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Abstract: Surface-enhanced Raman spectroscopy (SERS) has recently emerged as a potent analytical
technique with significant potential in the field of brain research. This review explores the applications
and innovations of SERS in understanding the pathophysiological basis and diagnosis of brain
disorders. SERS holds significant advantages over conventional Raman spectroscopy, particularly in
terms of sensitivity and stability. The integration of label-free SERS presents promising opportunities
for the rapid, reliable, and non-invasive diagnosis of brain-associated diseases, particularly when
combined with advanced computational methods such as machine learning. SERS has potential
to deepen our understanding of brain diseases, enhancing diagnosis, monitoring, and therapeutic
interventions. Such advancements could significantly enhance the accuracy of clinical diagnosis and
further our understanding of brain-related processes and diseases. This review assesses the utility
of SERS in diagnosing and understanding the pathophysiological basis of brain disorders such as
Alzheimer’s and Parkinson’s diseases, stroke, and brain cancer. Recent technological advances in
SERS instrumentation and techniques are discussed, including innovations in nanoparticle design,
substrate materials, and imaging technologies. We also explore prospects and emerging trends,
offering insights into new technologies, while also addressing various challenges and limitations
associated with SERS in brain research.
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1. Introduction

The global burden of brain and central nervous system (CNS) disorders is significant,
comprising around 70% in low- and middle-income countries, and neurological conditions
are the leading cause of disability-adjusted life years, accounting for about 9 million deaths
per year [1]. This is exacerbated by a global demographic shift to an aging population,
heightening the growth of age-associated neurological disorders such as Alzheimer’s
disease (AD), stroke, and Parkinson’s disease (PD) [2]. Moreover, while comparatively
rarer, brain cancers cause significant mortality and morbidity across all ages and remain the
primary cause of cancer-related mortality in children diagnosed at 0–14 years old [3]. The
need for novel, quick, and reliable diagnostic tools for the early detection of brain diseases
has thus never been greater.

Raman spectroscopy (RS) is a label-free method that provides a molecular signature of
any type of biological sample, including tissue, live or fixed cells and biofluids for disease
diagnosis. RS allows a sample’s biochemical structure to be fingerprinted by analyzing
the molecular bond vibrations of its biocomponents and has been employed to detect
subtle biomolecular changes, enabling comparisons between a variety of tissues and bioflu-
ids [4–7]. RS has shown considerable potential in understanding the diagnosis, progression
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and treatment response for a variety of brain disorders, including dementia-causing ill-
nesses [8–11], Huntington’s disease [12], and stroke [13]. RS has also been used in cancer
diagnosis to capture subtle changes in biomolecular composition, such as in DNA or protein,
allowing comparison and discrimination between cancerous and non-cancerous tissues
and between stages [14–16]. Notably, the recent introduction of portable Raman devices,
which provide spectral measurements within minutes, may offer potential for point-of-care
diagnostic testing [17]. Nevertheless, a major limitation of portable RS, and RS in general,
is its relatively low signal intensity and consequent lower sensitivity compared to other
techniques (such as mass spectrometry), resulting from a low-power laser source [18]. This
factor, along with a long acquisition period, the occasional appearance of fluorescence
background from biological samples, and time-consuming big data processing, have so far
hampered the widespread clinical use of RS. Recent progress in ‘post-processing’ devel-
opments, combining RS with machine learning and AI approaches, has been successfully
implemented in disease diagnostics. Indeed, our group recently demonstrated accurate
discrimination between malignant glioma grades (III and IV) in tissue, cell models, and
serum samples using RS combined with machine learning [15], in line with earlier findings
in cancer [19] and AD [20]. However, the use of surface-enhanced Raman spectroscopy
(SERS) may overcome many of the challenges associated with conventional RS, offering
higher sensitivity thorough scattering enhancement and fluorescence quenching, to enable
high resolution and improve the accuracy of data acquisition [21,22]. SERS thus presents
promising opportunities for a rapid, reliable, and non-invasive method in neuropathology.

In this review, we explore the practical applications and innovations of SERS in
understanding the pathophysiological basis of neurological disorders, focusing on AD
and PD, stroke, and brain cancer. We will also examine the use of SERS in intraoperative
brain procedures, particularly in guiding brain tumor surgery, along with its potential in
the detection of neurotransmitters. Such advancements have the potential to significantly
enhance the accuracy of clinical diagnosis and further our understanding of brain-related
processes and diseases.

