed for
inconspicuous recording of ECG, respiration, and accelerometric data to evaluate sternal
SCG in daily life. Their research not only delves into signal processing but also includes a
comprehensive comparison with alternative methods like phonocardiography and BCG.
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Tadi et al. [75] conducted intriguing SCG research on extracting respiratory and heart
activity from accelerometer signals using Freescale MMA8451Q accelerometer (Freescale
Semiconductor, Austin, TX, USA). They compared extracted parameters not only with tra-
ditional ECG and chest belts but even with CT images, showcasing a thorough exploration
of the method’s capabilities. In the realm of forcecardiography, an article [23] discussed a
sensor utilizing a force-sensing resistor (FSR03CE, Ohmite Mfg Co., Warrenville, IL, USA)
equipped with a dome-shaped mechanical coupler. The authors conducted a detailed
analysis and compared results with ECG-derived respiration and a resistive respiration
band in an experiment involving seven participants. Additionally, research focusing on
the analysis of respiration in individuals undergoing thoracic surgery using a smart IMU
sensor is another noteworthy contribution to this field, with potential applications in
home environments as well [76]. Respiration monitors find extensive use in the realm of
biofeedback. From a technical standpoint, these devices are often straightforward, focusing
on user-friendliness and aesthetic design. Nevertheless, they prove to be effective tools.
Notable examples include the iBreve brooch (iBreve, Dublin, Ireland) [77], ingeniously
attached to the hem of a bra, and the Oxa (Oxa Life, Rumlang, Switzerland) [78], designed
for placement on the chest during relaxation exercises. In the domain of commercially
available BCG devices, Sadat-Mohammadi et al. [79] presented a wearable respiration
sensor based on an accelerometric sensor and random forest classifier and achieved an
accuracy of up to 93.4% while being less sensitive to body and sensor movement artifacts.
In the article by Tavakolian et al. [80], the focus was on enhancing BCG processing through
the incorporation of respiration information. The study involved experiments conducted
on 45 subjects, encompassing individuals both with and without heart-related pathologies.
The comprehensive data acquisition process included the measurement of BCG, 12-lead
ECG, pulse oximetry, respiration, and heart sounds. All signals were meticulously acquired
using a Biopac biological data acquisition system [81]. In the study conducted by Pan-
dia et al. [82], the primary focus was on frequency domain analysis of respiratory variations
within the SCG. To achieve this, they utilized a miniature MEMS (microelectromechanical
system) accelerometer (LIS3L02AL, STMicroelectronics, Geneva, Switzerland) and con-
ducted their research on 18 healthy volunteers. The researchers divided the entire SCG
signal bandwidth (0–100 Hz) into 5 and 10 Hz frequency bands. They systematically com-
pared the spectral energies observed during inspiration, expiration, and apnea. Notably,
statistically significant differences were identified within the 10-40 Hz frequency range.
This approach provided valuable insights into the respiratory dynamics captured by the
SCG signal. Kang et al. [24] contributed significantly with an outstanding article, showcas-
ing the practical implications in the realm of wearable electronics. They engineered soft
skin-interfaced mechano-acoustic sensors for real-time monitoring and patient feedback
on respiratory and swallowing biomechanics. Their research involved rigorous validation
studies on a cohort of 67 healthy adults and 4 patients with dysphagia, comparing the
results to existing clinical standard equipment. Remarkably, the authors also assessed
the differential mode of operation, demonstrating comparable performance even during
routine daily activities and intense exercise. The neck patch itself features two IMU units,
enabling complete communication and signal analysis. Additionally, they developed a vari-
ant incorporating a haptic sensor. The work conducted by Da He et al. [83] is noteworthy
for its originality in exploring the side behind the ear as a potential location for wearable
vital signs monitoring. In their research, the authors specifically focused on photoplethys-
mography (PPG) and BCG. For BCG measurements, they employed a 25 mm × 25 mm
hybrid sensor with two capacitive electrodes for differential sensing and one dry electrode
for common-mode feedback, connected to a high-impedance LMC6064 (Texas Instruments,
Dallas, TX, USA) operational amplifier. This BCG sensor not only provided continuous
HR and RR monitoring but also demonstrated correlations to cardiac output and blood
pressure. The use of the unique location behind the ear adds a novel dimension to wearable
vital sign monitoring. Morra et al. conducted a study titled “Influence of sympathetic
activation on myocardial contractility measured with BCG and SCG during sustained
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end-expiratory apnoea” on 28 healthy men [84]. In this research, they measured BCG and
SCG at a sampling rate of 50 Hz using two detectors, each comprising a 3D accelerometer
and 3D gyroscope. One detector was placed on the manubrium of the sternum below the
clavicle over the superior mediastinum, while the second was positioned in the lumbar
lordosis curve, between the second and third lumbar vertebrae. Simultaneously, one-lead
ECG, blood pressure, SpO2, and end-tidal CO2 were also measured. Using this hardware
setup, Morra et al. further conducted BCG and SCG detection to assess hemodynamic
changes during simulated obstructive apnea on 20 volunteers [85]. These studies contribute
valuable insights into the influence of sympathetic activation on myocardial contractility
and the hemodynamic effects of simulated obstructive apnoea. Some research even focuses
on recording the movement of specific muscles active during respiration such as inter-
costals and diaphragm. Uduak et al. [29] designed a device using commercial EMG patches
combined with a piezoelectric microphone for monitoring intercostals and diaphragm
movement and breathing sound acquisition.

The realm of BCG research offers intriguing alternatives beyond directly measuring
signals on the body, utilizing everyday objects with which people closely interact. Various
sensors embedded in beds, mattresses, and chairs show promising potential. A typical BCG
sensor is the Emfit QS Active (Emfit Ltd, Vaajakoski, Finland) sleep monitor [86]. Placed
beneath the mattress, it meticulously records and assesses crucial sleep parameters. This
innovative device measures HR, HRV, breathing cycles, sleep cycles, movements in bed,
overall recovery, stress levels, snoring, and, above all, sleep quality. Vehkaoja et al. [87]
made a significant contribution by investigating the effects of sensor type and location
on signal quality in bed-mounted BCG, HR, and RR monitoring. They employed force
sensors made of piezoelectric PVDF film and electret polymer material placed under
the mattress topper, conducting experiments in 23 different positions. Brüser et al. [88]
introduced an interesting solution for measuring HR, RR, and complex breathing patterns
using a BCG sensor based on a multi-channel optical sensor array consisting of two infrared
LEDs (SFH4250, OSRAM, Munich, Germany) and a photodiode (BPW34FAS, OSRAM,
Munich, Germany). Dynamic forces acting on the mattress surface caused deformations that
modulated the light intensity sensed by the photodiode. Static-charge-sensitive beds [89,90]
offer a simple and inexpensive BCG alternative, enabling continuous long-term monitoring
of HR, RR, respiratory amplitude, and body movements. Albukhari et al. [91] introduced
bed-embedded HR and RR detection using longitudinal BCG and pattern recognition.
They employed a low-cost, off-the-shelf load cell installed on a typical hospital bed with a
machine-learning algorithm. Mack et al. [92] used two pressure pads installed on a mattress
for BCG evaluation in a sleep-monitoring system. They assessed HR and RR in 40 healthy
subjects, complementing the study with traditional polysomnography. Zhao et al. [93] used
a set of oil pressure sensors embedded in a micromovement-sensitive mattress to identify
sleep apnea syndrome. Using HR and RR signals from 42 subjects over 3 nights, they
implemented a knowledge-based support vector machine (KSVM) classification model.
In the study by Lee et al. [94], four load cells (CBCL-6L, Curiosity Technology, Pajusi,
Gyeonggido, Republic of Korea) were installed below the plane of the baby bed, connected
to a Wheatstone bridge configuration. This configuration produces an electrical signal
in response to force changes induced by cardiac activity and respiratory movements.
The authors developed algorithms for determining HR and RR as part of their work.
Cimr et al. [95] present the application of a mechanical trigger for the unobtrusive detection
of respiratory disorders based on body recoil micromovements. They used four tensimeters
installed on the legs of the bed to detect 3D micromovements. Signal analysis was based
on a Convolutional Neural Network (CNN) with 12-dimension information obtained
from 20 volunteers. Martin-Yebra et al. [96] evaluated respiratory- and postural-induced
changes in the BCG signal using a multicomponent biomechanical force plate, based on 3D
piezoelectric load cells (Type 9286B, Kistler®, Wien, Austria, 600 × 400 mm). Time-warping
averaging was employed on a group of 20 healthy volunteers. From our own experiments,
we can mention our pressure measurement using a Treston DMP 331 sensor in a seat air
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cushion from 2011 [97], where we used microsensors to evaluate cognitive processes. From
the pressure sensor, we determined HR and RR while driving in the car simulator.

The narrative review by Balali et al. [67] provides an excellent and comprehensive
overview of recent advancements in extracting respiratory signals, computing cardiorespi-
ratory interaction markers, and exploring practical applications, including the investigation
of sleep-breathing disorders. The authors delve into the investigation of cardiorespiratory
interaction using SCG and BCG. They highlight the growing trend towards incorporating
artificial intelligence and the associated benefits in real-world scenarios outside of clinical
settings, emphasizing reductions in costs and time. The review also includes a comparison
of different sensors utilized for these applications.

SCG and BCG sensors are primarily designed for recording RR and less for RV. These
sensors operate on a nonintrusive principle by detecting vibrations resulting from both
respiration and the heartbeat. This dual functionality provides a comprehensive perspective
on cardio-respiratory dynamics. In comparison, SCG sensors are used more in the form
of a patch, and versatile BCG sensors are used in wearable devices in a wider range, for
example, in smartwatches, personal belongings, or bed linen, and even in this way, they
record physiological parameters without the need for direct contact with the skin of the
person being measured. Such a measurement is very comfortable. However, it must be
recognized that the closer the sensors are to the body, the more accurate the measurement
is, and from this point of view, SCGs are considered more accurate. Since the SCG also
commonly uses an accelerometer on the chest, the position of the body is also recorded well,
which can be used to filter out signal interference by body movements. Overall, vibration
from body movements and interference from nearby devices are considered disadvantages
of both sensors. Especially with BCG sensors, extracting respiratory information is a big
challenge and requires advanced signal-processing techniques for accurate interpretation.
For example, the complexity of such an operation may require additional computing power
associated with higher sampling rates and, thus, have much higher energy consumption
requirements.

2.3. Chest Impedance Measurement—Bioamplifiers

Measuring body impedance to determine respiration involves assessing the electrical
impedance of the body, particularly the thoracic region, to derive information about the
respiratory process. Analyzing these changes provides valuable insights into respiratory
parameters such as rate and volume. This non-invasive method offers potential applications
in wearable devices for continuous respiratory monitoring.

Järvelä et al. [98] introduced a wearable sensor, which utilizes three electrodes to
measure thoracic impedance variations, enabling accurate RR monitoring. The wireless
sensor connects to a mobile monitoring device, analyzing signals and transmitting data to
a central station. RR determination relies on evaluating thoracic impedance changes using
a “dual vector” approach. A comparison with capnography was performed using Bland–
Altman analysis, with error grid analysis assessing risk levels. The study, involving 40 adult
ward patients, demonstrated the reliability of RR measurements with the new sensor.
Fedotov et al. [99] developed a wearable respiratory monitoring device, which employs
bioelectrical impedance plethysmography and a 3D accelerometer to capture respiration
and body movement. To mitigate motion artifacts, a combined hardware and software
solution was created using a band-pass filter and adaptive noise cancellation software
implemented in the microcontroller’s firmware. Khan et al. [100] compared electrical
impedance plethysmography (EIP) with spirometry. The objective was accurate spirometer
output estimation using EIP channel outputs. They employed 10 EIP channels placed at
various torso locations. A learning algorithm was trained and tested on non-overlapping
data subsets, comparing the estimated spirometer signal with the reference signal. A
novel Segregated Envelope and Carrier estimation approach was introduced, based on
amplitude-modulated (AM) signal approximation, separating amplitude and breathing
rate components. The proposed virtual spirometry framework combines multichannel
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EIP and bio-signal processing, demonstrating efficacy in spirometer output estimation.
Motion artifact detection, support vector machine (SVM) regression, and time–frequency
signatures of motion artifacts in EIP channels offer promising avenues for physical activity
monitoring.

As part of the trend, leading integrated circuit manufacturers are incorporating EIP
directly into their biopotential transducers. The circuit series ADS129xR (Texas Instruments,
Dallas, TX, USA) is especially popular [101]. It is a low-power, 8-channel, 24-bit analog front
end (AFE) with fully integrated respiration impedance measurement. Texas Instruments
also offers other components like AFE4960 [102] and AFE4500 [103], providing a compre-
hensive solution for measuring bioimpedance (BioZ), including respiration monitoring,
with a 22-bit resolution and I2C and SPI interfaces. Analog Devices offers the ADAS1000
(Analog Devices, Wilmington, MA, USA) [104], a low-power ECG AFE with five acquisition
channels, AC and DC lead-off detection, and thoracic impedance measurement. Another
example component from Analog Devices is the MAX30001 [105], which operates with
ultra-low power and integrates a single-channel biopotential AFE with bioimpedance for
respiration measurement. The AS7058 (OSRAM, Munich, Germany) [106] features two
20-bit ADCs for PPG acquisition and one 20-bit ADC for ECG/BioZ acquisition, capable of
measuring respiration. A good example of the application of these bioimpedance sensors is
the soft flexible bioelectronic system by Kim et al. [33], who applied it to calculate metabolic
costs and physical effort.

