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Abstract: This study examines the relationship between physiological complexity, as measured by
Approximate Entropy (ApEn) and Sample Entropy (SampEn), and fitness levels in female athletes.
Our focus is on their association with maximal oxygen consumption (VO2,max). Our findings reveal
a complex relationship between entropy metrics and fitness levels, indicating that higher fitness
typically, though not invariably, correlates with greater entropy in physiological time series data;
however, this is not consistent for all individuals. For Heart Rate (HR), entropy measures suggest
stable patterns across fitness categories, while pulse oximetry (SpO2) data shows greater variability.
For instance, the medium fitness group displayed an ApEn(HR) = 0.57 ± 0.13 with a coefficient of
variation (CV) of 22.17 and ApEn(SpO2) = 0.96 ± 0.49 with a CV of 46.08%, compared to the excellent
fitness group with ApEn(HR) = 0.60 ± 0.09 with a CV of 15.19% and ApEn(SpO2) =0.85 ± 0.42 with a
CV of 49.46%, suggesting broader physiological responses among more fit individuals. The larger
standard deviations and CVs for SpO2 entropy may indicate the body’s proficient oxygen utilization
at higher levels of physical demand. Our findings advocate for combining entropy metrics with
wearable sensor technology for improved biomedical analysis and personalized healthcare.

Keywords: pulse oximeter; approximate entropy; sample entropy; VO2,max; women’s response
to exercise

1. Introduction

In recent years, there has been a growing interest in understanding the physiological
responses of women to exercise, particularly regarding variations in oxygen saturation [1].
Notably, women have been observed to experience a premature decrease in oxygen satura-
tion during maximal exercise, occurring at lower oxygen intakes than in men [2]. This early
decline has sparked discussions about its underlying causes, with some researchers sug-
gesting that healthy, active women may encounter exercise-induced arterial hypoxia due
to anatomical differences in lung structure and capacity that impact oxygen diffusion [3].
However, recent studies have shifted the focus to the role of oxygen desaturation in limiting
the achievement of peak maximum oxygen uptake (VO2,max) levels, suggesting that factors
beyond lung size or capacity are at play [4].

The evolution of wearable sensors, particularly those tracking essential metrics such
as heart rate (HR) and oxygen saturation (SpO2) through photoplethysmography (PPG) [5],
stands as a watershed moment in comprehending the effects of exercise and fine-tuning
training programs [6]. Among these advancements, pulse oximetry has emerged as a
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pivotal non-invasive technique, indispensable for evaluating oxygenation levels during
physical exertion. Its ability to provide continuous monitoring of peripheral oxygen satu-
ration changes delivers invaluable real-time insights into an athlete’s oxygenation status,
significantly enhancing our grasp of physiological responses during exertion. Despite
its immense potential, pulse oximetry encounters limitations, including susceptibility
to movement artifacts [7], challenges associated with varying skin pigmentation [8–10],
and other technical constraints [11–13]. Nonetheless, the integration of these wearable
biofluid monitoring sensors and devices, especially pulse oximetry, has remarkably en-
riched our understanding of how the human body reacts to physical stress, emphasizing the
crucial role these technologies play in optimizing athletic performance and overall health.

Maintaining optimal oxygen levels is critical for athletes’ performance, recovery,
and health. Low oxygen saturation, particularly during intense workouts or at high alti-
tudes, can lead to fatigue, decreased performance, and altitude sickness [14]. Continuous
monitoring of these levels enables informed decisions about training and recovery strate-
gies, optimizing performance through tailored approaches [15].

Recent studies emphasize the variability patterns in SpO2 signals, providing insights
into respiratory control and breathlessness sensation under hypoxic conditions [16]. Vari-
ations in SpO2 correlate with breathlessness perception, reflecting the complex interplay
among various respiratory indicators [17,18].

Assessing regularity within dynamical systems spans various scientific and engineer-
ing disciplines, with a growing importance in understanding complexity within biological
datasets [19,20]. Methods like Kolmogorov complexity [21], C1

C2 complexity measure [21],
and entropy [22] have been developed to quantify complexity in time series data.