2. Fundamentals of SERS

SERS is a powerful analytical technique that enhances the signal of Raman scattering,
allowing sensitive and selective molecular analysis. Consequently, the Raman signal is
significantly amplified when the sample is near to roughened gold or silver metal surfaces
or nanoparticles (NPs). Two primary SERS methods may be employed in biomedical
applications: label-free [23,24] or labeled, both of which possess inherent advantages and
disadvantages. The label-free method involves extracting chemical bond vibration infor-
mation from biomolecules through direct interaction with the substrate nanostructure,
thereby revealing the biomolecular composition of samples. Though simple to conduct,
this approach is sometimes susceptible to signal interference [25]. The labeled method,
however, relies on the incorporation of Raman reporter molecules with robust and distinct
Raman signals, serving as SERS tags. This offers advantages such as high accuracy and
relative quantitation but is complicated in terms of operation [26]. Regardless of approach,
the design of sensitive and rational plasmonic NPs for SERS is imperative in ensuring the
effectiveness of the interaction between the sample and the substrate, facilitating reliable
and accurate results in biomedical applications. SERS allows structural fingerprinting
of low-concentration analytes through the plasmon-mediated amplification of electrical
fields or chemical enhancement [27]. The SERS enhancement factor may approach approxi-
mately 1010–1011 for highly optimized surfaces resulting from chemical and electromagnetic
enhancement mechanisms [28]. Electrochemical enhancement primarily stems from the
localized surface plasmon resonance of metal NPs [29], which induce intense enhance-
ment of the electromagnetic field near the metal surface when interacting with incident
light [27]. When analyte molecules are located within the vicinity of these electromagnetic
hotspots, Raman scattering signals are dramatically amplified at nanometer-scale regions
near the metal surface, boosting Raman signals by several orders of magnitude. Chemical
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enhancement in SERS is contingent upon molecule–metal interactions, which facilitate
charge transfer between the energy levels of the adsorbate molecules and the metal NPs.
This interaction leads to the formation of an adsorbate–metal complex, characterized by
a significantly larger Raman scattering cross-section compared to the free molecules [30].
These interactions contribute to further signal enhancement that can vary based on the
chemical properties of the molecules involved [30].

The sensitivity of SERS allows analyte detection down to a single-molecule level. This
has proved invaluable in applications where the analyte concentration is very low or where
improving sensitivity is critical for accurate measurements, such as in the detection of
biomarkers in complex biological samples [31]. This allows the identification and relative
quantification of complex mixtures with high precision and could prove important in
disease diagnostics, particularly when combined with bioinformatics and machine learning
approaches (Figure 1).
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Figure 1. Surface-enhanced Raman spectroscopy (SERS) utility for a variety of brain disease diagnosis.
SERS Raman spectroscopy enables the detection of biomolecular changes and combined machine
learning techniques may improve the diagnostic performance. Created with BioRender.com; https:
//www.biorender.com, accessed on 16 November 2023.

3. Technological Advancements in SERS for Brain Research

The unique properties of SERS have heralded a new era in brain disease diagnostics.
SERS-based approaches have been employed in both “bulky” measurements directly on
the brain or surgical site to gain real-time information about tissues or conditions [32,33],
along with indirect ex vivo analysis of biofluid samples, such as blood cerebrospinal fluid
(CSF) or other bodily fluids, outside the living organism [13,34–36].

https://www.biorender.com
https://www.biorender.com
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SERS analysis of liquid biopsies offers a less invasive diagnostic method compared
to traditional tissue biopsies. [37,38]. SERS liquid biopsy allows dynamic monitoring of
disease progression and treatment response in serum samples from cancer patients, for
instance before and after tumor removal [39]. The SERS-based detection of circulating
tumor cells (CTCs) [40] or cell-free DNA (cfDNA) [41] also provides a non-invasive means
of early cancer detection. A key strength of liquid biopsies with SERS Raman technologies
also lies in their multiplexed analysis capability [13,42–45], allowing the simultaneous
detection of multiple biomarkers as a comprehensive molecular profile, within a single
sample [44,46,47]. Nevertheless, SERS is subject to limitations according to sample handling
conditions such as variability in sample preparation and handling procedures that may
affect the performance and reproducibility of the results [48].