Sensors based on chest impedance are considered nonintrusive but need direct contact
with the skin of the chest. They can therefore appear uncomfortable to wear, even though
the forms of wear nowadays try to think about the wearer’s comfort as well. The difference
in signal quality can be affected by humidity, skin condition, fit, and other factors. They
detect changes in the electrical impedance of the chest caused by breathing movements of
the body and can continuously and unobtrusively record not only RR but also RV. They are
well integrated into ECG holsters, chest patches, smart clothing, and other various wearable
devices. Chest impedance-based sensors can operate at various sampling frequencies,
which contribute to energy efficiency and therefore lower energy consumption. All things
considered, accurate measurement can be ensured by proper contact and adjustment. Of
course, interference with body movements can negatively affect the quality of the signal,
but post-processing of the signal can improve the accuracy of respiratory data.

2.4. Optical Fibers

Optical sensors, especially with Fiber Bragg Grating (FBG), are very important in the
development of medical devices for measuring physiological parameters [107–110]. They
offer a non-invasive approach with interesting metrological properties and electrical safety,
they are cheap and resistant to water and corrosion, and, due to their immunity to strong
magnetic fields, they can also be used in MRI or CT testing [110]. When monitoring respira-
tion during exercise, it is possible to sweat easily and this will not affect the measurement,
which can be a problem with other materials [111].

Optical fibers are made of high-quality glass or platinum materials that transmit
signals without major losses. They are thin, light, transparent, and easily incorporated
into elastic bands or textiles [112], and are therefore very comfortable to wear [113]. They
can also be directly incorporated into pillows, mattresses, or patient beds in a hospital
environment [114,115]. However, they are hard and fragile, which is why they are encased
in various protective materials (lit). The principle of measurement is the periodic change
in the refractive index along the optical fiber, and when breathing, lifting the area of the
chest and abdomen and physical movement of the shoulder are converted into a shift in
wavelength. During breathing, a spectral change in the reflected/transmitted radiation
through the Bragg grating is recorded due to changes in its geometric parameters due to
external forces acting on it [112].

The advantage of FBG optical fibers is the sensitivity of the probe only in the place
of the optical grid, while they are not sensitive to vibrations and other unwanted effects.
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The sensor system can consist of a whole series of FBG sensors that can be used to monitor
different physiological variables at the same time without mutual interaction through
their shift in the spectral region. However, the disadvantage is the more demanding
evaluation of the output signal, which can increase the price of such a system. Better signal
detection is also needed, which has lower signal-to-noise ratios. For example, Witt et al. [22]
focused on the development of medical textiles with FBG optical fibers for measuring
RR in the MRI environment where they also tested the systems, which has an advantage
in that it also offers an analysis of the patient’s breathing cycle. The goal of the study
of Ciocchetti et al. [116] was to create a smart textile using two FBGs for continuous
breathing monitoring. The authors also performed a previous biomechanical analysis
of chest-wall movements during breathing, which they used to develop their device. In
another article, Lo Presti et al. [107] focused on the fabrication of a flexible sensor based
on FBG encapsulated in silicone rubber and De Jonckheere et al. [117] described the use of
FBG sensors in textiles with a focus on anesthetized patients who are to be examined under
MRI.

In addition to the fiber-optic system based on an FBG, the authors also described the
use of a system based on a fiber-optic interferometer (FOI), where interferometric probes
show slightly better measurement accuracy in the case of recording respiration [109]. The
interferometric principle, unlike the measurement of the wavelength of reflected optical
radiation, uses the measurement of the phase difference between two waves. It is an even
more sensitive principle and managed to provide a higher accuracy of 0.13% in the case of
respiration measurements. The advantage of the interferometric system is that it creates
an amplitude modulation at the output that can be detected by ordinary photodetectors.
Overall, the entire system can be constructed from commonly available components, which
means that it is somewhat more cost-effective. Among the disadvantages, it is necessary to
mention the long optical fiber (even meters), which can be a problem for certain applications.
It is also more sensitive to vibrations and is not so suitable for multisensory use. Each
sensor needs its own fiber and detection components.

Bennett et al. [118] used a multimode optical sensor for sensing respiration in the
chest, which can be incorporated into fabrics. This device is still in the testing phase.
Multimode optical fibers (MMFs) support multiple transversely guided modes for a given
optical frequency and polarization. They can guide light with low beam quality and
high optical performance. The principle is based on the theory of the micro-bending of
optical fibers, where the fiber is deformed during respiration, the light is modulated in
the MMF, and the camera records these changes. MMFs are often affected by external
noise, and improving the performance of the sensor in the future will allow signal filtering
and algorithm development. The detection of RR using MMF was also mentioned in
other works, where the fiber was embedded not only in textiles but also in mattresses or
mattresses. [113,119,120]. Likewise, Zha et al. [121] in their work focused on multimode
optical fibers. In this case, they used two thermoset multimode silica optical fibers with an
elastomer optical fiber incorporated into the respiration-monitoring belt. The sensor was
tested by 10 volunteers with a maximum error of 1 bpm for RR.

Nasr et al. [122] used a fiber optical BCG sensor built into a chair back. They used
two spectral-based approaches (unsupervised classification based on the Gaussian Mixture
Model and supervised classification based on K-Nearest Neighbors) to evaluate HR and
RR, achieving an accuracy of 94.6%.

Plastic optical fibers (POF) contain a respiration sensing part, a light source, and a
photodiode deamplifier system. The intensity of the reflected light changes due to the
respiratory movements of the chest and, thus, the distance between the mirror and the distal
end of the POV changes and these changes are recorded, and the RR is obtained [123,124].
The POF breathing sensor in the form of a textile belt was presented by Krehel et al. [125].
Wang et al. [126] in their work described a plastic optical fiber (POF) sensor in the shape of
the letter D. The advantage is its high sensitivity, low cost, and use in various conditions and
physiological states. The sensor was built into the elastic waist where it reacts to the bend
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caused by the movement of the chest during breathing. In another study, Han et al. [127]
investigated POF pressure sensors embedded into mattresses. Such a smart mattress
can record breathing with an absolute error of less than one breath per minute. Also,
Sartiano et al. [128] focused on a low-cost POF pressure sensor built into the mattress. They
designed a multi-point sensor capable of sensing respiration. In the work of Xu et al. [129],
the authors describe a grooved POF sensor embedded in polyurethane that can monitor a
person’s RR. In their studies, they investigated the optimal placement of the sensor train
and the sensitivity to tension and presented the entire sensor device in the form of a belt.
The device showed higher accuracy in sitting and standing than in various other postures.

Which system is better is difficult to say, as it depends on the specific application
and use. All of them have the advantage of the possibility of remote evaluation, which,
nowadays, is necessary for the development of sensory wearable devices. Sensors made
of optical fibers are characterized by sensitivity to changes in physical parameters, which
allows accurate detection of fine respiratory thorax (RR and RV). The advantage is that
they are non-disruptive, resistant to electromagnetic interference, can be integrated into
various forms of devices, textiles, chest patches, and furniture, and in general, can be
inserted into very convenient forms of wearable devices. They are very suitable and
often used in various environments due to their properties, such as in MRI. Thanks to their
resistance to interference, they are also suitable for measuring other additional physiological
parameters than just respiration and are suitable for use in multisensory devices. However,
their disadvantage remains the need to use sophisticated signal-processing techniques
and advanced algorithms for accurate interpretation due to the fact that they generate
complex signals. Compared to other sensors, the application of optical sensors can be more
expensive because of this, and therefore, the devices that use these sensors can be at a higher
price level. The relative fragility of optical fibers is also a disadvantage. Optical sensors
can achieve high sampling rates, enabling a detailed temporal resolution in breathing
monitoring and complex analysis of respiratory patterns. Energy consumption can be
different depending on specific optical sensors, but the implementation of FBG sensors in
wearable devices shows moderate energy consumption requirements.

2.5. Radar Systems

True noncontact respiration measuring can be achieved using radars. The advantage of
this approach is that using advanced algorithms and filtrations, they can process respiration
even from a greater distance. They can often be easily mounted on walls and in elevators,
beds, alarm clocks, etc.

Greneker [130] introduced one of the first noncontact respiration rate monitoring
systems known as the Radar Vital Signs Monitor (RVSM). Initially designed for monitoring
Olympic athletes at distances exceeding 10 m, the RVSM utilized the Doppler phenomenon
to detect chest movements induced by breathing. Kukkapalli et al. [131] presented a wire-
less micro radar system for continuous breathing monitoring, which measures the relative
motion between the radar and chest wall for the estimation of respiration patterns. The
radar, operating at 24 GHz, employs a custom analog narrow-band amplifier circuit for
reducing environmental noise. Data collected from the radar are transmitted via Wi-Fi
to a laptop and processed using a moving average filter and Fourier transform for RR
extraction. The system, designed as a wearable neck pendant, was compared to a commer-
cial respiratory monitoring sensor as a gold standard. Experimental results demonstrated
over 95% accuracy in predicting breathing rates across ten subjects. Xia et al. [132] used a
stationary radar for detecting the radar displacement signal of heartbeat (RDH). The RDH
signal, derived through complex Fourier transform and band-pass filtering of the radar
signal, facilitated the detection of fiducial points such as aortic valve opening (AO). The
evaluation of 22 subjects demonstrated that AOs detected by RDH achieved an average
detection ratio of 90%, indicating a high correlation with AOs detected by the ECG R-wave.
This setup, with signal-processing changes, would be suitable for RR monitoring as well.
Guohua et al. [133] present a non-contact method using radar to monitor both the heart rate
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and RR of human subjects. The system uses radar to detect the ballistocardiogram (BCG)
signal, which is analyzed in the time and frequency domains, along with ECG signals mea-
sured by electrocardiography. Wavelet transform, specifically using the Symmlet mother
wavelet of order 8, was employed for simultaneous information in the time and frequency
domains. The study by Sharma et al. [134] introduced a wearable radio-frequency sensor
utilizing near-field coherent sensing (NCS) on 20 healthy participants performing voluntary
breathing exercises in various postures. NCS, a non-invasive technique, involves transmit-
ting a low-power continuous-wave RF signal into the body using over-clothing antennas,
allowing direct measurement of heart, lung, and diaphragm motion. Two prototype sensors
were strategically placed: one near the heart and the other below the xiphoid process. The
study focuses on accurately estimating parameters such as RR, RV, and HR. A very practical
device is presented by Somnofy [25]. It is a bedside device that uses ultra-low power radio
waves to detect body movement and AI for detailed analysis of sleep stages and RR. The
device has undergone clinical validation against PSG.

Radar sensors and sensors with the Doppler effect represent an innovative remote and
non-contact approach. Non-contact can be a great advantage in specific cases where it is not
possible to use sensors with skin contact. Radars also offer flexibility in placement. These
sensors are used for integration into devices of various shapes such as alarm clocks, or they
can be placed on the ceiling and, thus, offer wide flexibility in their use. The sensors can
provide real-time monitoring of breathing patterns and thus detect respiratory anomalies.
Due to non-contact, however, there is the disadvantage of external interference, which
is higher than with non-contact devices, as well as the disadvantage of complex signal
processing. A robust signal filtering mechanism is required to obtain the desired signal,
which results in higher energy consumption.

2.6. Camera Systems

Estimating respiration from videos involves capturing and analyzing body movements
to determine the individual’s RR. Video-based methods can provide another non-contact
and remote approach for monitoring respiration.

Chen et al. [135] presented a framework for remote RR monitoring using face videos.
The proposed framework employs motion compensation, two-phase temporal filtering,
and signal pruning for accurate RR results and simultaneous measurement of HR and
HRV. The system uses a two-phase temporal filter with an Infinite Impulse Response (IIR)
filter for signal enhancement. The Lomb–Scargle periodogram was applied for spectral
analysis of detrended HRV to estimate RR. The experimental results demonstrate the
feasibility and effectiveness of the method for RR estimation in rest cases. Challenges
included addressing poor signal quality in pulse signal extraction, especially concerning
voluntary motions, expressions, and illumination changes. Stubbe et al. [136] created
the Opto-Electronic Plethysmography (OEP) system for breathing rates and compared
measured signals with a spirometer. Twelve retro-reflexive markers were strategically
placed on the chest to capture respiratory movements accurately, using eight infrared
cameras. OEP processing involved calculating chest volume based on marker positions
and Fast Fourier Transform. Statistical analysis demonstrated strong agreement between
OEP and spirometer-derived breathing rates, supported by high-amplitude values in the
frequency domain. Correlation coefficients and Bland–Altman plots affirmed the accuracy
and reliability of OEP-based estimations in comparison with spirometer measurements.
Zhu et al. [137] published an RR monitoring technique based on infrared imaging. They
developed a tracking algorithm capable of tracing facial features associated with respiration.
These features, manually selected from the initial frame in the video, involved three
specified windows. Two windows covered the periorbital regions, spanning from the
bridge of the nose to the inner corner of the eyes, representing the warmest facial areas.
The third window, positioned at the apex of the nose, represented the coolest facial area.
Their algorithm successfully tracked these windows across subsequent images, and the
respiration signal was derived from a region beneath the nose. Chekmenev et al. [138]



Biosensors 2024, 14, 90 15 of 50

opted for a thermal camera with a focal plane array designed for long-wave infrared
sensing. They conducted body temperature measurements in specific areas, including
the neck region, carotid vessel complex, and nasal region, with manual selection of these
regions. The researchers developed a wavelet analysis technique to extract both the ECG
and RR. In a study conducted by Al-Khalidi et al. [14], a thermal camera was employed
to observe variations in skin surface temperature related to respiration. Segmentation
of the images was performed, followed by the application of an algorithm to identify
and track a circular area centered on the tip of the nose. This selected area was divided
into eight equal concentric segments, and the pixel values within each segment were
averaged to derive a singular value representing the skin temperature in that segment. This
process was repeated for each image, and plots of average temperature against time for the
segments were generated, illustrating the respiration signal associated with each segment.
Prochadzka et al. [139] analyzed breathing using thermal and depth imaging camera video
records. Their goal was to use these video records as alternative diagnostics of breathing
disorders in the home environment. The methods include specific image processing
algorithms, computational intelligence tools, digital filters, and spectral estimation tools.
Mutlu et al. [140] monitored respiration phases using infrared thermography without image
segmentation. They used the thermal camera FLIR A325sc (FLIR Systems Co., Shatin, Hong
Kong) with a 50 µm lens, 60 fps, and a 320 × 240 pixel resolution.