In biomedicine, Approximate Entropy (ApEn) [23] and Sample Entropy (SampEn) [24]
are crucial for analyzing physiological time series, aiding in pattern identification and
anomaly detection within these signals [25–27]. Entropy methods offer advantages over
traditional methods, improving diagnostic systems, particularly in heart disorders [28,29].
They also provide insights into health aspects like heart rate variability (HRV) [30,31],
reflecting autonomic nervous system health, with low entropy values indicating potential
pathological conditions or diminished regulation [32]. Similarly, entropy of electroen-
cephalogram signals can unveil brain function insights, correlating complexity alterations
with neurological conditions [33].

Beyond diagnostics, entropy measures can be used to distinguish expert athletic
performances [34] and between fallers and non-fallers [35], and identify various health
aspects such as fall risks [35], effects of aging on gait [36,37], detect physical fatigue [38],
respiratory dysfunctions like sleep apnea [39], stress responses [40], or report valuable
information to running training methods [41] among others.

Pulse oximetry and heart rate data are key indicators of cardiovascular and respiratory
health, ripe for entropy-based evaluations. For female athletes, these metrics are critical
not only for assessing well-being but also for understanding performance capabilities and
resilience [42].

The significance of pulse oximetry in sports lies in its ability to uncover vital insights
into an individual’s blood oxygen-carrying capacity, particularly crucial during intense
physical exertion. Essential in assessing athletic prowess, especially in endurance sports, is
the VO2,max parameter, signifying the peak of oxygen consumption during exercise [43].
This metric not only correlates with cardiovascular health and aerobic endurance but
also holds implications for longevity, being a robust predictor of mortality and functional
capacity [44]. Additionally, exploring age-related physiological changes through exercise
emphasizes its pivotal role in enhancing life expectancy and overall health [45].

This work delves into the intricacies of Approximate Entropy (ApEn) and Sample
Entropy (SampEn), with a focus on their application to time-series data derived from
pulse oximetry and heart rate measurements in female athletes. Our mission is to offer a
robust and consistent statistical measure of system complexity, to clarify the nuances that
differentiate these entropy measures and their calculation parameters, and to elucidate
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their relationship with maximum oxygen uptake VO2,max. The continuous monitoring
of oxygen levels and heart rate is crucial for optimizing training and recovery strategies,
as these metrics directly affect athletic performance. This highlights the need for such
detailed analysis.

2. Methods
2.1. Protocol and Testing Procedure

The study protocol comprised an anamnesis that encompassed medical history and
sports training, along with physical examinations. These examinations, conducted prior to
obtaining informed consent, included cardiovascular and pulmonary auscultation, blood
pressure measurement, and the recording of weight and height to calculate the Body Mass
Index (BMI). Subsequently, a maximal treadmill incremental exercise test was performed.
This test entailed continuous electrocardiographic (ECG) recording and ergospirometry
using a breath-by-breath gas analyzer (Sensor Medics Vmax Cardiopulmonary Sanro).
Additionally, pulse oximetry monitoring was uninterrupted during the warm-up, maximal
exercise, and recovery phases. For this purpose, a commercial pulse oximeter, the Pulsox-3i
Minolta, Konica Minolta, Tokio, Japan, was used.

To ensure data synchronization, the ergospirometry and oximeter were aligned,
with readings taken every second throughout the stress test. Prior to the treadmill as-
sessment, a forced spirometry was executed, and the pulse oximeter was calibrated for one
minute post-cleaning for precise oxygen saturation measurements. Concurrently, heart
rates were monitored via ECG and oximeter, and blood pressure was tracked continuously.

The stress test commenced on a treadmill ergometer (HP Cosmos QUASAR 4.0),
with an initial one-minute standing baseline data collection. The warm-up consisted of
walking at 6 km/h with a 1% incline for 2 min, progressing to a running phase at 8 km/h
on the same gradient. As the athletes reached peak effort, they disengaged from the
treadmill. The effort increased incrementally: upon reaching 14 km/h, the incline was
raised to 3%, and thereafter, speed was increased by 2 km/h every 2 min until exhaustion.
During a 2 min active recovery at 8 km/h with a 0% incline, ECG readings were taken every
10 s, averaging the last eight heartbeats. Step rate (SR) was manually calculated during
consistent running phases. Post-exercise, blood pressure measurements were taken at
3 and 5 min into recovery. All athletes adhered to this protocol, with individual variations
only in the maximal effort achieved [4].