The primary challenge in the development of SERS technology for in vivo imaging
is the acquisition of a signal from a SERS substrate located deep within the body. Initial
research on in vivo SERS using rat or mouse models has employed mapping tools specifi-
cally designed to collect data from subcutaneously placed SERS probes [49–54]. However,
a major drawback of SERS has been the lack of tissue penetration in the detection of brain
pathologies, which often occur in deep-lying areas of the brain. NPs have been used in
SERS to improve image contrast and target certain tissues and cells in vivo [50,51,53,54].
While SERS analysis is thorough and sensitive, its performance is dependent on the size,
shape, and absorption properties of NPs. By incorporating diverse plasmonic materials into
SERS spectroscopic methods, particular analytes of therapeutic relevance may be targeted.
The shape of NPs may be optimized to provide maximal enhancement for various laser
wavelength and Raman shift combinations. For example, nanorods with greater anisotropy
outperform nanospheres and, in certain cases, nanostars in terms of SERS enhancement at
longer wavelengths. According to Solís et al [55], nanorods, particularly at the frequently
used laser wavelength of 785 nm, are an excellent option for developing extremely efficient
SERS substrates.

Innovative approaches have been employed to address the challenges of Raman
imaging application to brain research. These cutting-edge technologies have included
combining surface-enhanced resonance Raman spectroscopy (SERRS) and spatially offset
Raman spectroscopy (SORS) to create surface-enhanced spatially offset resonance Raman
spectroscopy (SESORRS), a method that allows imaging of the brain in vivo through the
skull [53,56]. This entails the construction of specially designed SERS imaging equip-
ment (summarized in Figure 2). Gold nanostars functionalized with a resonant Raman
reporter, forming SERRS nanotags, have been employed in a proof-of-concept work for
SORS imaging of glioblastomas in transgenic mice models using a polytetrafluoroethylene
(PTFE)-skull-tissue phantom [53]. The capacity to produce clear and distinct SERS spectra
from deep-seated glioblastoma in mice in vivo through the skull was demonstrated using
MRI and histology. SESORRS provided finer delineation of the tumor than standard Ra-
man imaging [53]. This integrated technique is a huge step forward in overcoming the
technological limits of optical-based brain imaging, particularly in terms of penetration
depth. In light of such findings, Sharma et al [57] identified neurotransmitters in a brain
tissue phantom via a cat skull, whereas Odion et al [58] recovered SERS spectra through
a monkey skull using an inverse SORS technique. Using a portable SORS spectrometer,
SESORRS has also been used to identify ex vivo multicellular tumor spheroids to depths of
15 mm of tissue [44,59].

Multimodal imaging approaches, although still uncommon, combine several imaging
modalities presenting advantages over the traditional imaging techniques based alone on
mass spectrometry (e.g. MALDI) or spectroscopy (e.g., SERS) alone. A recent multimodal
imaging approach has integrated imaging modalities by employing a gold-coated nanos-
tructured silicon substrate to couple surface-assisted laser desorption/ionization mass
spectrometry (SALDI-MS) and SERS [60].
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Figure 2. Concept and characterization for in vivo imaging of brain pathology using surface-enhanced
Raman spectroscopy (SERS); for example, here, using surface-enhanced spatially offset resonance
Raman spectroscopy (SESORRS) technology. This setup includes an XYZ translational stage, a laser
positioned at a 45◦ angle relative to the collection optics, and a Raman spectrometer. Created with
BioRender.com: https://www.biorender.com, accessed on 16 November 2023.

4. Applications of SERS in Brain Research

SERS offers potential in disease screening and diagnosis, with key studies emerging in
the field of brain research. SERS has been investigated for use during brain surgery [61,62].
In glioma, which poses challenges in intraoperatively identifying its true margins due to
its infiltrative nature, a SERRS probe has been developed [63], while a stimulated Raman
scattering (SRS) microscopy method has accurately identified malignant tissue [64]. In the
search for blood-based detection of AD biomarkers, a SERS-based sensor has developed
for the relative quantitation of tau protein in the plasma of AD patients [65], while the
combination of SERS with seed amplification assays (SAAs) offers an intriguing prospect
in proteinopathies such as PD and AD [66]. A real-time assay for highly sensitive, label-
free, multiplexed electrochemical, and SERS detection of stroke biomarkers has also been
developed using a lateral flow device [13].

4.1. The Use of SERS in Glioma Research

Glioma accounts for more than 80% of all primary malignant brain tumors [67], and
surgical removal is the mainstay of glioma treatment. However, due to the infiltrative
nature of gliomas and the textural similarities between normal brain and malignant tis-
sues, neurosurgeons face the challenge of maximizing the resection of the tumor while
minimizing neurological deficits [68]. Though various approaches have been employed to
identify brain tumor margins, few have truly defined the tumor’s infiltrative boundaries.
RS has been used for discriminating between glioma grades when combined with machine
and deep learning techniques [16,69,70]. Moreover, recent studies suggest SERS has the
potential to precisely depict the actual tumor extent with high sensitivity, specificity, and
spatial resolution, making it suitable for intraoperative image-guided resection [71].