A brief overview of the use of thermal cameras for respiration detection was conducted
by Lewis et al. [141].

Similar to radars, cameras (conventional or thermal) can be used for remote non-
contact monitoring. They enable unobtrusive monitoring of breathing (mainly RR) based
on sensing visible movements of the chest or capturing thermal patterns of breathing.
Cameras can be implemented in the home environment, hospitals, medical facilities, or
public spaces. The monitoring of premature babies is also very interesting, where non-
contact is very welcome.

The disadvantage can be low-light conditions, where poor light can affect the accuracy
of RR sensing during breathing movements, but when sensing temperature patterns, light
does not play such an important role and this method is more suitable in low light or in the
dark. With camera recording, the privacy of recorded persons may be questionable, but
when cameras only record temperature patterns, this question is not such a big problem.

The disadvantage of thermal cameras is their higher price and lower spatial resolution,
which limits the detailed analysis of breathing patterns. Also, the power consumption and
software requirements for algorithms are higher for cameras than for other respiratory
sensors. The cameras are versatile, they can monitor continuously, and interestingly, they
allow the detection of breathing in several people at the same time, which other sensors
normally do not provide.

Table 1. Chest and abdominal movement-based respiratory monitoring.

Sensor Type Application Sensing Element Key Parameters Ref.

Chest belt Respiration Resistance based BLE 1, IMU 2, Motion detection [35]

Chest belt RR 3, HR 4, HRV 5,
activity

Proprietary
sensor

Bluetooth, Mobile app, 24 h working
time [45]

Patch on chest and
abdomen RR, RV 6 Piezoresistive sensors Bluetooth, Small footprint, Linear

response [36]

Band over chest or
abdomen

Apnea, cough, and
deep breathing

Piezoelectric
sensor

Bluetooth, Mobile app, Fish lateral
line structure, PVDF 7, Low

detection limit 0.5 mN,
Sensitivity 0.24 V/N, Response time

4 ms

[37]
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Table 1. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Patch on chest RR Piezoelectric PVDF, Matlab R2022b post
processing [38]

Belt around
abdomen or thorax

Sleep
monitoring

Textile RIP 8

sensor

Digital frequency-counting
algorithm, Wireless communication,

800 mAh Li-pol battery, 380 kHz
resonance frequency, Peak

consumption 140 mW

[39]

Chest belt Respiratory flow, RR,
RV

Capacitive sensor,
accelerometer

Bluetooth, IMU, Motion correction,
Sampling rate 30 Hz [41]

Chest and
abdomen

e-textile belts
RR, RV Capacitive sensor

E-textile sensors, Bluetooth,
Estimation error reduction,

Operational frequency 100 Hz
[42]

Waist belt RR Capacitive sensor
Working pressure range up to

200 kPa,
Durability over 6000 cycles

[43]

Chest belt RR, apnea
Rotating thin-film

triboelectric
nanogenerator

Retractable self-powered sensor,
Wi-Fi, 1 million stretching cycles [34]

Patch on the chest Breathing, vital signs,
disease progression

Proprietary
sensor

Breathing pattern, Tidal volume, HR,
BT 9, Activity, Wireless

communication, Mobile app,
AI-Powered disease progression

assessment

[20]

Sensor under
clothes

Respiration,
activity, HR PPG sensor Bluetooth, Cellular-based hub,

Mobile app [21]

E-Textile
Antenna RR, HR RF antenna

sensor
Broadband monopole antenna,

Conductive fabric [46]

Textile vest SCG, BCG, ECG,
respiration

Accelerometer,
piezoresistive

plethysmograph

Accelerometer ST LIS3LV02DL,
±2 g, 12-bit, Textile ECG electrodes,

Textile piezoresistive
plethysmograph, Sampling rate

200 Hz, Bluetooth

[74]

Body
attachment

SCG, ECG,
respiration

Accelerometer,
piezoelectric

respiratory belt

MMA8451Q accelerometer, 14-bit,
Sampling rate 800 Hz, Piezoelectric
respiratory belt transducer MLT1132,
ECG Front-end AD8232, Freescale
FRDM-KL25Z acquisition board,

FFT processing

[75]

Body
attachment

Force-
cardiography

Force-sensing
resistor

FSR03CE, FCG compared to EDR 10

and respiration band, NI-USB6009
DAQ board, 13-bit,

Sampling rate 5 kHz

[23]

Clip attached to bra Respiration, stress,
activity Accelerometer RR, HR, BLE 7 [77]

Chest strap Respiration
monitoring

Accelerometer,
Inductive type

respiration sensor

Random forest classifier,
Sampling rate 1 kHz, 16-bit,

Bluetooth,
Minimalization of movement

artefacts

[79]
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Table 1. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Chest mounted
SCG,

respiration,
apnea

MEMS 11

accelerometer

Accelerometer LIS3L02AL, 0–100 Hz,
Frequency domain analysis of

inspiration,
expiration, and apnea.

[82]

Soft skin
attached to the neck

Respiratory,
swallowing

biomechanics

Mechano-acoustic
sensors, 2 × IMU

2× IMU units, 200 Hz sampling rate
for x,y-axis, 1600 Hz for z-axis,

haptic sensor,
RR, HR, swallowing, NFC, BLE

[24]

Behind the ear BCG, PPG, blood
pressure

2 capacitive
electrodes

BCG—25 mm × 25 mm hybrid
sensor for differential sensing and

dry electrode for feedback,
High-impedance LMC6064 amplifier

[83]

Chest
attached

Biopotential sensors,
respiration sounds

Biopotential
electrodes,

piezoelectric
microphone

EMG 12, Intercostals and diaphragm
movement,

Microphone: 20–100 Hz, 16-bit,
2.4 GHz wireless communication

[29]

Under the mattress BCG, HRV and sleep
tracking BCG

RR, HR, HRV, Sleep monitoring, Bed
movements, Stress level, Snoring,

Sleep quality
[86]

Under the mattress BCG, HR, RR Accelerometer, force
sensors

Piezoelectric PVDF film and electret
polymer

material, Sensor location testing
[87]

Mattress
BCG, HR, RR,

breathing
patterns

Multi-channel
optical

sensor-array

2× IR LEDs SFH4250 and
photodiode BPW34FAS, Dynamic

forces modulated the light intensity,
NI USB-6009 acquisition unit

[88]

Bed
embedded

BCG, pattern
recognition, HR, RR Load cell

Off-the-shelf load cell installed on a
typical hospital bed with a ML 13

algorithm,
Low-cost, Detection rate 83.9%

[91]

Mattress BCG, HR, RR Two pressure pads on
mattress

BCG evaluation in a sleep
monitoring system [92]

Mattress BCG, HR, RR,
apnea

Set of oil pressure
sensors

16-bit, Sampling rate 100 Hz,
KSVM 14 model, Apnea precision

rate 90.46%
[93]

Bed installed BCG, HR, RR 4 load cells
4× CBCL-6L, Wheatstone bridge,

AD8221 amplifier, HR error 2.55%,
RR error 2.66%

[94]

Bed BCG, respiratory
disorders

Tensimeters on the bed
legs

CNN 15 analysis, Accuracy of 96.4%,
Sensitivity 92.5%, Specificity 98.1%

[95]

Force plate BCG, RR,
posture

Biomechanical force
plate

3D piezoelectric load cells 9286B,
Kistler®, 600 × 400 mm, Sampling

rate 960 Hz,
Time warping averaging

[96]

Seat BCG, HR, RR Pressure sensor Air cushion connected to Treston
DMP 331 [97]

3 electrodes on the
chest

RR, detection of
tachypnoea

Impedance
pneumo-graph Dual vector approach [98]

Electrodes on the
chest RR EIP 16,

3D accelerometer
Adaptive noise cancellation,

Band-pass filtering [99]
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Table 1. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Electrodes on the
chest RR, RV EIP Segregated envelope and carrier

detection [100]

Integrated
circuit ECG, EEG, RR EIP

ADS129xR

8-channels, 24-bit Analog Front-End,
Sampling rate 250 Hz–32 kHz,

−115 dB CMRR, Internal oscillator
[101]

Integrated
circuit

ECG,
respiration

EIP
AFE4960

2 channels, 22-bit, Single ADC, SPI
and I2C

interface, Sine wave or square wave
excitation

[102]

Integrated
circuit

ECG, optical HR,
respiration

EIP
AFE4500

4 input channels, 22-bit, single ADC,
SPI and I2C

interface
[103]

Integrated
circuit

ECG,
respiration,

pace detection

EIP
ADAS1000

5 acquisition channels and one
driven lead, Serial interface

SPI/QSPI, AC and DC lead-off
detection

[104]

Integrated
circuit

ECG,
respiration,

pace detection

EIP
MAX30001

High Input Impedance (>1 GΩ),
High-Speed SPI interface, 32-Word
ECG and 8-Word BioZ FIFOs, EMI

filtering, ESD protection, DC
leads-off detection

[105]

Integrated
circuit

PPG, ECG, BioZ,
EDA

EIP
AS7058

2 ADC (20-bit) for PPG acquisition,
1 ADC (20-bit) for ECG/BIOZ

acquisition, SPI and I2C interface
[106]

Chest belt HR, RR, BP, PWT 400 µm
multimode OF 17

Laboratory testing, HRV 2.5%,
NA 18 = 0.5, Single digital camera

for signal acquisition
[118]

Chest belt RR D-shaped POF 19 RR under different movement [126]

Chest belt RR POF sensor Error 3 min−1 [125]

Chest belt RR FBG 20 sensor
Tested wavelengths 525, 660, 850,
1310, 1550 nm MRI 21 compatible,

Elongation up to 3%
[22]

Textile RR, apnea Two FBGs RR during sport, 10 mm of grating
length, [116]

T-shirt HR, RR
Three FBGs glued on

the textile with silicone
rubber

Highly stretchable and compressible [107]

Mattress HR, RR, activity POF sensor HR error 2 min−1, RR error 1 min−1 [127]

Mattress
embedded RR 4 × 4 matrix structures

of POFs

645 nm and silicon photodiode,
Arduino

Resolution 2.2–4.5%/N
[128]

Smart bed ECG, HR, BP 22, PPG,
BT

Inspired O2 FBG in
fabric Monitoring patient under MRI [117]

Chest belt RR POF-GPL 23

sensor

Polymethylmethacrylate core with a
diameter of 485 µm, Base

material-thermoplastic polyurethane
[129]

Chest belt RR HR
Multimode silica OF

with an
elastomer OF

Filtering 0.1 Hz to 0.4 Hz [121]
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Table 1. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Smartphone RR Smartphone-integrated
POF Cloud connectivity [142]

Chair back BCG, HR, RR Microbend OF
Gaussian mixture model and

classification based on K-Nearest
Neighbors, Accuracy 94.6%.

[122]

Radar HR, RR, athletes
monitoring

Stationary
parabolic antenna

Operational frequency 24.1 GHz,
Transmitter output 30 mW, Radius

0.6 m, Antenna gain 40 dB
[130]

Micro-radar RR Wearable neck pendent
radar

Operational frequency 24 GHz,
Wi-Fi communication [131]

Radar SCG, HR,
suitable for RR

Two stationary
antennas

Operational frequency 5.8 GHz,
Transmitting power 6 dBm [132]

Radar BCG, RR, HR Stationary
antenna

Operational frequency 24 GHz,
Transmitter power output 35 mW [133]

Antenna worn on
the chest or
abdomen

RR, RV, HR Monopole helical
antenna

Operational frequency
1.82/1.90 GHz,

Transmitting power
12.84/10.42 dBm

[134]

Camera system RR, HR, HRV Commercial
camera

Motion compensation,
Two-phase temporal filtering, Signal

pruning
[135]

Camera system RR, RV Infrared cameras
Twelve retro-reflexive markers, 8 IR

cameras,
Sampling rate 100 Hz

[136]

Camera system RR Infrared camera Tracking region of interest, Mean
shift localization [137]

Camera system RR, HR Infrared camera
Long-wave IR sensing, Wavelet
analysis, Thermal sensitivity of
0.025 ◦C, 14-bit dynamic range

[138]

Camera system RR Infrared camera Thermal sensitivity of 0.08 K, 50 fps [14]

Camera system Respiration phases Infrared camera
FLIR A325sc with 50 µm lens, 60 fps,

Resolution 320 × 240, No image
segmentation

[140]

1 Bluetooth low energy, 2 Inertial measurement unit, 3 Respiration rate, 4 Heart rate, 5 Heart rate variability,
6 Respiration volume, 7 Polyvinylidene fluoride, 8 Respiratory inductance plethysmography, 9 Body temperature,
10 ECG-derived respiratory, 11 Microelectromechanical systems, 12 Electromyography, 13 Machine learning,
14 Kernel Support Vector Machine, 15 Convolutional neural network, 16 Electro-impedance plethysmography,
17 Optical fiber, 18 Numeric aperture, 19 Plastic optical fiber, 20 Fiber Bragg Grating, 21 Magnetic resonance imaging,
22 Blood pressure, 23 Grooved, photosensitive, luminescent.