All tests were conducted at the Physiology Laboratory of the Professional School of
Sports Medicine at the Faculty of Medicine, Universidad Complutense de Madrid, Spain.
Participants provided written consent after being informed about the study’s procedures
and associated risks. The inclusion criteria for participants were:

• Females aged 13 to 55.
• Engaged in regular competitive sports practice at national and regional tournaments

for a minimum of 2 years prior to the study.
• Training frequency of 2 to 4 times a week, with sessions lasting between 1 to 3 h.

Continued their sports practice up until the day preceding the study.
• No reported respiratory or cardiac diseases and exhibited normal spirometric values.

Underwent an evaluation for cardiovascular health prior to the study.

Table 1 presents the anthropometric and clinical details of the twenty-seven active and
healthy female volunteers, including age, size, weight, body mass index (BMI), maximum
heart rate HRmax and maximum oxygen uptake (VO2,max). The values presented are aver-
ages, accompanied by their respective standard deviations, to provide an understanding of
the variability within the data.
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Table 1. Clinical characteristic of the participants.

Subjects N = 27 X ± SD

Age (years) 22.96 ± 6.19

Size (cm) 163.81 ± 6.90

Weight (kg) 57.24 ± 6.70

BMI (kg/m2) 21.31 ± 1.98

HRmax (bpm) 189.81 ± 8.54

VO2,max (mL/(kg· min)) 48.90 ± 7.62

Participants were stratified into three fitness categories based on their maximal oxygen
uptake (VO2,max), as indicated in Table 2 [4]. The excellent fitness group, constituting
40.74% of the participants, had a mean VO2,max of 55.99 mL/kg/min, with values ranging
from 50.90 to 66.20 mL/kg/min. The good fitness group, also 40.74%, had a mean of
46.75 mL/kg/min, spanning from 41.00 to 50.00 mL/kg/min. The medium fitness group
made up 18.52% with a closer range of VO2,max, having a mean of 38.10 mL/kg/min and
low variability, as indicated by a standard deviation of 0.55.

Table 2. Descriptive variables of the population according to physical fitness condition.

Physical Fitness Condition N VO2,max ± SD Min Max

Excellent (>50 mL/kg/min) 11 55.99 ± 5.83 50.90 66.20

Good (40–50 mL/kg/min) 11 46.75 ± 3.03 41.00 50.00

Medium (30–40 mL/kg/min) 5 38.10 ± 0.55 37.50 38.50

2.2. Entropy-Based Regularity Assessment of Time Series Data

Entropy, a fundamental concept in thermodynamics, measures the disorder within a
closed system and is crucial in assessing complexity within nonlinear dynamical systems.
This concept is particularly valuable for analyzing time series due to its flexible approach
to probability distribution [23]. Shannon’s entropy and conditional entropy are key metrics
for quantifying the amount and rate of information generation, respectively [19]. These
metrics form the foundation for other entropy measures designed to investigate time series
intricacies. Entropy provides researchers with the ability to quantify complexity even in
short datasets, enhancing the significance of experimental comparisons with control groups.

Pincus introduced Approximate Entropy (ApEn), a widely-used metric that measures
regularity, quantifying complexity levels within a time series [23]. ApEn assesses system
complexity akin to entropy, making it suitable for analyzing clinical cardiovascular and
other time series data. Additionally, Sample Entropy (SampEn), introduced by Richman and
Moorman [24], aligns more closely with theoretical expectations compared to ApEn across
different conditions [24]. SampEn’s increased precision makes it particularly valuable for
scrutinizing experimental clinical cardiovascular and other biological time series data.

For our study, time-series data related to pulse oximetry and heart rate from the
twenty-seven physically active and healthy female participants were collected. To quantify
the regularity and complexity of our time-series data, we employed two entropy-based
metrics: Approximate Entropy and Sample Entropy.

ApEn measures the unpredictability of fluctuations within a time-series dataset. It has
been widely adopted in biomedical domains due to its ability to handle short and noisy
datasets. ApEn is robust against noise, applicable to both stochastic and deterministic
processes, and yields non-negative values indicative of complexity [26,44].

