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Abstract: Graphene and graphene-like two-dimensional layered nanomaterials-based photoelectro-
chemical (PEC) biosensors have recently grown rapidly in popularity thanks to their advantages of
high sensitivity and low background signal, which have attracted tremendous attention in ultrahigh
sensitive small molecule detection. This work proposes a non-enzymatic and visible-light-sensitive
PEC biosensing platform based on ZIF-67@MoS2/rGO composite which is synthesized through a
facile and one-step microwave-assisted hydrothermal method. The combination of MoS2 and rGO
could construct van der Waals heterostructures, which not only act as visible-light-active nanomate-
rials, but facilitate charge carriers transfer between the photoelectrode and glassy carbon electrode
(GCE). ZIF-67 anchored on MoS2/rGO heterostructures provides large specific surface areas and a
high proportion of catalytic sites, which cooperate with MoS2 nanosheets, realizing rapid and efficient
enzyme-free electrocatalytic oxidation of glucose. The ZIF-67@MoS2/rGO-modified GCE can realize
the rapid and sensitive detection of glucose at low detection voltage, which exhibits a high sensitivity
of 12.62 µAmM−1cm−2. Finally, the ZIF-67@MoS2/rGO PEC biosensor is developed by integrating
the ZIF-67@MoS2/rGO with a screen-printed electrode (SPE), which exhibits a high sensitivity of
3.479 µAmM−1cm−2 and a low detection limit of 1.39 µM. The biosensor’s selectivity, stability, and
repeatability are systematically investigated, and its practicability is evaluated by detecting clinical
serum samples.

Keywords: ZIF-67; 2D material; non-enzymatic; heterostructure; visible-light sensitive; photoelectro-
chemical biosensing

1. Introduction

Glucose is an important biomarker in the clinical detection of hyperglycemia and
diabetes. Up to now, there have been many methods for glucose detection, including
fluorescence detection [1], Raman spectroscopy detection [2] and colorimetric methods [3],
electrochemical detection [4–6], photoelectrochemical (PEC) detection [7], etc., by analyzing
the correlation between different signals and glucose concentration. Among them, the
PEC technique has received tremendous research interest due to its merits of fast response,
low background signal, and high sensitivity, which have been extensively investigated in
the fields of protein, nucleic acid, biomolecules, and metal ions [8–11]. Compared with
the electrochemical method, it should work with a light source which is utilized to excite
the electrode to produce photogenerated electron–hole pairs, and then the electrons are
transferred to the surface of the electrode, achieving the conversion of photo energy to
electrical energy.

The photogenerated charge carriers are critical to the photocurrent in the PEC detec-
tion process; hence, developing photoactive materials and constructing highly sensitive
photoelectrode are significant in PEC research. Until now, semiconductors such as ZnO and
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TiO2 have been thoroughly studied due to their high activity, low cost, and stable chemical
and physical properties [12,13]. While limited by their wide band gaps, they present poor
absorption of visible light and rapid combination of photogenerated carriers. To solve these
problems, many efforts have been made to broaden light absorption to the visible spectral
region. Two-dimensional layered nanomaterials, such as graphene, reduced graphene
oxide (rGO), and transition metal dichalcogenides (TMDs), are suitable candidates to build
van der Waals heterostructures through a “bottom-up” strategy with high specific surface
area, fast electron transfer rate, and good light harvest property [14]. Among them, MoS2 is
one of the most typical TMDs with a tunable band gap greatly correlative to layer numbers
(about 1.2~1.9 eV). Compared to semiconductor materials with a wide band gap, MoS2 can
increase the absorption of visible light and promote charge transfer rates [15]. In addition,
graphene or rGO earns a widespread reputation due to its excellent electron mobility and
high specific surface area, which are suitable to conquer the high recombination of photo-
generated electron –hole pairs. It is a promising approach to combine MoS2 with graphene
or rGO and form a layered heterostructure, which will largely improve the absorption of
visible light and accelerate the separation of electron–hole pairs at the same time.