3. ECG-Derived Respiration

ECG-derived respiration (EDR) (Table 2) serves as a non-invasive and cost-effective
method for estimating the respiratory rate from an ECG signal. This estimation can be
conducted in either the time or frequency domain [7,143,144]. As an individual breathes,
the electrodes measuring the ECG undergo dynamic movements in distance and direction,
mirroring breathing in and out [145]. These movements induce variations in the QRS of
the ECG signal, allowing for the estimation of RR. In the time domain, ECG amplitude
and HRV are combined, employing cubic spline interpolation and amplitude detection to
enhance estimation accuracy [146,147]. The frequency-domain approach involves using
a band-pass filter to capture the ECG spectrum around 0.3 Hz (covering the respiratory
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frequency), with the respiratory rate determined by identifying the spectrum peak. This
peak corresponds well to the respiratory signal spectrum.

In contrast to other invasive and costly methods, ECG-derived respiration estimation
provides a more comfortable and cost-effective approach to measuring respiratory rate.
Nevertheless, current methods for ECG-derived respiration estimation often encounter
challenges related to low accuracy or high computational complexity.

3.1. Determination of EDR from Amplitude

Different approaches have been proposed in the past to obtain RR from ECG and
one of them is the derivation from ECG amplitude. This method is highly preferred, for
example, in ICU patients, where the RR can be simultaneously monitored and derived
using the maximum amplitude variation (PAV) from the single-lead ECG signal [146].

Overall, to achieve a capable breathing result, the signal needs to be filtered, as it
is often corrupted by low-frequency artifacts from ECG fluctuations or high-frequency
noise and interference from power lines. Several algorithms have also been developed
to estimate respiration from ECG [148–151]. Lenis et al. [151] proposed a new algorithm
for an optimal linear combination of different EDR methods. This would lead to an
even more accurate result, which cannot be achieved by a separate method. Several
algorithms have also been developed to estimate respiration from ECG and 13 methods
have been implemented—six deal with the amplitude modulation caused on the QRS
complex (first principal component (PCA), QRS integral, QR slope, QRS width, R peak,
and RS amplitude), four focus on the T wave (T integral, T peak, T slope, and peak RT),
another uses the statistical properties of the ECG in each beat, another extracts the spectral
properties of the signal below 0.5 Hz using a discrete wavelet transform, and the last one
uses the time interval between individual QRS complexes (RR interval). The top four
methods for EDR were PCA, R peak, QRS integral, and RS amplitude, all based on the QRS
complex. Widjaja et al. [152] presented an improved algorithm based on kernel principal
component analysis (kPCA). They compared their results with a reference respiratory
signal using correlation and coherence coefficients and found that kPCA outperformed
other methods and was suitable for accurate sleep apnea detection and home monitoring.
Also, Langley et al. [153] presented the PCA algorithm as a suitable method for deriving
RR from ECG amplitudes. In other studies, Varon et al. [154] focused on the development
of ambulatory systems capable of cardiorespiratory monitoring. They compared 10 EDR
methods for calculating respiration from single-lead ECG. They found that methods based
on QRS slopes are the most suitable.

Alam et al. [155], for example, in their work pointed to the possibility of deriving
respiration from an ECG wrist wearable, more specifically respiration rate (RR) and minute
ventilation (VE) parameters. Such measurement is easy for the wearer in various situations,
is comfortable, and does not interfere with long-term monitoring. They collected data
during physical activities to show the ability of the device to measure in real life and ob-
tained very satisfactory results. Another study describes the respiratory frequency derived
from the ECG in a group of survivors of acute myocardial infarction. They found that this
method is suitable and accurate in comparison with the direct measurement of respiratory
frequency. They also developed an algorithm to calculate the mean respiratory rate from
10 min ECG recordings [156]. They used not only QRS complex amplitude but also QRS
vectors and RR intervals to derive respiration from the ECG. Lazaro et al. [157] presented
a wearable wristband capable of deriving RR as well as tidal volume (TV). EDRs were
studied from the morphology of the QRS complex: QRS slope range (SR), R-wave angle (Π),
and R-S amplitude (RS). The device is suitable for continuous monitoring. Klum et al. [158]
measured a chest ECG sensor and followed the placement of electrodes with high signal
correlation with gold standards. To calculate RR in each position, they implemented three
EDR algorithms derived from HRV and QRS amplitude and an algorithm based on linear
PCA. The linear PCA method outperformed the other two methods, followed by the QRS
amplitude concept. They showed that it is possible to obtain RR even from various unfavor-
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able positions and which positions it is worthwhile to measure the ECG to obtain the best
EDR signals. Basically, they confirmed what we also found in our earlier publication about
the placement of ECG electrodes. We mentioned methods for deriving the respiratory signal
from the ECG using morphological variations between individual beats based on QRS
complex amplitude, R wave duration, QRS complex area, T-wave amplitude, or T-wave
area. ECG-derived breathing is principally derived from chest movements and changes in
the impedance distribution of the human chest, which affects the amplitude of the QRS
complex, which we also found in our research [27].

3.2. Determination of EDR from HRV

HRV is the result of various influences of the autonomic nervous system on heart
rate. The impact of respiration rate on HRV, known as respiratory sinus arrhythmia (RSA),
is widely acknowledged. However, the specific effects of different respiration rates on
HRV are not fully understood [159–163]. RSA is characterized by HRV synchronized with
respiration, where the RR interval is shortened during inspiration and lengthened during
expiration [164]. RSA falls under the category of cardiorespiratory interactions, which are
classified into three types: RSA, defined by heart rate variability at the breathing frequency;
cardio-ventilatory coupling, characterized by synchronization between the heartbeat and
the onset of inspiration; and respiratory stroke volume synchronization, characterized by
a constant phase difference between the right and left stroke volumes over a respiratory
cycle [67,165]. The most common wearable electronics sensor measuring RSA is the PPG
sensor. Good and statistically relevant research was conducted by Natarajan et al. [166]
who measured RR using the wearable device Fitbit Charge from the power spectral density
of HR from sleep studies. They achieved RMS error = 0.648 min−1. The standard used in
most wearable devices has become the Whoop algorithm [167]. A very good study was
performed by Berryhill et al. [168].

A certain problem of this algorithm and the RSA process, in general, is that it only
works reliably in a state of rest. It perfectly determines RR during sleep, but during physical
activity or even talking, the diagnosis of RR is problematic. That is why researchers
are constantly working on improving the methodology. Among the relevant research,
we can mention, for example, the work of Karlen et al. [169], who computed the RR
using the Incremental-Merge Segmentation algorithm and FFT and achieved an RMS error
of 3 ± 4.7 min−1 and Schäfer and Kratky [147] who compared different techniques and
achieved the best error of 0.84 min−1. Bian et al. [170] used deep learning and obtained a
mean absolute error of 2.5 ± 0.6 min−1. Dubey et al. [171] used a Spectral kurtosis-based
method with an RMS error of 1.2 ± 0.3 min−1. Dai et al. [172] described an algorithm based
on CNN to estimate the RR in the presence of motion. Shuzan et al. [173] used machine
learning with a mean absolute error of 1.91 min−1. A novel and robust technique based
on a fusion algorithm, which improves existing methods, with probabilistic estimation for
clinical practice was presented by Pimentel et. al [174]. In [175], they determined the RR
from PPG using infrared and green colors. During this process, they considered 12 potential
parameters, including pulse width variability, pulse amplitude, and a data fusion model
that utilizes five different PPG features to obtain real-time RR. Testing was conducted in
various body positions, specifically on the arm, wrist, and ankles. Suleman et al. [176]
devoted themselves to respiratory event estimation from PPG using a simple peak detection
algorithm. An important contribution to the deployment of machine learning in this issue
was written by Beh et al. [177].

With the advancement of miniaturization and the decrease in electricity consumption,
ring-shaped PPG sensors are gaining momentum. As one of the first and leading companies,
we can consider Ouraring (Oura Health, Oulu, Finland), which also calculates RR from
RSA [178]. The upcoming Galaxy ring (Samsung Electronics Co., Yeongtong-gu Suwon,
Gyeonggi, Republic of Korea) sounds very interesting [179].

In the future, we can count on the development of processors specially designed for
ECG-derived respiration. The study by Fan et al. [9] introduces an innovative processor
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specifically designed for achieving high accuracy and ultra-low power in EDR estimation.
Various techniques, including QRS detection with refractory period refreshing and adaptive
threshold EDR estimation, have been proposed to enhance accuracy and reduce compu-
tational complexity, subsequently lowering power consumption. Fabricated using 55 nm
processing technology, the proposed processor demonstrates a remarkable EDR estimation
error of 0.73 on the CEBS database and 1.2 on the MIT-BIH Polysomnographic Database.
Notably, it achieves a record-low power consumption of 354 nW for respiration monitoring.
This superior performance positions the proposed processor as an ideal candidate for inte-
gration into wearable sensors, facilitating ultra-low power and highly accurate respiration
monitoring.

Table 2. ECG-derived respiratory monitoring.

Sensor Type Application Sensing Element Key Parameters Ref.

Wrist-worn
EDR 1 RR, ventilation ECG 2, IMU 3 sensors

For asthma patients, IMU sample rate 250 Hz,
Using during physical activity [155]

Armband
EDR

RR 4, tidal
volume

ECG
EDRs from the morphology of the QRS

complex: QRS slope range, R-wave angle, R-S
amplitude

[157]

Chest sensor RR, HRV 5 ECG electrodes 3 EDR algorithms from ECG [158]

Wrist wearable
EDR

RR, HRV, sleep
studies PPG 6 Fitbit Charge, Power spectral density of HR,

RMS 7 error = 0.648 min−1 [166]

Mobile phone
camera EDR RR, HRV Mobile phone

camera
Incremental-Merge Segmentation algorithm,

FFT 8, RMS error 3 ± 4.7 min−1 [169]

EDR from ECG
6 RR, HRV ECG Compared different techniques,

Best error of 0.84 min−1 [147]

EDR RR, HRV PPG dataset Deep learning, MAE 9 2.5 ± 0.6 min−1 [170]

Wrist wearable
EDR RR, HRV PPG

556 nm LED 10, Spectral kurtosis-based
method,

RMS error 1.2 ± 0.3 min−1, BLE 11
[171]

Wrist wearable
EDR RR, HRV PPG CNN 12 algorithm, RR in the presence of high

activity
[172]

Wrist wearable
EDR RR, HRV PPG dataset Different Machine learning, Sampling rate

500 Hz, MAE 1.91 min−1 [173]

EDR RR, HRV PPG, ECG,
accelerometer

Fusion algorithm,
Probabilistic estimation for clinical practice [174]

Arm, wrist,
ankles EDR RR, HRV PPG IR/green LEDs, 12 parameters, Data fusion

model of 5 PPG features, Various postures [175]

EDR RR Capnobase and PPG
dataset

FFT analysis and peak detection,
MAE 2.14 ± 5.59 min−1 and

1.59 ± 3.21 min−1
[176]

Ring EDR RR, HRV, sleep, BT 13,
activity

PPG Oura ring, BLE [178]

Ring EDR RR, HR, ECG,
activity, BT PPG Galaxy ring, BLE, NFC 14 [179]

Processor
for wearable

sensors
RR, HRV EDR

estimation

QRS detection with refractory period
refreshing, Adaptive threshold, 55 nm

technology, Estimation error 0.73, Power
consumption 354 nW

[9]

1 ECG-derived respiration, 2 Electrocardiography, 3 Inertial measurement unit, 4 Respiration rate, 5 Heart rate
variability, 6 Photoplethysmography, 7 Root mean square, 8 Fast Fourier transformation, 9 Mean absolute error,
10 Light emitting diode, 11 Bluetooth low energy, 12 Convolutional neural networks, 13 Body temperature, 14 Near
field communication.
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ECG-derived respiration sensors are particularly suitable for continuous monitoring
of respiration patterns and provide valuable information about respiration across different
activities and time periods. They are almost exclusively intended for the calculation of RR.
RV can be partially determined only by monitoring amplitude changes. They can often be
found as part of smartwatches and rings. The advantage is that they are easily available to
the general public for daily monitoring of basic physiological functions, such as breathing
as well as monitoring heart rate or saturation. The multifunctionality brings the wearer
a comprehensive picture of their current physiological state and health. These sensors
have the disadvantage of the difficulty of extracting accurate information from the signals
precisely because of their complex nature, and advanced signal-processing techniques
are required to distinguish other physiological signals. ECG-derived respiration sensors
typically operate at moderate sampling rates and moderate power efficiency.

4. Acoustic-Based Methods

Respiratory sounds arise due to turbulent air flow in the larger airways [180,181]. They
stem from pulmonary vibrations transmitted to the thoracic wall through the corresponding
airways. The nature of sounds during normal breathing varies based on the acquisition
location and the phase of the ventilatory cycle [15]. Respiratory sounds, resulting from
air movement within the respiratory system, serve as an initial means of detecting respi-
ratory illnesses. Traditionally, these sounds are identified by trained physicians using a
stethoscope, and their frequency typically ranges from 20 to 1000 Hz [182]. Auscultation of
respiratory sounds is typically conducted near the airways or throat using stethoscopes
or microphones. However, there have been attempts to record respiratory sounds from
greater distances using precise external microphones or simpler methods using mobile
phones (Table 3).

Additionally, noise-reduction devices, pre-processing tools, and audio-cleaning de-
vices are available to facilitate sound acquisition for both patients and physicians. Au-
tomation of this process could lead to the development of electronic tools supporting the
healthcare system. A great overview of acoustic wearable respiration sensors can be found
in the reviews by Daiana da Costa et al. [15] and Trocoso et al. [5]. As for the approach
to acoustic signal processing, in addition to normal filtering, spectral analysis, and the
extraction of various parameters, neural networks are also an integral part. Excellent
reviews of the processing of respiratory sounds were performed by Kim et al. [183] and
Acharya et al. [184].