Given a time-series data of length N, u(i), u(2), . . . , u(N), the following steps outline
its computation:
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1. Fix parameters: m (pattern length) and r (similarity criterion).
2. Form N − m + 1 vector of length m from the time series xm(i). The distances between

them is: d[x(i), x(j)] = maxk(|(i + k)− u(j + k)|) with 0 ≤ k ≤ m − 1
3. For each vector, count the number of vectors that are similar to it within a tolerance r.

Cm
i (r) = (number of j ≤ N − m + 1 such that d[x(i), x(j)] ≤ r)/(N − M + 1).

4. Compute the regularity measure for patterns of length m as:

φm(r) =
1

N − m + 1

N−m+1

∑
i=1

logCm
i (r)

5. The statistical estimator of the ApEn(m, r, N) is then defined as

ApEn(m, r, N)(u) = φm(r)− φm+1(r)

SampEn, an evolution of ApEn, was crafted to be less reliant on the length of the
time series and to exhibit greater consistency [24]. It addresses biases and inconsistencies
inherent to ApEn. Notably, SampEn’s computation excludes self-matches, making it a more
unbiased estimator of system complexity. Given an identical time series, the computation
unfolds as follows:

1. Similar to the steps in ApEn, begin with a time series of length N and construct vectors.
2. However, in counting the number of matches, do not include self-matches (i.e., exclude

the case j = i).
3. Define regularity measures for sequences of length m as:

Bm(r) =
1

N − m

N−m

∑
i=1

Cm
i (r)

and

Am(r) =
1

N − m − 1

N−m−1

∑
i=1

Cm+1
i (r)

4. Compute SampEn(m, r, N)(u) as:

SampEn(m, r, N) = −ln
Am(r)
Bm(r)

In essence, both ApEn and SampEn gauge the regularity or unpredictability of time-
series data. However, SampEn’s intentional exclusion of self-matches endows it with a
more refined approach. This nuanced counting technique typically results in SampEn
delivering more consistent and trustworthy outcomes compared to ApEn [46].

To investigate the influence of parameters on entropy calculations, diverse combina-
tions of ApEn and SampEn parameters were used for the time series data. These included
m (data comparison length) with values of 1, 2, and 3, and r (sensitivity criterion) set at 0.1,
0.15, 0.20, and 0.25 times the standard deviation of the entire time series. The parameter
N (data length) signifies the total number of steps in the series. Herein, m delineates the
steps included in a sequence compasrison, while r specifies the permissible variance in step
lengths. For instance, at m = 2, two sequential steps are juxtaposed, and with r = 0.2SD,
step lengths are deemed similar if they diverge by less than 20% of the series’ comprehen-
sive standard deviation. It is worth noting that a pragmatic strategy involves defining the
tolerance as r = 0.2SD, where SD epitomizes the standard deviation of the dataset [27].
This approach eases comparisons between datasets with disparate amplitudes [25]. For this
investigation, every time series underwent normalization to achieve an SD of 1.
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3. Results

Figure 1 presents a comparative analysis of cardiovascular and respiratory responses
during exercise between two athletes with different fitness levels. The graph utilizes a
dual-y-axis format to display heart rate (HR) in red and oxygen saturation (SpO2) in blue
over the course of the exercise test, marked in minutes and seconds on the x-axis.
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Figure 1. Comparative temporal evolution of SpO2 in blue and HR in red for two athletes with
varying fitness levels, distinguished by continuous and dotted lines.

The continuous line correlates with an athlete with medium fitness (VO2,max =
38.5 mL/(kg·min), and the dotted line with an athlete of excellent fitness (VO2,max =
59.2 mL/(kg·min). The latter demonstrates a longer duration of exercise, indicative of su-
perior cardiovascular and respiratory endurance. Interestingly, this athlete also experiences
more pronounced SpO2 fluctuations. The notable SpO2 variability observed in the athlete
with higher VO2,max reflects this efficient oxygen utilization, which is particularly evident
during periods of intense physical activity [47,48].