Another efficient strategy to improve the sensitivity of PEC biosensors is to introduce
promoters of signal amplification. Using enzyme-catalyzed substrate is an effective way to
realize signal amplification by introducing enzymes on photoelectrodes to catalyze analytes
and increase detection current. Glucose oxidase is highly selective and sensitive, can detect
glucose quickly and accurately, and plays a key role in the production of many glucose
sensors [16–19]. However, enzymes are susceptible to denaturation and are affected by
temperature, pH, and environmental conditions, which is far from satisfactory to realize
biosensing [20–22]. At present, many efforts have been made to explore enzyme-free and
sensitive electrode materials. Notably, metal-organic frameworks (MOFs) are a class of
crystalline porous materials with a periodic network structure formed by the self-assembly
of inorganic metal centers and organic ligands; they demonstrate high electrocatalytic
activity and selectivity toward glucose [23,24]. Among a series of MOFs, zeolitic imidazo-
late frameworks (ZIFs), which are topologically isomorphic with zeolites, inherit all the
advantages of MOFs in the areas of electrocatalysis and biosensing [25]. Both MOFs and
ZIFs are mainly prepared by conventional hydrothermal or solvothermal methods, which
have deficiencies such as a long preparation time and complicated process. Therefore,
it is necessary to develop an efficient material synthesis method to prepare enzyme-free
electrode materials with a high performance in glucose detection. Microwave-assisted
synthesis utilizes microwaves and the coupling of reaction media on materials to produce
high-energy electromagnetic radiation and effective internal heating [26]. Compared with
the traditional hydrothermal method, it demonstrates multiple benefits, including a higher
heating efficiency, lower cost of synthetic material, more simple operation of a microwave
synthesizer, and effective control of the reaction parameters, which can control the process
of crystallization and obtain the desired structure and morphology [27,28].

Based on the above considerations, this work adopted a microwave-assisted synthesis
method to synthesize a ZIF-67@MoS2/rGO enzyme-free photoelectrode in one step as
well as and develop a visible-light-sensitive lab-on-chip PEC biosensing platform. Firstly,
ZIF-67@MoS2/rGO was modified on GCE, and its high performance for glucose detection
including a high sensitivity, wide detection range, and low detection limit were verified by
PEC methods. The rGO serves as a carrier transport layer, and the heterostructure formed
between rGO and MoS2 presents a photoelectrical transducer that generates and trans-
ports photocarriers. The synergy electrocatalytic effect between MoS2 and ZIF-67 proved
to be crucial for glucose sensing and signal amplification. Then, a ZIF-67@MoS2/rGO
PEC glucose biosensor was developed by integrating the photoactive materials with SPE,
suggesting good potential for biochemical applications.
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2. Materials and Methods
2.1. Reagents and Chemicals

Graphene oxide was purchased from Nanjing XFNANO (Nanjing, China). 2-methylim
idazole, lactose, maltose, and fructose were purchased from Aladdin (Shanghai, China).
Co(NO3)2•6H2O, L-Cysteine, Thiourea, NaOH, and NaCl were bought from HUSHI
(Shanghai, China). Glucose was obtained from Shanghai Sigma Aldrich trading Co.,
Ltd. (Shanghai, China). All other reagents of guaranteed reagent (GR) level were obtained
from Sigma. Double distilled water (ultra-pure conductivity of ≥18 MΩ) was used for all
experimental analysis.

2.2. Instrumentation and Measurements

Scanning electron microscopy (SEM) was carried out on a FEI Quanta 200 micro-
scope (FEI company, Hillsboro, USA). X-ray diffraction (XRD) and Raman spectra were
acquired using Ultima IV (Rigaku Corporation, Tokyo, Japan) and WITec Alpha300R (WITec
GmbH, Ulm, Germany), respectively. CV experiments were performed with a CHI 660D
electrochemical workstation (Shanghai CH Instrument Company, Shanghai, China). A
three-electrode configuration, using Ag/AgCl (3 M KCl saturated) as the reference elec-
trode, platinum sheet as the counter electrode, and photoactive material-modified GCE as
the working electrode, was adopted for electrochemical tests in a freshly prepared sodium
hydroxide electrolyte solution (NaOH, 0.1 M). The light source was provided by xenon
lamp illumination CEL-HXF300 (Beijing China Education Au-light Co., Ltd., Beijing, China).
Optical filters UVIRCUT 420 (Beijing China Education Au-light Co., Ltd., Beijing, China)
were used to obtain a visible-light of wavelength between 420 and 780 nm.