4.1. Electronic Stethoscopes

Certain research groups leverage electronic stethoscopes to generate input data for
subsequent analysis or classification utilizing machine-learning algorithms, such as CNN
or SVM. Their objective is to identify and contribute to the diagnosis of respiratory disor-
ders [185–187]. Various commercial electronic stethoscopes are available, with the Mintti
Smartho-D2 [28] being an illustrative example used in studies by Liu et al. [188] and Em-
manouilidou et al. [189]. These studies evaluated children’s respiration in challenging
environments. Some researchers have even developed their own electronic stethoscopes.
For instance, Aykanat et al. [190] constructed their electronic stethoscope using a compact
and directional microphone. The copious amount of recorded data undergoes a feature-
extraction process employing machine-learning techniques. Perhaps the most advanced
digital stethoscope was presented by Lee et al. [191]. They presented a soft wearable system
that facilitates real-time, wireless, and continuous auscultation. This innovative system
serves as a quantitative diagnostic tool for various diseases. The soft device is capable of
detecting continuous cardiopulmonary sounds with minimal interference and classifying
real-time signal abnormalities. Through a clinical study involving multiple patients and
control subjects, they highlight the unique advantages of the wearable auscultation method,
leveraging embedded machine learning for automated diagnoses of four lung diseases:
crackle, wheeze, stridor, and rhonchi, achieving an impressive 95% accuracy. The system
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also shows potential for home sleep studies. The AI-Ready infrasound Stethoscope VoqX
(Sanolla, Nesher, Israel) for the evaluation of sounds in the range of 3–40 Hz is presented
by Sanolla [192]. This device is also enhanced by PPG and BT sensors. Emokpae et al. [193]
present the WearME system, which uses a body area sensor network on the chest, with
each node having a suite of sensors including a digital stethoscope, an ECG monitor, a
temperature sensor, and a body posture tracker.

4.2. On-Body Microphones

Wearable systems for acquiring respiratory sounds commonly employ wireless acous-
tic sensors worn by patients, connected to smartphones for data storage. Mostly, the
evaluation of respiratory parameters is performed directly on the mobile phone. How-
ever, there are also variants where signal analysis takes place directly in the embedded
electronics of the microphone device. Fang et al. [194] presented a respiratory sound-
measurement system designed to detect sleep apnea in infants in the nose area. Very
similar research was performed by Werthammer et al. [195], but they focused on infants
and compared the result with transthoracic impedance and ECG monitoring. On the other
hand, Oletic et al. [196–198] monitored asthma while considering energy efficiency. Very
extensive research in this area was performed by Reyes et al. who, for example, detected
crackle [199] and tracheal sounds [200]. Corbishley and Rodriguez-Villegas [201] proposed
a miniaturized and wearable respiration-monitoring system utilizing a neck-mounted
microphone with an aluminum conical bell to capture respiratory acoustics effectively. In
the current version, they still analyzed the signal in PC. Great potential has been shown
by microphones made of flexible materials such as the respiration sensor using flexible
piezoelectric film on a soft compliant substrate from Liao et al. [202] or research by Yil-
maz et al. [203], who used a contact microphone from a piezoelectric film in silicone rubber
to detect diaphragm movement and thoracic sounds. An advanced piezo microphone
design was also presented by Chen et al. [204]. The development of BodyScope aimed to
capture sounds from the throat region and categorize them into specific activities such as
eating, drinking, speaking, laughing, and coughing [205]. The device, created by modifying
a wireless headset with a microphone and a stethoscope chest piece, minimizes external
audio interference. The sensor is strategically placed close to the carotid artery region,
as indicated by preliminary test results, and transmits audio signals to a computer or
smartphone. Li et al. [206] introduced a real-time wheeze detector, comprising a wireless
sound acquisition module, a wearable mechanical design, and a host system. The sensor
module included an omnidirectional condenser microphone and a stethoscope bell. Their
main goal was to achieve low computational complexity. In the publication, one can also
find a table with competing products. In [17], a wireless microphone was utilized as a
portable, cost-effective, and user-friendly wearable device positioned adjacent to the nose.
The objective was to measure respiratory rates during sleep. The microphone, affixed near
the nose using tape, transmitted signals wirelessly to a smartphone. Certain devices not
only record respiratory sounds but also capture chest movements [207–209]. Among the
commercially available alternatives, we can mention, for example, products Respa (Zansors,
LLC, Arlington, VA, USA) [210], which can be simply clipped onto clothing while using
a microphone to pick up sounds from the nose and mouth. The device is equipped with
a 3D accelerometer, magnetometer, and barometer. A very simple standalone device for
identifying RR in the wild was introduced by Taylor. et al. [211]. Another nice product
is the Sylvee wearable patch (Respira Labs, Mountain View, CA, USA) [212] which was
conceived for evaluating individuals with COPD, COVID-19, and asthma using integrated
speakers and microphones. These components gauge alterations in acoustic resonance on
the lower part of the rib cage.

Elfaramawy et al. [213] designed a wearable patch sensor network for evaluating
RR and couching events. The system uses a low-power inertial measurement unit (IMU)
to quantify the respiratory movement and a MEMs microphone to record respiratory
sounds. Various research groups have developed multimodal wearable systems capable
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of recording breath sounds along with heart rate, ECG, or oxygen saturation [214,215].
Yin et al. [216] employed an IoT system for monitoring athletes’ RR based on speech
recognition technology. Respiratory motion will affect the changes in the ECG. They
combined HR with respiratory sounds. Health Care Originals presented a device called
ADAMM (Health Care Originals, Rochester, NY, USA) [217], which is a cough-, wheezing-,
RR-, HR-, BT-, and movement-identifying smart patch. As for the number of microphones,
it is likely no one can compete with Fraunhofer IKTS [218], which created a textile vest
integrating a matrix of piezoceramic acoustic sensors in the front and back of the thorax.
They also designed their own machine-learning algorithms to analyze such complex signals.

Attention is also paid to the issue of acoustic sensor–skin contact. Cotur et al. [219]
propose a stretchable wearable consisting of a silicone membrane housing a microelectronic
sensor. Acoustic waves are transmitted through water or hydrogel inside the silicone
capsule. This sensor exhibits promise in heart monitoring, with preliminary findings
in respiratory sound recording. Chen et al. [220] crafted an e-skin-based wearable with
monitoring and sound alarm functions, detecting physiological signals for cardiovascular
diseases or sleep apnea monitoring. Ni et al. [221] presented an innovative automated
multiparametric respiratory and vital-sign-monitoring system for clinical and home en-
vironments. The technology employs soft, skin-mounted electronic miniaturized motion
sensors. This setup facilitates precise, wireless measurements of mechanoacoustic signa-
tures associated with core vital signs (HR, RR, and BT) as well as less-explored biomarkers
(such as coughing count), ensuring accuracy and resilience to ambient noises.

4.3. Remote Microphones

All research so far has been interesting and had the common denominator of trying to
capture respiratory sounds as high as possible. This brings with it a small disadvantage,
which is that the acoustic sensors must be attached to the body or worn very close to
the respiratory tract. But there is also a remote approach where they detect respiration
acoustically from a greater distance. Of course, the input sound quality will be lower
and will fluctuate with the changing distance, but on the other hand, such a system
will not burden the examined person at all. Most research logically focuses on mobile
phones. Most of us carry mobile phones every day, and the quality of microphones and
the computing power of mobile phones are growing exponentially. Among the typical
approaches, we can mention, for example, Markandeya et al. [222] who monitored sleep
apnea and Nakano et al. [223] who also monitored sleep apnea but focused on studying
snoring as a crucial sound indicative of these conditions. Barata et al. [224] monitored
asthmatic coughs and cough epochs. Bokov et al. [225] monitored respiratory sounds,
especially wheezing, in pediatric patients and Nam et al. [226] estimated RR using a
headset. Xue et al. [227] tested different algorithms for classifying respiratory sounds
measured from a distance. They first worked with databases, but later they also tested
system based on a Renesas synergy internet-of-things (IoT) platform in a hospital.

Wearable acoustic sensors for breathing monitoring include microphones and digital
stethoscopes built into wearable devices or even mobile phones. It is a unique approach
that, in addition to standard RR detection, also monitors breathing diseases such as asthma,
sleep apnea, or coughing. These sensors manage to detect even very subtle changes in
breathing as they are very sensitive, although a higher frequency may be needed to record
detailed breathing patterns. This makes them very valuable for remote, round-the-clock
patient monitoring and telemedicine applications in general. Because they require minimal
contact with the body and are versatile in terms of incorporation into various devices,
they are comfortable to use. Their disadvantage is interference with ambient noise, so it is
important to filter out these unwanted sounds, which is quite complex and requires the use
of advanced algorithms for signal processing. Depending on the application, these sensors
can work at different sampling rates.
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Table 3. Acoustic-based respiratory monitoring.

Sensor Type Application Sensing Element Key Parameters Ref.

Stand-alone
stethoscope

Respiratory sound
analysis

Digital
stethoscope

10 Hz–2 kHz, 100× amplification, Bluetooth for
mobile phone connection, DSP 1, AI 2, Ambient

noise cancelation, Real-time audio curve
display, 150 g, 3.5 mm jack

[28]

Stethoscope
connected to PC

Spectrogram
classification

Own directional
microphone

Directional microphone, Lubricated contact
area, SVM 3 and CNN 4 algorithm, 3.5 mm jack [190]

Wearable
stethoscope

Advanced sound
signal analysis

Soft and flexible
wearable smart patch

system

36 Hz–2 kHz, SNR 5 14.8 dB,
Real time abnormalities, 95% accuracy,

Controlled motion artifact, BLE 6
[191]

Stand-alone
Stethoscope

(Classic design)

Recording and data
transmission

Digital
stethoscope

3–40 Hz, 40× amplification, Ambient noise
cancelation, Sound signature spectrogram,

Integrated HR, SpO2, BT and respiratory cycle,
48 h work time, Accuracy 92%

[192]

Body area
network of

stethoscopes

Advanced
signal analysis

Body sensor area
network

Strap or shirt option, SNR 48 dB, Integrated
ECG monitor, BT, and body posture tracker [193]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Digital MEMS
microphone

ADMP441, I2C, Sensitivity −26 dBFS, Power
consumption: 216–357 µW (signal streaming),

320–420 µW (classification on sensor), SNR
50–62 dB, Power 2520 µW at 1.8 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Electret
condenser

microphone

KEEG1542, Sensitivity −42 dB, Power
consumption: 216–357 µW (signal streaming),

320–420 µW (classification on sensor), SNR
50–62 dB, Power 1000 µW @ 2.0 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Analog
accelerometer

ADXL337, Sensitivity 300 mV/g, Power
consumption: 216–357 µW (signal streaming),

320–420 µW (classification on sensor), SNR
50–62 dB, Power 900 µW @ 3.0 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Analog MEMS
microphone

ADMP404, Sensitivity −38 dBV, Power
consumption: 216–357 µW (signal streaming),

320–420 µW (classification on sensor), SNR
50–62 dB, Power 375 µW @ 1.5 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Digital
accelerometer

ADXL345, SPI, Sensitivity 3.9 mg/LSB, Power
consumption: 216–357 µW (signal streaming),

320–420 µW (classification on sensor), SNR
50–62 dB, Power 350 µW @ 2.5 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
quantification

Analog MEMS
microphone

ICS-40310, Sensitivity −37 dBV, Power
consumption: 216–357 µW (signal streaming),

320-420 µW (classification on sensor), SNR
50–62 dB, Power 16 µW @ 1.0 V, Bluetooth

[198]

Body worn
connected
wireless to

mobile phone

Asthma
monitoring Audio amplifier

MSP430 microcontroller, SPP, Orthogonal
Matching Pursuit algorithm, Accuracy 80%,

Bluetooth, 8 kb/s streaming
[195]

Body worn
connected
wireless to

mobile phone

Asthmatic wheeze
detection

Microphone or
accelerometer

TMS320C5505, DSP,
Accuracy 92% [196]
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Table 3. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Body worn
connected to
mobile phone
using audio

cable

Crackle sound
detection

Electret microphone in
plastic bell capsule

Microphone BT-2159000,
Accuracy 84.68–89.16% [199]

Body worn
connected to
mobile phone
using audio

cable

Tracheal sounds
acquisition

Electret
microphone

Microphone BT-21759000,
50–3000 Hz

Correlation index for RR r2 = 0.97,
[200]

Neck-mounted
connected to PC

using audio
cable

Breathing sounds
Microphone with

aluminum
conical bell

Microphone MD4530ASZ-1, 100–5000 Hz,
Sensitivity −42 dB,

Breathing detection accuracy 91.3%
[201]

Six wearable
stethoscopes in

vest

Diaphragm
movement, sounds

detection

Piezoelectric film in
silicone rubber

ADC converter AD7988,
Sampling rate 5 kHz, SPI [203]

Chest worn
microphone

connected to PC
using cable

Lung and heart
sounds

Piezoelectric
microphone

Ultrasensitive accelerometer, 9.2 V/g,
20–1000 Hz, LMP7721 amplifier,

SNR 42–59 dB
[204]

Chest worn
connected to PC
or mobile phone

Activity
recognition Microphone Activity identification accuracy 71.5% [205]

Chest worn
wireless

connected to PC

Wheeze
detector

Condenser
microphone in

stethoscope bell

TS-6022A, 500× amplification, 12-bit
ADC–MSP430 processor, sampling rate 2 kHz,

Bluetooth
[206]

Microphone
fixed near nose

connected
wireless to

mobile phone

Sleep RR detection,
OSA 7 Microphone RR detecting accuracy 98.4%,

OSA detecting accuracy 97.44% [17]