Enhanced oxidative capability in the muscles of a highly fit athlete facilitates operation
at lower partial pressures of oxygen (PO2), leading to steeper oxyhemoglobin dissociation
curves and more efficient oxygen delivery [49].

These observations suggest that greater fluctuations in SpO2 may signify an advanced
level of physiological adaptation and not necessarily a decrease in cardiorespiratory func-
tion. This recontextualizes the interpretation of SpO2 drops, proposing that, for athletes
with high cardiovascular efficiency, such drops are a characteristic of robust oxygen utiliza-
tion rather than a sign of impairment. [4]

Our study also examined the impact of varying m (embedding dimension) and r on
the entropy calculations for HR and time series, exploring how these parameters affect the
measurement of physiological complexity. Figure 2 displays ApEn and SampEn metrics
for three athletes, each representing a distinct level of cardiovascular fitness. The variation
in entropy measures is visualized for both heart rate (HR) and pulse oximetry (SpO2),
with HR represented in shades of red and SpO2 in shades of blue. Error bars illustrate
the standard deviation (SD) within each category, highlighting the variability of entropy
values, which serves as an indicator of the complexity and irregularity of the physiological
time series data. These visualizations underscore the relationship between an athlete’s
fitness level and the corresponding entropy metrics, with the variability suggested to reflect
individual physiological adaptations and responses to physical stress.
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Figure 2. ApEn and SampEn for heart rate (in red) and SpO2 (in blue) across fitness levels based
on VO2,max. The first (panels (a,d,g,j)) second (panels (b,e,h,k)), and third (panels (c,f,i,l)) columns
correspond to an athlete of medium, good, and excellent fitness condition, respectively. The errorbars
show the SD for each fitness category.

The first column presents data for an athlete with a medium level of fitness, char-
acterized by a maximal oxygen uptake VO2,max of less than 40 mL/kg/min. For both
HR and SpO2, ApEn and SampEn values remain relatively consistent across different r
values, irrespective of m values. This uniformity implies that for athletes at this fitness
level, increasing the dimensionality (through m) does not drastically alter entropy estimates
across various threshold values (r). Lower entropy values, indicating more regularity and
reduced complexity, suggest that athletes of medium fitness might exhibit more predictable
and consistent physiological responses.

The second column details an athlete in good physical condition (VO2,max between
40 and 50 mL/kg/min). The ApEn(HR) and SampEn(HR) values here are higher than in
panel (a) and (d), respectively. This elevation in entropy suggests that as fitness enhances,
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there is an emergence of more intricate physiological patterns. However, in the case of SpO2
the values of ApEn(SpO2) and SamApEn(SpO2) are marginally lower than in panel (g) and
(j). Such complexity might arise from the adaptive capabilities of the cardiovascular and
respiratory systems, conditioned to accommodate diverse physical challenges. Furthermore,
the ApEn and SampEn values for both HR and SpO2 remain relatively steady across
different r and m values. This further corroborates that for athletes with good fitness
levels, increasing the dimensionality does not substantially modify entropy estimates
across different threshold values (r).

The third column features an athlete with excellent fitness, exhibiting a VO2,max of
over 50 mL/kg/min. As before, ApEn(HR) and SampEn(HR) values here are higher than
in panel (a) and (b), and (d) and (e) respectively. A marked variability in entropy values
can be observed across different r values, especially when m = 2. This fluctuation might
allude to the intricate physiological responses and adaptations in athletes with advanced
fitness levels. Such athletes possibly have a cardiovascular system that is highly adaptable,
and primed for dynamic responses to varied physiological demands.

Across the panels, SampEn values consistently appear lower than ApEn values for
both HR and SpO2. ApEn can be biased, especially for short datasets, as it counts self-
matches, leading to higher values. In contrast, SampEn eliminates this bias by excluding
self-matches, often resulting in lower values [24].

When examining the complexity and regularity of physiological time series using
ApEn and SampEn, the choice of parameters m and r is crucial. In our case, the choice of
m = 2 and r = 0.2SD is supported by both empirical and theoretical considerations [1, 2].
Statistical analysis has shown that for m = 2, the entropy provides a stable measure across
different conditions and subjects. Additionally, using m = 2 is computationally efficient,
as the computational demands increase exponentially with the embedding dimension.
The choice of r = 0.2SD is based on examining patterns that deviate by 20% of the standard
deviation of the time series. This threshold is also consistent with many previous studies
on physiological time series [32,50,51], providing a balance between sensitivity, reliability,
computational efficiency, and discriminative power. Moreover, such consistency allows for
improved comparability across studies and conditions [27].