2.3. Synthesis of ZIF-67@MoS2/rGO Composite

First, 0.8 g thiourea and 0.4 g ammonium molybdate were measured and slowly
poured into 10 mL of deionized water to make solution A. Next, 1.35 mM Co(NO3)2•6H2O
and 8.1 mM 2-methylimidazole were dissolved in 4.5 mL of methyl alcohol evenly to
form solution B. Then, 5 mL of graphene oxide was added to solution A, and solution B
was slowly poured into solution A. The mixture was stirred at 900 rpm for 30 min and
ultrasonized for 1 h, then it underwent microwave-assisted heating at 180 ◦C for 1 h. The
product was centrifugated at 12,000 rpm to obtain precipitate, washed with methanol and
ethanol alternately, and finally dried at 60 ◦C thoroughly to obtain ZIF-67@MoS2/rGO
powder. In addition, MoS2 and MoS2/rGO were synthesized through the same procedures
for comparison.

2.4. Preparation of ZIF-67@MoS2/rGO-Modified Photoelectrode

The obtained ZIF-67@MoS2/rGO powder was dissolved in ethanol solution, and
5 µL Nafion was added. The solution was ultrasonicated to dissolve evenly. The glassy
carbon electrode (GCE) with a diameter of 4 mm was sanded and washed, then the as-
prepared ZIF-67@MoS2/rGO-Nafion solution was dropped onto the electrode and dried
at room temperature to make the ZIF-67@MoS2/rGO-modified glassy carbon electrode
(ZIF-67@MoS2/rGO GCE). ZIF-67@MoS2/rGO powder was also dissolved in deionized
water and modified on the screen-printed electrode (SPE) following the same procedure to
make the ZIF-67@MoS2/rGO-modified screen-printed electrode (ZIF-67@MoS2/rGO SPE).

3. Results and Discussion
3.1. Materials Characterization

Figure 1a demonstrates a schematic diagram of the visible-light-sensitive PEC biosens-
ing based on non-enzymatic ZIF-67@MoS2/rGO. In order to verify the rationality of this
microwave-assisted hydrothermal synthesis method, SEM, XRD, and Raman spectroscopy
were used to characterize MoS2, ZIF-67/MoS2, and ZIF-67@MoS2/rGO. SEM character-
izations of MoS2, MoS2/rGO, and ZIF-67@MoS2/rGO are shown in Figure 1b–d. MoS2
synthesized by this method had a flower cluster-shaped structure, providing a large spe-
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cific surface area for better light absorption. The introduction of rGO made the flower
clusters transform to dense lamellas spreading over a layered microstructure, leading to
a more extended structure of MoS2/rGO, which created rich pathways for charge trans-
port. ZIF-67@MoS2/rGO demonstrated a distinct hierarchical geometric structure, which
is a typical structure of ZIF-67. This morphology indicated that ZIF-67 totally covers
MoS2/rGO hybrid nanosheets, and the change in morphology characteristics proved that
the ZIF-67@MoS2/rGO composite structure was successfully synthesized. As shown in
Figure 2a, the synthesis of ZIF-67@MoS2/rGO was further analyzed by X-ray diffraction
(XRD). Furthermore, 36.8◦, 39.98◦, and 44.3◦ correspond to the peak value of MoS2, while
26.28◦ is the characteristic peak of rGO [29,30]. In addition to these peaks, the prominent
peaks at 7.66◦, 17.1◦, 19.72◦, and 25.42◦ in the composite material correspond to ZIF-67 [31].
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3.2. Photoelectrochemical Property Characterization