Chest worn
nanosensor

Mechano-acoustic
cardiopulmonary

signals

High-precision
vibration sensor

Hermetically-sealed high-precision vibration
sensor, Nano-gap transducers,

2 × 2 mm microsensor, 0.5 Hz–12 kHz,
10 µg–16 g, Sensitivity 76 mV/g

[208]

Clipped onto
clothing
wireless

connected to
mobile phone

Sound from
nose/mouth,

breathing
Microphone

Microphone, 3D accelerometer,
Magnetometer, Barometer, Commercial,

Bluetooth
[210]

Contact
microphone on

chest strap
HR, RR Piezoelectric

microphone

20–200 Hz, L496ZG microcontroller, Power
consumption 14.85 mW,

HR Median percentage error 0.33%
[211]

Wireless
thoracic and
abdominal

patch sensors
with wireless

communication
to PC

Cough detection
and RR

IMU and MEMS
microphones

LSM9DSO IMU, ADMP401 MEMS microphone,
SNR 62 dBA, MSP430 microcontroller, Power

consumption 40–53.5 mW
[213]
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Table 3. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

Multiparameter
cardiopul-

monary
acquisition

device worn on
shoulder

Breathing sound Microphone in
stethoscope bell

JL-0627C microphone, 12-bit, Bluetooth,
Accuracy for RR 96.5%, Integrated ECG, SpO2

under motion 6-h working time
[213]

Multimodal
chest sensors in

vest

Bioimpedance
tomography, RR,

chest sounds

Electret
microphones and chest

impedance sensors

Integrated ECG, SpO2, Accelerometer,
Bluetooth, 6-h working time, [214]

Flexible
wireless patch
on upper torso

Detection of cough,
RR, wheeze

Microphone and
accelerometer

Integrated HR, BT, and activity level,
Bluetooth [217]

Textile pneumo
vest with

acoustic sensors

Lung function
monitoring

Matrix of piezoceramic
sensors ML 8 algorithm [218]

Soft skin-chest
mounted
wireless
sensor

HR, RR, BT, and
cough

detection

Miniaturized
mechanoacoustic
motion sensors

LSMDSL IMU 9 sensor, Elastomer membrane,
BLE, Immune to ambient noise, CNN network

[221]

Sound detection
from distance OSA Mobil phone

iPhone 7 calibrated by oesophageal pressure
manometry, ML algorithm, Prediction of ∆Pes

10 with MAE 11 6.75 cm H2O, r = 0.83
[222]

Mobile phone
on the chest OSA, snoring Mobil phone

FFT 12 analysis, Online analysis on mobile
phone, Snoring time correlation r = 0.93,

Apnea-hypopnea index correlation r = 0.94,
OSA sensitivity 0.7, OSA specificity 0.94

[223]

Sound detection
from distance

Asthmatic coughs
and cough epochs Mobil phone

CNN model, Gaussian mixture models,
Matthew’s correlation coefficient 92%,
Cough epochs count difference 0.24

[224]

Mobile phone
near mouth

Pediatric
wheezing Mobile phone SVM algorithm, Sensitivity 71.4%, Specificity

88.9% [225]

Mobile phone
on the neck RR Mobile phone or

headset
iPhone 4s–30 cm away from nose,

PSD 13 calculation, Median error < 1% [226]

IoT device in
distance

Cough, breath, and
wheeze analysis Microphone

Embedded system, Renesas S5D9 120 MHz,
Kernel-like minimum distance classifier,

Accuracy up to 91.23%
[227]

1 Digital signal processing, 2 Artificial intelligences, 3 Support vector machine, 4 Convolutional neural network,
5 Signal to noise ratio, 6 Bluetooth low energy, 7 Obstructive sleep apnea, 8 Machine learning, 9 Inertial measure-
ment unit, 10 Peak to through differences, 11 Median of absolute error, 12 Fast Fourier transformation, 13 Power
signal density.

5. Parameters of Exhaled and Blood Gases

The composition of exhaled and blood gases offers valuable insights into respiratory
efficiency and overall physiological health. Examining both exhaled and blood gases
provides a more comprehensive picture of an individual’s respiratory and metabolic status
and guides appropriate interventions and treatment strategies (Table 4).

Airflow-based sensors operate through direct interaction with the airflow to assess
respiratory rate (RR), respiratory volume (RV), and other spirometry parameters. These
sensors are also used to determine breath composition. They are strategically positioned
near the upper airways, often integrated into respiratory facemasks, nasal cannulas, or
headsets. Integrating airflow-based sensors into wearable devices enables the continuous
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collection of breath data over extended periods. Thermal imaging cameras can also be
utilized to capture temperature variations during respiration without direct contact.

In the ever-evolving healthcare and technology environment, innovative technologies
open up new possibilities for personalized healthcare and provide a basis for more effective
strategies in combating respiratory challenges, with a particular focus on respiratory
diseases like COVID-19 [228]. Viral agents stimulate the production of volatile organic
compounds (VOCs), which are detectable in exhaled breath. As a result, these compounds
act as swift diagnostic biomarkers for COVID-19.

Understanding the blood gas parameters of an individual is a crucial tool in critical
care, aiding in diagnosing and managing respiratory distress, acidosis, and alkalosis. Pulse
oximetry is employed for monitoring blood oxygen saturation and assessing oxygen partial
pressure (PaO2) without the need for invasive arterial blood gas measurements. A popular
non-invasive method used for measuring the partial pressure of oxygen and carbon dioxide
in the blood involves transcutaneous blood gas monitoring [229].

5.1. Composition of Breath Gases

This section of the article focuses on breath gas analysis. Breath analysis has gained
attention as a modern diagnostic method for the early detection of physiological changes.
This method is non-invasive and painless with the possibility of long-term observation [230].
Most of the exhaled breath volume is made up of nitrogen (78%), oxygen (16%), carbon
dioxide (4%) and water. Volatile organic compounds (VOCs) are also present in exhaled
air, although their concentration is minimal [231,232]. However, these VOCs can provide
valuable insights into physiological and pathological function, serving as biomarkers for
the non-invasive recognition of numerous diseases. The main biomarkers that provide the
identification of human diseases include ammonia, toluene, pentane, acetone, isoprene,
nitric oxide, and other compounds such as methane, ethane, carbon monoxide, carbonyl
sulphide, and nitrous oxide. An elevated concentration of acetone in exhaled breath beyond
the normal range (300–900 ppb) can serve as a diagnostic marker for diabetes, the presence
of hydrogen sulphide (H2S) with a value exceeding 1 ppm is indicative of halitosis, and
nitric oxide (NO) serves as a diagnostic standard for chronic bronchitis (threshold: >30 ppb).
The normal range of ammonia (NH3) in the breath is from 425 ppb to 1800 ppb. An increase
in the concentration of ammonia in the human breath indicates the likelihood of chronic
kidney disease [233].

Various factors can influence the ratio of VOC concentration in exhaled air, mainly
internal conditions and lifestyle choices (e.g., alcohol consumption, diet). VOCs are gen-
erated during catabolic processes in the human body. They are transported from tissues
into the bloodstream, where they are mixed together with biochemical compounds and
metabolites from different tissues. These VOCs are carried by the bloodstream to the lungs.
Consequently, these gases are exhaled. Exhaled volatile organic compounds have direct
associations with the body’s metabolism. People release several hundred VOCs into the air
through exhalation and skin emissions [234].

To achieve early diagnosis and monitor high-risk populations, the detection of VOCs
in exhaled human breath is employed. Accurate measurement of VOCs is carried out using
precise methods such as spectrophotometry, gas chromatography, and high-performance
liquid chromatography. However, despite their accuracy and precision, these techniques
often face drawbacks, including high costs, lack of portability, and high energy consump-
tion [235]. Other known VOC detection methods are based on optical, chemiresistive,
and electrochemical principles. Gas sensors operating on chemiresistive principles are
the most frequently used sensors for gas detection compared to other sensors due to their
good physical and chemical properties, such as the reaction of metal oxide materials with
dioxygen [236]. Semiconductor metal oxide gas sensors, also known as MOS gas sensors,
measure the changes in the density of conduction electrons on the surface of the metal
oxide, which is induced by chemical interactions of the semiconductor surface of the sensor
and the target gas (NH3, alcohol, acetone, etc.). Their main advantages include their ease of
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use, portability, short reaction, and recovery times. Their small size and affordability must
also be mentioned. They can detect a wide range of gases [237]. Traditional MOS sensors
operate at high temperatures, making it challenging to apply them to wearables. Therefore,
it is crucial that MOS-based sensors can operate at room temperature (RT) because it leads
to extremely low power consumption. Enhancing the performance of gas sensors based on
RT MOS is advantageous through the combination of MOS with conductive polymers or
carbon-based materials [238].

Analysis of the composition of respiratory gases can also be performed colorimetrically,
which is an analytical optical method. Colorimetric sensors are cost-effective, highly
sensitive, and specific [239]. For example, previous studies have focused on breath acetone,
which is a biomarker of lipid oxidation and occurs in ketoacidosis or can measure fat
burning during exercise. The colorimetric sensor measures the specific reaction between
acetone and hydroxylamine sulphate and has shown high accuracy and agreement with the
reference device in monitoring ketosis [240]. In another article, the authors dealt with the
detection of lung cancer. They found that the colorimetric sensor can identify biosignals in
the breath of lung cancer patients with moderate accuracy but can be further optimized by
evaluating specific histology and incorporating clinical risk factors [241,242]. Colorimetric
monitoring of exhaled breath is also able to record the balance of the human organism
by indicating the biomarker Nitric Oxide (NO) and thus indicate oxidative stress. NO is
detected using m-cresol purple, bromophenol blue, and Alizaringelb dye and analyzed
by ultraviolet-visible (UV-Vis) spectroscopy. The dye m-Cresol Purple proved capable of
selectively, sensitively, and quickly sensing NO in exhaled air and thus detecting oxidative
stress in the body [243]. Not only NO but also CO2 can be captured colorimetrically. The
study by Shadid et al. [244] points to changes in CO2 concentrations in unhealthy people.
They constructed a portable device with a smartphone-supported unit. Many approaches
are only in the experimental phase, but the colorimetric approach has many advantages,
which show that it is also suitable in practice.

Wearable respiratory sensors for NH3 detection are mainly sensors with a single sig-
nal, such as resistive, optical, or current NH3 sensors. Resistive NH3 sensors are the most
frequently used sensors for breath analysis due to their simple structure, high sensitivity,
and ease of manufacture. However, these sensors can be easily interfered with by environ-
mental factors such as humidity or temperature, which can cause inaccurate results. In the
study by Chen et al. [30], a dual-signal wearable sensor mask was fabricated consisting of
two NH3 sensors (visual and resistive NH3 sensor) prepared by electrospinning technol-
ogy. The resistive sensor of the dual-signal wearable sensor mask consists of conductive
polymers, especially polyaniline. Metal oxides (such as ZnO and SnO2) are also widely
used in resistive NH3 sensors. The visual NH3 sensor is made of bromocresol green. The
advantages of the dual-signal wearable sensor are high sensitivity, fast response, and good
environmental stability.

Aqueveque et al. [245] focused on improving workplace health and safety by creating
an electronic respirator that captures real-time data from an integrated pressure, tempera-
ture, and relative humidity sensor and wirelessly sends it to an external platform where
it can be further evaluated. Many workers working in hazardous environments wear
protective respirators, and this approach could help better protect the respiratory tract and
prevent disease.

5.2. Change in Breathing Gas Temperature, Humidity, and Pressure

Various changes in breathing gases during inhalation and exhalation enable the de-
tection of other interesting parameters related to breathing [246,247]. Airflow detection
relies on the fact that exhaled air is warmer, has higher humidity, and contains more CO2
compared to inhaled air. These variations can be utilized to indicate RR.

One method for measuring airflow is the use of a nasal or oronasal thermistor, which
detects temperature changes between inhaled and exhaled air. This provides a semi-
quantitative estimate of airflow, but its effectiveness is limited due to a high incidence of
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thermistor displacement [248]. Sensors measuring respiration by exhaled and inhaled air
temperature use a non-invasive methodology and require a sensor, for example, between
the nose and the mouth, as shown by Hurtado et al. [249], or a camera system [250]. The
mean RR difference between the respiration monitor and counting was 0.4 breaths per
minute (BPM). Other authors also pointed out the low cost of such a solution. They have
developed a breathing sensor that is portable, easy to use, and economical. When breathing
changes, a buzzer sounds to warn that something is happening to the patient, for example,
during sleep [251]. Instead of a sensor near the nose, it is also possible to use thermal
imaging cameras, which can record temperature changes during respiration without contact.
Such solutions were also very suitable during the COVID-19 pandemic. The system can
only recognize the face of the measured subject and estimate the RR. The absolute error
was recorded at 0.66 bpm [252]. Hsu and Chow [253] introduced an RR monitoring system
utilizing a thermal sensor designed to monitor infants. It is noteworthy that this system
includes a mask, enabling it to operate without direct contact with the child’s skin. The
sensor identified temperature variations induced by respiration, and the collected data
underwent real-time correction and analysis using a personal computer connected to the
central nursery. Yu et al. [254] described passive wearable sensors for monitoring RR
from heat. They used micro thermoelectric generators (µTEGs) capable of monitoring
and detecting diseases related to breathing. The µTEG design is unique and provides fast
response and real-time measurement. Zhao et al. [255] proposed an all-fiber microcantilever-
based breath sensor that was fabricated at the fiber tip by femtosecond laser-based two-
photon polymerization microfabrication. A micro Fabry–Pérot (FP) interferometer was
formed between the microcantilever and the end side of the fiber. The sensor has excellent
thermal stability and has been mounted on a surgical mask where it has demonstrated the
ability to detect different breathing patterns and, thus, is suitable for RR monitoring. The
method is also suitable for application in an MRI environment.