Table 3 presents a comparative analysis of Approximate Entropy and Sample Entropy
across different fitness levels for athletes, with measures for m = 2 and r = 0.2SD. The val-
ues are reported as means (X) with standard deviations (SD) and the coefficient of variation
(CV) is included to assess variability and consistency within the data.

Table 3. Comparison of Approximate Entropy (ApEn) and Sample Entropy (SampEn) across fitness
levels for heart rate (HR) and blood oxygen saturation (SpO2). Values are presented as the mean ±
standard deviation (SD) and the coefficient of variation (CV) for m = 2 and r = 0.2SD.

Fitness
Condition

ApEn SampEn

HR (X ± SD ; VC) SpO2 (X ± SD ; CV) HR (X ± SD ; CV) SpO2 (X ± SD ; CV)

Medium 0.57 ± 0.13; 22.17% 0.96 ± 0.49; 46.08% 0.33 ± 0.08; 24.25% 0.19 ± 0.04; 23.08%

Good 0.56 ± 0.09; 16.27% 0.90 ± 0.43; 47.56% 0.36 ± 0.12; 33.19% 0.22 ± 0.10; 44.56%

Excellent 0.60 ± 0.09; 15.19% 0.85 ± 0.42; 49.46% 0.40 ± 0.15; 37.20% 0.22 ± 0.11; 48.48%

ApEn(HR) values marginally increase from the Medium to Excellent fitness categories,
with the most notable precision observed in the Excellent category, exhibiting the lowest CV
of 15.19%. The Medium fitness category shows an ApEn(HR) = 0.57 ± 0.13, denoting mod-
erate variability. In contrast, ApEn values for blood oxygen saturation (SpO2) demonstrate
a decrease with higher fitness, hinting at more stable SpO2 patterns in fitter athletes and
higher variability denoted by higher CVs. SampEn(HR) positively correlates with fitness
levels, underscoring the link between heightened fitness and increased heart rate complex-
ity. The SampEn(SpO2) values are relatively low for all fitness levels but show a subtle rise
with fitness enhancements, indicating a slight increase in complexity among the most fit
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athletes. For instance, Medium fitness individuals exhibit SampEn(HR) = 0.33 ± 0.08 and
an SampEn(SpO2) = 0.19 ± 0.04, suggesting a more predictable SpO2 pattern compared to
ApEn(SpO2) but also less variability with a lower CV.

Good fitness athletes have an ApEn(HR) = 0.56 ± 0.09, similar to the Medium group,
with a marginally lower ApEn(SpO2) = 0.90 ± 0.43. Their HR SampEn is 0.36 ± 0.12,
and SampEn(SpO2) = 0.22 ± 0.10, indicating a slight increment in complexity from the
Medium fitness level.

The Excellent fitness group shows the highest ApEn(HR) = 0.60 ± 0.09, indicating
significant variability. The ApEn(SpO2) for this group is 0.85 ± 0.42, slightly reduced
from the Good category, which may point to a pattern of more regularity with advanced
fitness levels. However, their SampEn(HR) reaches 0.40 ± 0.15, the peak among the groups,
and the SampEn(SpO2) remains consistent with the Good group at 0.22 ± 0.12, with a
slightly higher SD.

Overall, the data suggest an association between higher fitness and more complex
heart rate patterns as indicated by both ApEn and SampEn. ApEn(SpO2) implies more
uniformity with improved fitness, while SampEn suggests a minimal increase in complexity.
Despite this, the large standard deviations, especially noted in ApEn(SpO2) values, call
for a cautious interpretation of the results, and no definitive conclusions can be drawn
regarding the entropy levels of SpO2.