Chronoamperometry was used to investigate the photocurrent of the GCEs modified
with different photosensitive materials. We systematically optimized the experimental
conditions, including the detection potential, optical power density, and pH of electrolytes
(See Figure S2 for details). The detection potential, light source intensity, and pH value
affect the recombination of photogenerated electrons and holes in photoelectrochemistry.
Therefore, as shown in Figure S2a, the photocurrent response of ZIF-67@MoS2/rGO GCE
to 0.5 mM glucose was comprehensively compared in a potential range of 0.1–0.5 V. At
0.1–0.3 V, and the photocurrent response of the electrode was greatly improved with
the increase in detection potential, which was because the increased detection potential
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promoted the separation of photogenerated electrons and holes and improved the response
of the electrode [32]. Above 0.3 V, the increase in the electrode photocurrent response
slows down. We considered the trade-off effect between high photocurrent response and
negative influences brought by high potential, and 0.3 V was finally selected as the detection
potential for subsequent tests.
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Light source intensity is very important to photocurrent response as the excitation
device of photochemistry. In this paper, the optical power density of xenon lamp source was
optimized, and different test light intensities of 70–100 mWcm−2 were selected to compare
the photocurrent response of the electrode, as shown in Figure S2b. With the increase in
optical power density, the photocurrent response increased and gradually reached light
saturation. However, when the optical power density increased further, the sensitivity
of electrode detection could not be improved. As there was no sacrificial agent added to
the system, excessive light would produce a large number of holes, which could rapidly
corrode the material or cause sample evaporation [33]. Therefore, 100 mWcm−2 was finally
selected as the optimal light intensity for testing.

We also conducted PEC detection on electrolytes with different pH values, and the
photocurrent responses with the pH values changing from 10 to 14 at 0.3 V were recorded in
Figure S2c. As pH value continued to rise, OH− promoted the catalytic oxidation of glucose,
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increasing the photocurrent correspondingly. However, when the pH value increased to
1 M, the photocurrent signal showed a downward trend, which may be because the high
NaOH concentration under light intensified the disproportionation reaction of glucose and
reduced the glucose concentration in the system [34], resulting in a downward trend in
photocurrent. Therefore, the electrolyte with a 0.1 M NaOH concentration was selected as
the optimal test environment. In the subsequent investigation, 0.3 V was selected as the
optimal applied potential, and 0.1 M NaOH was selected as the optimal test environment
with 100 mWcm−2 light intensity.

In 0.1 M NaOH under visible-light on/off illumination, ZIF-67 GCE, ZIF-67/MoS2
GCE, and ZIF-67@MoS2/rGO GCE were tested containing 0.1 mM glucose and 0.2 mM
glucose, respectively (Figure S3). As shown in Figure S3a, ZIF-67 GCE demonstrates a slight
rise in photocurrent, which was due to a small amount of catalytic reaction between ZIF-67
and glucose in the alkaline environment. However, the photocurrent shows a downward
trend immediately, and when the glucose concentration changes from 0.1 mM to 0.2 mM,
current increment even declined to a small value. When ZIF-67 is combined with MoS2
(Figure S3b), as MoS2 is a narrow-band gap semiconductor with an appropriate band gap,
it can better absorb light and generate photogenerated electron–hole pairs. At the same
time, MoS2 has a certain number of catalytic sites, and so the current increments are more
obvious and show a certain correlation with glucose concentration; meanwhile, due to the
inferior conductivity of MoS2, photogenerated electron–hole pairs generated by MoS2 are
more likely to recombined. When introducing rGO nanosheets, their high conductivity
will promote electron transfer to GCEs quickly, largely restricting the combination of
photogenerated charges, so the photocurrent responses of ZIF-67@MoS2/rGO GCE in
Figure S3c are significantly improved. Finally, current increments at the potential of
0.3 V for ZIF-67-, ZIF-67/MoS2-, and ZIF-67@MoS2/rGO-modified GCEs in 0.1 mM and
0.2 mM glucose are summarized in Figure S3d, and are consistent with the above analysis.
As shown in Figure S3, the photocurrent response of ZIF-67@MoS2/rGO GCE is more
significant, indicating that it is crucial to decorate ZIF-67 on MoS2/rGO heterostructures
for glucose detection.

To uncover the PEC biosensing mechanism of ZIF-67@MoS2/rGO, first the UV-visible
absorption spectrum of MoS2 was measured by UV spectrophotometer, and multiple
absorption peaks located at the visible-light range were identified, indicating MoS2 acts as
the photoactive component (Figure 2b). The Tauc diagram of MoS2 was converted by its
UV-visible absorption spectrum; the X-axis was Energy (hυ), which was 1240/wavelength;
and the Y-axis was calculated on the basis of (αhυ)n = k(hυ − Eg) [35]. In this formula, n
is 2, α is 2.303, and the band gap Eg of the material is finally obtained as 1.66 eV. The M-S
diagram of MoS2 is shown in Figure 2c, and the value at the intersection between the M-S
diagram and the X-axis is the flat band potential, which was calculated according to the
conversion formula: E(NHE) = E(Ag/AgCl) + 0.2. In addition, the type of semiconductor
was determined by the slope [36]. Hence, the results show that, in this work, MoS2 is an
N-type semiconductor, with its Fermi energy level close to the conduction band and its
conduction band at position ECB = −0.86 eV, together with its valence band at position
EVB = 0.8 eV.