Resistive humidity sensors operate by detecting changes in electrical conductance
or resistance in response to variations in the surrounding water concentration. Recently,
humidity sensors have been found to be applied in the field of respiration monitoring.
Wang, et al. [256] demonstrated amicron line humidity sensor based on PEDOT:PSS for
respiration monitoring. The PEDOT:PSS (poly (3, 4-ethylenedioxythiophene):(polystyrene
sulfonate)) sensor prepared by the femtosecond laser printing method was small, which
could lead to easy integration with different wearable devices. The sensing system featured
good stability, low humidity hysteresis, and fast response–recovery time. Zhou et al. [257]
also demonstrated real-time monitoring of human respiration using a humidity sensor
based on PEDOT:PSS in the format of nanowires on the PET substrate. Their experiments
also demonstrated high sensitivity, an ultrafast response, and excellent mechanical durabil-
ity and robustness. Güder et al. [258] developed a system for RR measurement based on
humidity sensors printed on paper. The paper sensors were fabricated by digitally printing
graphite ink using a ball-point pen and craft cutter/printer onto paper. The sensor was a
simple two-electrode electrochemical cell, in which water was electrolyzed by applying
an electrical potential between the electrodes. They placed a pure cellulose paper-based
humidity sensor in textile masks. The optimized textile mask effectively monitored the
respiratory activity of the subject. The integration of the humidity sensor into the textile
mask was also used in another study [259], where, instead of graphite ink, PEDOT:PSS
ink was used. PEDOT:PSS, with a conductive ink specifically formulated in the study, was
printed on polyamide-based taffeta label fabric by an inkjet printing method. The humidity
sensor distinguished between fast/deep and nose/mouth breathing. The flexible and wear-
able humidity sensors prepared based on conductive polymer PEDOT:PSS ink or graphite
ink may also be good candidates for future respiration-monitoring health applications,
above all for their flexibility and low-cost production using printing technologies. Other
wearable humidity sensors utilizing a porous graphene network with the capability to
detect moisture have undergone testing for respiration analysis [260]. These sensors are
attached to the body in the form of a mask and exhibit the ability to sense various aspects
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of human breathing, including detecting apnea, analyzing speech patterns, and identifying
wheeze rhythms. Honda et al. [32] presented a highly stable humidity sensor for home
sleep apnea monitoring. This system, in the form of a mask for home use, is wireless and
designed for long-term monitoring.

Another sensor used for measuring the respiratory rate is the nasal pressure transducer.
Nasal pressure offers a more accurate measure of airflow as it is based on the actual volume
of air exhaled [261,262]. This measurement can be obtained through a nasal cannula,
mouthpieces, or facemasks. However, some patients may find the sensor uncomfortable,
and the collector can potentially impact respiratory activity by increasing dead space [263].
The facemask introduced in [264] is designed to measure respiratory impedance and is
intended for both home and clinical applications. This innovative solution incorporates two
pressure transducers, two low-power consumption fans, a field-programmable gate array,
and a real-time processing engine. The device utilizes the forced oscillation technique (FOT),
a non-standardized lung function test. This technique involves using fans to introduce a
periodic sinusoidal air pressure signal and measuring the opposing force produced by the
respiratory tract. Manoni et al. [265] designed a wireless system for home monitoring and
tracking of specific breathing disorders during sleep, which are manifested by episodes of
apnea and hypopnea of central or obstructive origin. They explored several positions, but
the best place to place the device was the nose so that the pressure sensor could detect the
RR.

5.3. Wearable Spirometry

Pulmonary function testing (PFT) constitutes non-invasive tests used for the diagnosis
of various pulmonary disorders that affect a large amount of people worldwide. The first
part of pulmonary function testing is spirometry [266]. Spirometry is an objective and
non-invasive diagnostic test that is sensitive to early changes, and it is useful for disease
progression. This test is easy to perform. The quality of spirometry measurements is very
important. Therefore, it is necessary to perform a spirometry test as aptly as possible;
otherwise, the results could be misinterpreted. A spirometer serves to measure the volume,
flow, and duration of ventilated air, and then these parameters are processed into output
curves. Spirometry parameters provide important information about lung function [267].
It is helpful in determining obstructive airway disorders (asthma and chronic obstructive
pulmonary disease) but it is less useful in evaluating restrictive diseases [266]. The physical
parameters obtained from spirometry measurements include forced expiratory volume
in 1 s (FEV1), forced vital capacity (FVC), the FEV1/FVC ratio, and others (vital capacity,
forced expiratory flow 25–75%, peak expiratory flow, and inspiratory vital capacity) [268].
FVC is the maximum volume of air that can be exhaled. FEV1 is the maximum amount
of air exhaled forcibly during the first second [269]. Spirometry is usually operated in a
medical environment such as a lab or clinic. However, such a medical environment cannot
reflect the participant’s ordinary daily life. Therefore, it is essential to focus on spirometry
sensors integrated into wearable devices. The minimalization of wearables will ensure the
implementation of these measurements anywhere and at any time.

Reference [270] represents a turbine-based MEMS sensor suitable for integration
into wearable devices for spirometry measurements. The dimensions of the sensor are
20 × 20 × 2.5 mm and it consists of a turbine, built-in multipole permanent ring magnets,
and two stators with one-phase copper micro coils. Tangential air flow causes the rotation
of the turbine, which leads to voltage generation due to electromagnetic induction. This
mechanism of sensing the breath flow represents benefits such as insensitivity to ambient
temperature, humidity, and gas content. The sensor can easily be placed in a wearable
device due to these design features. The lung volume and flow rate are the parameters
that can be obtained. Another alternative to measuring spirometry parameters by wearable
sensors is the system described in [271]. The system contains a BME280 sensor, which
can measure barometric pressure, relative humidity, and temperature while breathing.
Due to its compact size, the sensor can be integrated into any wearables, whether in the



Biosensors 2024, 14, 90 33 of 50

form of open-air headsets or integrated into respiratory/training masks. It is possible to
estimate breath volume using this wearable spirometry system. Zhou et al. [272] presented
a face mask with a differential pair of barometric sensors, which monitor the participant’s
breath. This setup was used for higher accuracy in the measurement. Therefore, the
mask includes two barometers located inside and outside the mask. This work points to
the utilization of barometric pressure sensors as a cheap version of breath sensing with
compact dimensions, which provides the possibility of applications in wearable facemasks
for continuous breathing volume monitoring.

A cardio-respiratory monitoring system CoRSA is presented in [273]. The CoRSA
system is based on a pressure sensor implemented inside the respiratory mask and a
pulse-oximeter located on the earlobe. The CoRSA device measures HR, SpO2, RR, and RV.
Metamax 3B Cortex Medical is a commercial mobile spiroergometry system specifically
crafted for professional outdoor use, capable of functioning under various sports conditions.
The base of the system consists of an oronasal sensing training mask. Its benefit is its low
weight and convenient system package. The device boasts an impressive battery life of
approximately 6 h, ensuring extended usability during activities. This system is designed
to provide a comprehensive range of measurements and calculations. It encompasses the
assessment of various parameters, including heart rate, blood pressure, ECG, gas exchange
parameters, spirometry parameters, and ventilation parameters [274].

5.4. Composition of Blood

Blood gases, including oxygen (O2) and carbon dioxide (CO2), are vital indicators
of the body’s acid–base balance and respiratory function. Oxygen is essential for cellular
metabolism, while carbon dioxide is a byproduct of metabolism that needs to be efficiently
eliminated. The balance between oxygen and carbon dioxide is crucial for maintaining
homeostasis in the body.

Blood oxygen saturation (SpO2) measures how much hemoglobin is bound to oxy-
gen compared to how much hemoglobin remains unbound [275]. Hemoglobin can carry
up to four oxygen molecules. SpO2 is a basic parameter that is considered by default
in patient care. Oxygen is very important for the human body due to its necessity in
metabolic cellular processes, and a drop below vital levels can have an acute adverse effect
on organ systems. Decreased saturation may indicate lung diseases. The measurement
of saturation is based on the PPG method, in which the reflection or transmission of light
changing with the volume of blood in the microvascular area of the tissue is recorded.
Oxygenated hemoglobin absorbs more infrared light. This approach has become increas-
ingly popular for various wearable devices that can be used in both hospital and home
environments [176,177,276,277]. They consist of a light source and a photodetector. The
commonly recorded PPG signal by wearable devices is prone to artifacts, so Beh et al. [177]
described in their publication a machine-aided signal quality assessment (SQA) system.
This method would increase the accuracy of monitoring PPG signals. A deep-learning
approach to SpO2 estimation from PPG signals is coming to the fore. A smart device
with a PPG sensor can come in various forms, such as a classic pulse-oximeter, a patch
that attaches to the chest [278], a ring [279–281], an in-ear wearable sensor [282], a device
attached to the bottom of the foot [283], or a portable wearable watch [284,285].

Carbon dioxide (CO2) plays a crucial role in blood pH regulation and influences
hemoglobin’s affinity for oxygen. Monitoring the partial pressure of CO2 (PCO2) is signifi-
cant in the medical diagnosis and treatment of respiratory and metabolic diseases. Common
methods for assessing carbon dioxide partial pressure (PaCO2) include invasive arterial
blood gas (ABG), arterialized capillary blood gas (CBG), and peripheral venous blood
gas (VBG). Deviation from the norm in carbon dioxide pressure can disturb the acid–base
balance of the body, leading to hypocapnia or hypercapnia resulting in various disorders
(respiratory, metabolic, or neurological). The drawbacks of these methods include the
pain associated with the procedure, the requirement for health professionals, impaired
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skin integrity, and the unsuitability of these blood gas analysis methods for continuous
monitoring [286].

Non-invasive alternatives for assessing PCO2 include capnography and transcuta-
neous CO2 monitoring. Capnography refers to the sensing of the end-tidal partial pressure
of carbon dioxide (PetCO2) in the expired gas. Transcutaneous monitoring serves the con-
tinuous monitoring of oxygen (TcO2) and carbon dioxide (TcCO2), which diffuses through
the skin [287]. Various highly vascularized skin locations are utilized for the placement
of CO2 sensors for transcutaneous CO2 monitoring, e.g., the earlobe. This method can be
employed to estimate the arterial partial pressure of oxygen and carbon dioxide. The diffu-
sion of blood gases is typically low. Hence, achieving accurate sensing requires heating the
skin to 42 ◦C or higher to enhance sufficient CO2 diffusion [31]. Traditional transcutaneous
CO2 sensing uses electrochemical sensors that monitor changes in CO2 penetrating the
skin. However, these traditional sensors consist of bulky electronics and require frequent
calibration, making them unsuitable for monitoring outside clinical environments [288].
Another technique for transcutaneous CO2 monitoring utilizes non-dispersive infrared
(NDIR) gas sensors. NDIR technology is based on the Beer–Lambert law, which is em-
ployed to determine the concentration of chemical substances with light absorption capacity.
Carbon dioxide absorbs infrared light at a wavelength of approximately 4.26 µm, resulting
in the attenuation of infrared radiation passing through a gas sample containing CO2 [289].
In a previous study [288], the authors introduced a compact prototype with the potential
for use as a wearable transcutaneous CO2 device in healthcare applications. This prototype
utilizes IR LED and thermopile reading circuits. The thermopile within the sensing unit
transforms IR intensity information into a voltage value, utilizing temperature-sensing
thermocouples. The in vitro measurement results show the successful monitoring of PCO2
within the 0–120 mmHg range, encompassing typical human values of 35–45 mmHg. Tip-
paraju et al. [286] developed a wearable wristband device based on a miniaturized NDIR
sensor for continuous transcutaneous CO2 monitoring. This miniaturized NDIR sensor
is distinguished by its exceptional accuracy, long lifespan, and low power consumption.
To further enhance its performance, the authors developed a hydrophobic membrane
with high CO2 permeability, effectively mitigating humidity interference. This innovation
ensures the reliable and continuous transcutaneous blood CO2 tracking capability of the
wristband without the need for skin heating. The device consists of a plastic body, where
the NDIR sensor is placed, and a gas chamber with a volume of 1 ml allowing the accumula-
tion of diffusing CO2 through the skin. An O-ring, positioned atop the gas chamber, serves
as both a cushion between the wristband and the skin and ensures an airtight seal. This
design prevents any gas leakage, maintaining the integrity of the system and preventing
the entry or escape of gases into or from the ambient air.

Another alternative to transcutaneous blood gas sensing is described in another
study [290]. This innovative miniaturized prototype for transcutaneous carbon dioxide
monitoring applies the principle of fluorescence. The chemical reaction occurring in the thin
fluorescent film in response to CO2 is converted into an optical signal. This conversion is
achieved by optically stimulating the thin film with a light-emitting diode (LED), followed
by the measurement of fluorescence intensity to quantify PCO2. Transcutaneous CO2 sen-
sors utilizing luminescent materials present numerous advantages, including precise CO2
level detection and considerable potential for miniaturization. The authors [31] designed a
compact and lightweight prototype to measure the partial pressure of CO2. The sensing
mechanism involves stimulating and detecting the fluorescent response of the CO2-sensing
film. Shahed et al. [291] presented another study that focused on the estimation of capnog-
raphy from a PPG signal, employing a sequence-to-sequence prediction perspective. In
this design, the encoder module plays a crucial role in converting the input PPG signal into
a more refined representation within a reduced dimensional space. A notable innovation
in this study involves the incorporation of a recurrent block, consisting of long short-term
memory units positioned between the encoder and decoder. The final component is the
decoder, where the desired output signal is reconstructed into a capnograph signal.
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Table 4. Parameters of exhaled and blood gases related to respiration.

Sensor Type Application Sensing Element Key Parameters Ref.