We observed that while ApEn typically yields higher entropy values compared to
SampEn, this does not necessarily reflect a lack of consistency. Rather, the differences
between ApEn and SampEn can be attributed to their distinct computational approaches,
with ApEn including self-matches and SampEn excluding them. Our data show that
ApEn exhibits smaller standard deviation values than SampEn for heart rate variability,
suggesting a degree of consistency within this context. Conversely, for SpO2 variability,
ApEn presents with higher standard deviation values. These observations underscore the
importance of context when interpreting the results of entropy measures and reinforce
the need for careful consideration in selecting the most suitable metric for a given dataset,
particularly when dealing with shorter time series where the exclusion of self-matches by
SampEn could be especially pertinent.

One potential cause for the variability in SpO2 measurements could be artifacts intro-
duced by the devices themselves [11,13]. Optimizing algorithms within pulse oximeters,
designed to enhance the signal-to-noise ratio, may inadvertently alter the waveform being
measured. Such alterations can lead to inaccuracies in entropy calculations, as they depend
heavily on the fidelity of the signal. Moreover, the act of measuring oxygen saturation is
notably more challenging during periods of intense physical activity [4]. Factors such as
motion artifacts—brought on by the increased movement of the subject—or physiological
changes like fluctuations in peripheral blood flow can significantly distort the readings [52].
These distortions are critical to consider, as they can mimic or mask true physiological
responses, thereby affecting the entropy analysis.

In contrast, HR measurements are generally less susceptible to such artifacts and
confounders. As evidenced by the data, HR entropy demonstrates less variation within
fitness categories (e.g., a standard deviation of 0.09 in both ’Good’ and ’Excellent’ conditions
for ApEn), suggesting a more reliable capture of cardiovascular complexity. This disparity
in measurement stability between HR and SpO2 is crucial, especially when leveraging
entropy as a metric for assessing physiological complexity.

For a deeper insight, Figure 3 illustrates the values of ApEn and SampEn with the
parameters set for m = 2 and r = 0.2. Each dot represents an athlete’s entropy values,
with red dots denoting heart rate data and blue triangles indicating peripheral oxygen
saturation (SpO2) data. Analyzing these entropy measures across fitness categories re-
veals a trend suggesting that higher fitness levels correlate with increased complexity in
physiological time series data, although the relationship is not strictly linear.
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(a) (b)

Figure 3. (a) ApEn and (b) SampEn for m = 2 and r = 0.2SD. The red dots correspond to the HR
data, while the blue triangles correspond to the SpO2 data.

For ApEn(HR), athletes in the “Excellent” category exhibit a wide range of values be-
tween approximately 0.404 and 0.774, indicating diverse heart rate complexities. The ”Good”
and “Medium” categories show overlapping ranges, from about 0.433 to 0.716 and 0.437 to
0.706, respectively, with the “Medium” category representing the lower end of the spec-
trum. This suggests that while the fitness level may generally be associated with heart rate
complexity, the distinction between categories is not clear-cut.

The ApEn(SpO2) values present a similar pattern of variability and overlap. Athletes
labeled “Excellent” range from 0.089 to 0.608, revealing significant diversity in the com-
plexity of SpO2 signals even at high fitness levels. The ”Good” category spans from 0.136
to 0.479, and the “Medium” from approximately 0.205 to 0.416. These findings highlight
that individual physiological differences may play a substantial role in the complexity of
SpO2 patterns, beyond the influence of fitness level alone.

The SampEn(HR) data offers insight into the complexity and variability of heart rate
dynamics within each fitness category. Athletes in the Excellent category exhibit a SampEn
range from 0.390 to 1.653, indicating a wide spectrum of heart rate complexities. Similarly,
the Good category displays a range from 0.398 to 1.655, and the Medium category from
0.438 to 1.792, both reflecting substantial variability. The distribution of SampEn values,
particularly the highest observed value of 1.792 in the Medium group, emphasizes that
individual variations can defy the general expectations based on fitness levels alone. This
suggests that factors beyond fitness, possibly including intrinsic physiological differences or
measurement artifacts, may influence the complexity metrics derived from heart rate data.