Figure 2d shows the reaction mechanism of the ZIF-67@MoS2/rGO photoelectrode.
Through MoS2’s sufficient absorption of visible light, the photogenerated holes promote the
oxidation of Co(II) and Co(III) to Co(III) and Co(IV) in ZIF-67, respectively. The processes
can be expressed by the following formula:

Co(II)-ZIF + h+ → Co(III)-ZIF (1)

Co(III)-ZIF + h+ → Co(IV)-ZIF (2)
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Subsequently, glucose is oxidized by Co(III) and Co(IV), and then hypervalent cobalt
compounds are reduced to their original states. The catalytic mechanism of glucose under
light conditions can be presumably proposed as the following equations:

Co(III)-ZIF + C6H12O6 → Co(II)-ZIF + C6H10O6 + H2O (3)

Co(IV)-ZIF + C6H12O6 → Co(III)-ZIF + C6H10O6 + H2O (4)

Photocurrent responses of ZIF-67@MoS2/rGO in 0.1 M NaOH containing 0.05–0.55 mM
glucose (low concentration range, 0.1 mM as an interval) and 1.5–5.5 mM glucose (high
concentration range, 1 mM as an interval) are plotted in Figure 3a. With the increase in
glucose concentration, the photocurrent responses gradually increase and exhibit a good
correlation with glucose concentration. The obtained photocurrents were fitted with the cor-
responding glucose concentration, and the result is shown in Figure 3b. The photocurrent
responses of ZIF-67@MoS2/rGO have a good linear relationship in the concentration range
of 0.05–4.5 mM, and their sensitivity is 12.62 µAmM−1cm−2. The limit of detection (LOD)
was calculated as 3.9 µM (S/N = 3) according to the slope in the calibration curve of glucose
detection and instrument noise. The repeatability and selectivity of ZIF-67@MoS2/rGO
GCE are shown in Figures S4 and S5. Table S1 shows the comparison of ZIF-67@MoS2/rGO
GCE and other photoelectrochemical glucose sensors [37–42], and the practical application
of ZIF-67@MoS2/ rGO GCEs are investigated by testing glucose concentrations in human
serum samples (Table S2).
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In this work, a glucose biosensor based on a screen-printed electrode (SPE) was
further developed. The as-synthesized ZIF-67@MoS2/rGO powder was dissolved in
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deionized water to make a 3 mg/mL aqueous solution of ZIF-67@MoS2/rGO, and 5 µL
Nafion solution was added to the solution, which was fully dissolved in ultrasound. Then,
10 µL ZIF-67@MoS2/rGO was dropped on the working electrode and dried to obtain ZIF-
67@MoS2/rGO SPE. As before, in 0.1 M NaOH under visible-light on/off illumination,
the response photocurrent obtained at glucose concentrations of 0.1 mM, 0.3 mM, 0.5 mM,
1 mM, 2 mM, 3 mM, 4 mM, and 5 mM with an applied potential of 0.3 V were are in
Figure 3c. The photocurrent responses to SPE also increased with the increase in glucose
concentration. The obtained photocurrents were fitted with the corresponding glucose
concentration, and the results are shown in Figure 3d. The ZIF-67@MoS2/rGO SPE has
better glucose detection characteristics, and the photocurrent responses have a good linear
relationship with glucose concentration ranging from 0.1 mM to 5 mM. The sensitivity was
3.479 µAmM−1cm−2 and the LOD was calculated as 1.39 µM (S/N = 3), according to the
slope in the calibration curve of glucose detection and instrument noise. A comparison of
the ZIF-67@MoS2/rGO SPE glucose sensor and other lab-on-chip PEC glucose sensors is
shown in Table S3 [43–47], indicating that our strategy is competitive and feasible for PEC
glucose sensing.