Face mask Detection of VOCs 1 Chemiresistive MOS 2

sensor
Excellent stability, High response value, Low

cost [238]

Face mask NH3 detection Optical resistive
sensor

High sensitivity, Fast response, Good
environmental stability [30]

Spirometry face
mask

HR, Blood pressure,
ECG, gas
exchange,

spirometry

Turbine-based NDIR
CO2, fuel-cell-type O2

sensor,
pressure sensor

Commercial mobile spiroergometry, Low
weight, 6-h working time [274]

Spirometry face
mask RR 3 and RV 4 Turbine-based MEMS

sensor
Insensitivity to ambient temperature,

humidity, and gas content [270]

Open-air headset
for spirometry RR and RV

Pressure, humidity, and
temperature

sensor

Compact size, 96% accuracy for face mask,
82% accuracy in open-air headset [271]

Spirometry
face-worn
garments

RR, RV, FVC 5, IRV 6,
ERV 7, IC 8

Differential pressure
sensor

Cheap version of sensing, Error margins for
FVC 2–3% and for RV 1–3% [272]

Spirometry mask
with and earlobe

type PPG

RR, RV, HR and SpO2,
activity Pressure sensor

Pressure, humidity, and temperature sensor
BME280,

IMU 9 for activity tracking
[273]

Face mask RR, sleep apnea Humidity sensor Bluetooth connection [32]

Face reusable
respirators

RR, fit of the
filter estimation,

Contamination lvl

Pressure,
temperature, relative

humidity sensor

Protect workers from harmful dust, smoke,
gases, and vapors [245]

Nose sensing RR, apnea and
hypopnea Pressure sensor PPG, ACC, Microcontroller, Bluetooth [265]

Sensor under the
nostril and near

the mouth
RR Micro thermoelectric

generators

Ultra-thin vertical structure-rapid heat
conduction, Horizontal high-density

integration-transient response and high fill
speed, 28-pair microthermoelectric legs

[254]

Surgical mask RR Optical fiber Thermally stable, Compact, Flexible,
MRI conditions [255]

Patch-like device SpO2 PPG Emergency situations, Real-time monitoring [277]

Ring SpO2, HR, HRV PPG MAX30102, Error rates lower than 2.5% [278]

Ear Monitor RR, SpO2, HR,
temperature PPG

Bluetooth, MAX30100, TMP006 infrared
sensor, analyzing respiratory sinus

arrhythmia (RSA)
[281]

Watch SpO2, HR PPG Bluetooth 4.0 [284]

Transcutaneous
sensing

Partial
pressure CO2
monitoring

NDIR 10 sensor
Range 0–120 mmHg,

Thermopile reading circuits [288]

Transcutaneous
sensing in
wristband

Partial
pressure CO2
monitoring

NDIR sensor
No need for skin heating,

High accuracy, Long lifespan,
Low-power consumption

[286]

Transcutaneous
monitoring

PtcCO2
monitoring

Optical fluorescence thin
film sensor Range 0–75 mmHg [290]

Transcutaneous
sensor on a

forearm

PtcCO2
monitoring

Optical fluorescence
sensor

Highly sensitive in the CO2 range
(0–50 mmHg), Insensitive to humidity [31]
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Table 4. Cont.

Sensor Type Application Sensing Element Key Parameters Ref.

PPG sensor Capnography
measurement

Capno-base
dataset

Deep neural network, Low cost, MSE 11 0.21,
Cross-Correlation 0.946

[291]

1 Volatile organic compound, 2 Metal oxide semiconductor, 3 Respiratory rate, 4 Respiratory volume, 5 Forced vital
capacity, 6 Inspiratory reserve volume, 7 Expiratory reserve volume, 8 Inspiratory capacity, 9 Inertial measurement
unit, 10 Non-dispersive infrared, 11 Mean square error.

Devices measuring parameters of exhaled and blood gases have a wider scope and can
detect various gases and respiratory parameters. They provide valuable information about
exhaled gases. They are often in the form of breathing masks (CO2 and NH3) or spirometers
or evaluate blood parameters (SpO2 through the skin). Breathing masks have the advantage
of being located close to the nose and mouth, providing a comprehensive view of respiratory
gases (CO2 and NH3), humidity, and temperature, which creates a picture of the overall
health of the respiratory tract. However, respirators are quite uncomfortable to wear for
long periods of time, and improved designs and feedback can solve this problem and help
optimize wearing discomfort.

When evaluating blood parameters, it is great that sensors can non-invasively mon-
itor blood gases continuously without blood sampling. They are usually in the form of
smartwatches or fitness trackers. The disadvantage is usually the low diffusion of gases
(mainly CO2) on the skin surface as well as a more limited measurement range compared
to other more complex sensors. The low diffusion of gases is accelerated by a local in-
crease in temperature. However, this increases consumption and demands for precise
regulation and also increases discomfort. The limited lifetime of electrochemical sensors,
their more frequent calibration, and requirements for more complicated electronics are also
disadvantageous.

Spirometers are suitable for the comprehensive monitoring of breathing, but they
also offer a detailed assessment of lung capacity, volume, and air flow that other sensors
cannot measure. Determining these parameters helps in the management and diagnosis
of respiratory diseases. The use of spirometers requires training and skills, which can
be a disadvantage of this approach to measuring respiration, as well as the inability to
continuously measure changes in respiration.

6. Brief Summary

In the article, we described many methods for measuring respiration, either with
wearable or remote electronics. Table 5 shows a simplified comparison of these different
sensors and respiration detection methods. The parameters are averaged and may vary
slightly in specific applications.

Table 5. Comparison of properties of different wearable and remote respiration-sensing technologies.

Method Advantages Disadvantages Measured
Parameters Accuracy Application Sampling

Frequency Convenience

Chest belt

High
accuracy

cost-effective,
long battery

life

Uncomfortable
for long-term
use, may not

capture
subtle

movements

RR, RV,
apnea

Generally
high for basic
monitoring

Well-suited for
sports and

fitness
applications,

sleep
monitoring

<100 Hz Moderate
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Table 5. Cont.

Method Advantages Disadvantages Measured
Parameters Accuracy Application Sampling

Frequency Convenience

Patch

Comfortable,
small size,

suitable for
long term

monitoring

Precise
placement
and close

contact with
skin is crucial

RR, RV
Generally

high for basic
monitoring

Well-suited for
sports and

fitness
applications,

disease
progress

<100 Hz High

SCG/
BCG

Capture
subtle

movements,
patterns

Complexity
in

interpreta-
tion,

susceptible to
interference

RR, RV,
respiratory

patterns

Variable,
may require

validation for
clinical use

Cardio-
respiratory
dynamics,

Sleep
monitoring

0.1–5 kHz Moderate

Impedance
Nonintrusive,

low power
consumption

Susceptible
to

interference,
proper

contact is
crucial

RR, RV
Variable,

affected by
skin contact

Suitable for
continuous
monitoring

0.03–32 kHz Moderate

Optical
fiber

Capture
subtle

movements,
comfortable,
resistant to

EMG

Sophisticated
signal

processing,
relatively
expensive,

fragile

RR, RV

Generally
good for

basic
monitoring

Integrated into
clothing or

beds,
monitoring in

MRI or CT

0.01–3 kHz High

Camera

Non-contact,
captures
multiple

parameters

Privacy
concerns,
limited

accuracy in
certain

conditions

RR, RV,
temperature

Moderate,
affected by

lighting and
resolution

Continuous
monitoring in

controlled
environments

30–100 Hz Remote

Radar

Non-contact,
captures
motion
through
clothing

Limited
accuracy in

certain
situations

RR, RV
Moderate,
affected by

environment

Continuous
monitoring in

controlled
environments

Operational
frequency

1.8–24 GHz
Remote

EDR

Continuous
monitoring,
additional
cardio data

Indirect mea-
surement,
accuracy

influenced by
artifacts

RR, RV

Generally
good for
trends

monitoring

Combined
cardio and
respiratory
assessment

50–500 Hz High

Acoustic
Non-

invasive,
cost-effective

Ambient
noise

interference,
may not be
suitable for
all settings

Respiratory
sounds, RR,

airflow

Good for
certain

applications
(e.g.,

diagnosing
respiratory
conditions)

Cough, asthma,
apnea

detection,
remote patient

monitoring,
smartphone

apps

0.01–22 kHz Moderate

Gases

Comprehensive
view of

respiratory
parameters

Limited
scope,

uncomfort-
able

SpO2, CO2,
NH3,

humidity,
temperature

High for
clinical
settings

Diagnosing
specific

respiratory and
metabolic
conditions

- Low
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In summary, we can conclude that the choice of a suitable sensor is subject to a
compromise between the accuracy of the measured data and the comfort of the wearer,
while efforts are being made to improve both sides. The chosen method for measuring
respiration depends on the application of the device. For example, chest straps excel in
accuracy and stability, so they are ideal for continuous monitoring. They are preferred for
use in sports and fitness, where stability and precision are crucial even in movement. In
contrast, other devices that are capable of multisensory measurement are more suitable for
general health monitoring.

The integration of SCG and BCG sensors into devices offers wearers the possibility
of all-day continuous monitoring. They are innovative approaches that offer the capture
of subtle movements, but the disadvantage is the complexity of the interpretation and
their susceptibility to interference, which can be solved with more sophisticated signal-
processing algorithms. The future will hopefully bring an increase in the resistance of
sensors to external interference, optimization of their integration into various forms, and
overall effort for a better user experience. The choice of these methods also depends on the
specific use, whereby the emphasis is always placed on comfort, versatility, and obtaining
high-quality, informative data. Impedance-based sensors are a significant alternative for
continuous monitoring. The advantages are the lower sampling frequency and lower
energy consumption. In contrast, disadvantages include problems with sensitivity and
accuracy, which offer future opportunities to work on improvements in optimization and
algorithms for signal processing and minimizing interference by movement or external
factors. In this way, it will be possible to ensure accurate and reliable data.

Optical sensors are suitable for wearable and remote devices due to their accuracy,
high sensitivity, and non-interference in an electromagnetic environment. Their weakness
is fragility, more complex signal processing, and, therefore, higher costs. Equally, in this
case, the development of perfect algorithms to simplify data interpretation and efforts to
increase resistance will help these sensors look even more attractive to users. In the future,
it is possible we can expect improvements in energy consumption, sampling frequencies
in the field of algorithm development, and, in general, putting optical sensors in a better
place in the field of respiration monitoring.

What is interesting about radar sensors is their non-contact and versatile use, while the
challenge for the future is the improvement of signal-processing algorithms, a reduction in
signal interference, and integration into various smart devices in the home or applications
for assisted living.

Camera systems allow non-contact breathing monitoring with wide applicability and
cost-effectiveness. In addition, thermal cameras are effective for measuring respiration
even in low light and are less personal. Their accuracy and measurement capabilities can
be increased by using modern technologies such as artificial intelligence and advances
in image processing. Algorithm optimization will also help improve the obtained data
and give a more accurate result or obtain more respiratory data from the recording. In
the future, development may also move in the direction of solving privacy protection and
improving the affordability of this respiration measurement method.

Widely available ECG and PPG sensors in devices are also a good and practical
solution for measuring respiration. Their advantage lies in their wide availability, the
possibility of continuous monitoring, and non-intrusive characteristics. They are therefore
suitable for a wide range of users. Their further development is based on improvements
in the field of signal processing, ensuring accuracy, and efficiency and the use of artificial
intelligence to improve the ability to recognize and interpret different breathing patterns.

Acoustic sensors are also very popular with users. They constitute a versatile solu-
tion to recording respiration. Another advantage is the real-time recording of breathing
sounds and, thus, the possibility of monitoring various respiratory diseases. They are,
therefore, very important tools in various healthcare and wellness applications. In the
future, to increase the accuracy of respiratory data, the problems of signal interference by
the surrounding environment will be solved, and algorithms and techniques for processing
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complex signals will be improved. With acoustic sensors, it is very important to filter out
ambient noise unrelated to breathing.

Sensing parameters from exhaled and blood gases is possible with devices such as
breathing masks, which have the advantage of obtaining respiratory parameters that other
sensory devices cannot, such as the levels of specific respiratory gases. In the future, in
this direction, the analysis of measured data, more complex and personalized breathing
monitoring solutions, the comfort of wearing masks, the range of measured parameters,
and the user-friendliness of spirometers can be improved. These devices are important to
support the early detection of respiratory health problems.

7. Conclusions

In this article, we have conducted an extensive review of respiration sensors in use or
prospective for wearable and remote electronics. We identified four main methods: measur-
ing movements related to respiratory effort, deriving respiration from the parameters of the
cardiovascular system, listening to acoustic manifestations of breathing, and sensing the
parameters of exhaled and blood gases that are related to respiration. We clarified the basic
physiological principles and added the basic advantages and disadvantages of individual
methods.

The main limitation of the article is that we could only focus on a certain part of
wearable and remote technology. The selected devices describe only a low percentage of
the total research. For example, we largely ignored material research. If we analyzed the
detailed use of organic materials or optical fiber technology, the article would have given
rise to two more sequels. We also did not go into full detail about the technical aspects of
the research. Because of the size of the article, we could only focus on the most promising
types. If the reader is seeking more, further research on many more sensors can be found
in the overview sections of most of our mentioned articles. We also draw attention to the
review by Hussain et al. [247], which covers a wide range of wearable respiratory sensors
and specifically focuses on the materials used.

As can be seen from the analysis of the market and literature, on one side, there is a
huge interest in research, but on the other side, the quality and number of wearable and
remote devices in the current market are somewhat weaker. This places great demand
on the translation of promising research into practice. We believe that this study will be
helpful and will serve as a springboard not only for respiratory and telemedicine research
but also for the introduction of other promising devices into practice.
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