The SampEn(SpO2) analysis reveals an intriguing trend within the Excellent category,
which exhibits SampEn values extending from 0.041 to 0.449. Not only does this range
include the lowest recorded SampEn value, suggesting an instance of highly regular SpO2
patterns in a particularly fit individual, but it also encompasses the highest value observed
in this study. This variation within the group highlights a noteworthy pattern: as fitness
levels increase, so does the range of SpO2 complexity, with standard deviations correlating
positively with fitness levels. This could imply that higher fitness may confer a greater
capacity for physiological adaptability, allowing for both higher and lower SpO2 variability
during strenuous exercise. These findings prompt further investigation into how fitness
levels may enhance an individual’s tolerance for SpO2 fluctuation and what physiological
mechanisms underpin this adaptability. Additionally, we must consider the possibility
of technical factors affecting SpO2 measurement, which will be rigorously examined in
subsequent analyses.

The range of ApEn and SampEn values across athletes of varying fitness levels indi-
cates a possible trend where higher entropy might be linked to more advanced physiological
adaptations. Nonetheless, due to significant overlap in entropy values across fitness cate-
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gories, these measures should not be solely relied upon to assess an athlete’s fitness level,
as individual variability plays a significant role.

In summary, the entropy measures of HR and SpO2 data across various fitness levels
depict a multifaceted landscape of physiological dynamics. Although a tentative trend of
increasing entropy with higher fitness levels is observed, the wide distribution and notable
presence of outliers caution against a simplistic interpretation of this trend as either linear
or nonlinear. The current findings highlight the nuanced and possibly individual-specific
responses to fitness, underscoring the significant role of individual physiological variance
in interpreting entropy metrics. These complexities present a promising avenue for future
research to delve into the distinct physiological attributes or adaptations of highly trained
individuals, enriching our understanding of the intricate connections between fitness and
physiological entropy.

4. Conclusions

This study investigated physiological complexity during incremental exercise among
female athletes through the lens of Approximate Entropy (ApEn) and Sample Entropy
(SampEn) metrics. Our results illuminate a multifaceted interplay between entropy mea-
sures and fitness levels, suggesting an association where higher fitness levels are often,
but not exclusively, accompanied by increased entropy in physiological time series data.
The observed variations in entropy, especially in the SpO2 data, underscore that physio-
logical responses are highly individualized, influenced by a myriad of factors including
training regimens, genetics, and other physiological nuances. Consequently, while entropy
measures offer valuable insights, they should not be the sole indicators of an athlete’s
fitness level.

Our results suggest that individuals with higher fitness levels might experience a
wider range of physiological responses, as indicated by the larger standard deviations and
CVs for SpO2 entropy. Notably, the increased variability in SpO2 does not correlate with
a lack of cardiorespiratory efficiency. On the contrary, it may be indicative of the body’s
proficient oxygen utilization at higher levels of physical demand. The efficient extraction of
oxygen, as reflected by the steeper oxyhemoglobin dissociation curves in trained muscles,
could account for the observed variations.

This study also underscores the importance of selecting appropriate entropy metrics
for analysis. We found differences in the consistency of ApEn and SampEn metrics, which
are attributable to their distinct calculations; ApEn includes self-matches, while SampEn
does not. We observed that ApEn generally yields higher values than SampEn, which
may be attributed to self-matches in its computation. This reinforces the perspective
that SampEn might be more reliable for analyzing shorter datasets and highlights the
importance of carefully selecting entropy measures in research.

The significant variability and potential measurement artifacts, particularly during
intense exercise, highlight the need for a more in-depth examination of the factors contribut-
ing to the variation in SpO2 entropy levels. Heart rate measurements, being more reliably
captured, may offer clearer insights into the physiological impact of fitness. These findings
illuminate the importance of entropy measures in evaluating the physiological dynamics
related to an athlete’s fitness level and call for more nuanced research and discussion in
this domain.

Our findings advocate for the integration of entropy measures into athlete monitoring
systems, emphasizing the value of a holistic approach that considers individual variability.
Further research is necessary to understand the patterns of entropy observed and to inves-
tigate the unexpectedly regular SpO2 patterns in high-performing athletes. Delving deeper
into the nuances of the relationship between fitness levels and physiological data complex-
ity is crucial for comprehensive insights. This strategy holds promise not only for sports
science but also for personalized healthcare, where it could transform health monitoring
and diagnostics through the incorporation of advanced biofluidic sensor technology.
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