3.3. Interference Studies and Practical Applications

The selectivity of ZIF-67@MoS2/rGO SPE for glucose detection was evaluated by
an interference test. In this experiment, 0.1 mM glucose with 0.5 mM sucrose, maltose,
fructose, lactose, uric acid, and NaCl were added to 0.1 M NaOH solution, respectively.
After stabilization, the photocurrent responses were recorded, as shown in Figure 4a. The
results show that this photoelectrode has good selectivity for glucose detection. To further
evaluate its repeatability, five different ZIF-67@MoS2/rGO SPEs were tested against 0.5 mM
glucose in 0.1 M NaOH electrolyte, and the photocurrent responses at 0.3 V were recorded
for comparison (Figure 4b). The relative standard deviations (RSD) of the photocurrent in
response to 0.5 mM glucose were 1.5%, respectively, showing the acceptable repeatability
of ZIF-67@MoS2/rGO SPEs.

The stability of ZIF-67@MoS2/rGO SPE in 0.1 M NaOH under long-term illumination
was investigated. As shown in Figure 4c, after the cyclic test of 1400 s, the photocurrent
response was still 98.6% of its initial value, which proves that ZIF-67@MoS2/rGO has good
stability under long-term strong-light irradiation. Meanwhile, the photoelectrode was
tested for 7 consecutive days, and the results are recorded in Figure 4d. The photocurrent
response was still 94.3% of its initial value. Therefore, it can be concluded that ZIF-
67@MoS2/rGO SPE can still maintain good performance after a certain period of daily
storage, even if there is some occasional interference of ambient light.

The practical application of ZIF-67@MoS2/rGO SPE was investigated by testing glu-
cose concentrations in human serum samples, which were provided by Zhongda Hospital
in Nanjing, China. Before PEC testing, the cryo-preserved sample was thawed at room
temperature, and a certain amount was added into 0.1 M NaOH with a pipetting gun to
form 5% human serum sample. The spike and recovery method are employed, and the
analytical results are listed in Table 1. The obtained results suggest that the developed PEC
biosensor based on ZIF-67@MoS2/rGO SPE exhibits high suitability for glucose detection
in genuine samples, offering high potential for practical applications in clinical diagnosis.

Table 1. PEC glucose detection in 5% human serum with ZIF-67@MoS2/rGO-modified SPE.

Real Sample Fitted Value
(µA)

Scalar Addition
(µA)

Estimated Value
(µA) Recovery (%)

1 0.784 1.3 2.135 103.9
2 0.833 1.3 2.166 102.5
3 0.792 1.3 2.045 96.4
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ZIF-67@MoS2/rGO SPE for (c) cyclic test of 1400 s. (d) Test for 7 consecutive days.

Compared with the electrochemical detection method, the PEC detection of glucose
has lower background signal and a higher sensitivity due to its different excitation signal
and detection signal. It further improves the convenience and instantaneity of detection
when combined with the screen-printed electrode, which is simple to produce in bulk, and
has a wide range of application prospects.

4. Conclusions

In this work, ZIF-67@MoS2/rGO was synthesized by a facile and one-step microwave-
assisted hydrothermal method for the PEC detection of glucose. Due to the excellent
visible-light absorption of MoS2 and the enhancement of photogenerated electron transfer
characteristics of rGO, MoS2/rGO hybrid nanosheets constructed a suitable heterostruc-
ture for PEC biosensing. ZIF-67 anchored on MoS2/rGO composite could realize the
efficient, enzyme-free, electrocatalytic oxidation of glucose, achieving a high sensitivity of
12.62 µAmM−1cm−2 based on GCEs. To further improve the portability and immediacy
of glucose detection, ZIF67@MoS2/rGO was integrated with SPE to develop a lab-on-
chip PEC biosensor. The as-prepared biosensor exhibited a competitive sensitivity of
3.479 µAmM−1cm−2 and low detection limit of 1.39 µM, which also demonstrates its
outstanding selectivity, stability, and repeatability. Finally, clinical serum samples were
tested to verify its practicability, and the obtained results suggest that this PEC biosen-
sor has a good development prospect for clinical applications in quantitative detection
of biomolecules.
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