SERS is emerging as a powerful tool in the realm of intraoperative brain mapping and
real-time monitoring of gliomas. Various adjuncts have been proposed to aid neurosur-
geons while operating on brain tumors to maximize the extent of resection in the surgical
treatment of gliomas, including intraoperative fluorescence-guided microsurgery, intraop-
erative MRI (iMRI), intraoperative ultrasound (IOUS), intraoperative neuro-navigation,
intraoperative frozen section, and intraoperative fluorescence-guided microsurgery [72].

https://www.biorender.com
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While these methods have their merits, they also have limitations. Intraoperative MRI, for
instance, requires specialized operating rooms and has time and environmental constraints.
Conversely, intraoperative ultrasound is less expensive but has limitations in sensitivity
for identifying residual tumor. RS, on the other hand, offers a non-invasive alternative
approach with the ability to provide results in seconds, along with a highly sensitivity and
specificity, and without the need for complex environmental requirements.

So far, several animal studies have reported success in delineating glioma margins
using a variety of SERS navigation systems [62,73–75]. Whole-brain tumor localization has
been achieved in mouse models of glioma with a high degree of specificity and resolution
using a combination of MRI, SERS and photoacoustic imaging, a technology that overcomes
the depth and resolution limits of optical imaging [62,75]. Kircher et al. employed triple-
modality imaging, combining MRI photoacoustic imaging, and Raman imaging [62]. NPs
were intravenously injected into living mice with an orthotopic brain. This was facilitated
through the disrupted blood-brain barrier, and NPs subsequently sequestered and retained
by the tumor. This process resulted in accurate delineation of the margins of brain tumors,
both preoperatively and intraoperatively [62].

More recently, a ratiometric pH-responsive SERS strategy has been developed for
the rapid identification of glioma boundaries using pH-responsive SERS reporters [73,74]
exploiting the pH gradient between glioma cells and extracellular fluid. The “Warburg
effect” has also been used to characterize the metabolic anaerobic tendency of tumors, which
results in significant lactic acid production [76]. SERS has been employed to identify tumor
boundaries using a pH-sensitive SERS substrate, 4-mercaptopyridine (4-MPY), which reacts
to pH changes. The lactic acid production in glioma cells lowers the local pH, impacting
the 4-MPY SERS Raman peaks [74]. This approach has been tested using U87 cells in mice,
yielding a surgical navigation system for tumor boundary identification. [73].

4.2. The Use of SERS in Alzheimer’s Disease Research

AD is the most prevalent type of dementia and is clinically characterized by significant
amnestic cognitive decline, though can occasionally present as non-amnestic cognitive im-
pairment. [77]. The AD brain exhibits microscopic features characterized by the abnormal
accumulation of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary
tangles abnormally phosphorylated tau proteins (P-Tau) [78,79]. Using SERS to analyze
AD biomarkers holds tremendous potential for accurate and early diagnosis. SERS-based
biosensors have been developed, harnessing the optical properties of NPs to enhance
detection performance [80]. Yu et al. have developed a sensitive SERS-based method to
quantitatively detect serum biomarkers (such as Aβ1-42 and P-Tau-181) for early diagnosis
of AD [81]. A SERS-based immunoassay successfully determined Aβ1-42 and P-Tau-181 in
human serum, suggesting a promising tool for the early diagnosis of AD [81]. Since the de-
tection AD biomarkers in blood has proven effective, the simultaneous analysis of multiple
AD markers has been explored using SERS-based approaches. A lateral flow assay based
on SERS nanotags (SERS-LFA) has been developed, allowing simultaneous quantification
of multiple AD biomarkers, including Aβ42, Aβ40, tau protein, and neurofilament light
chain, a marker of neuronal damage [82].

To monitor AD progression and rehabilitation treatments, an optimized protocol
using SERS analysis of AD and control patient serum samples has been developed. The
correlation of RS data with structural MRI demonstrated a direct link between Raman
spectra and hippocampal degeneration, suggesting RS as a potential adjunct for monitoring
AD diagnosis using scanning technologies [83]. The unique features of SERS, combined
with SAAs, have also been shown to successfully improve amyloid β-oligomer detection
and characterization of CSF of patients clinically diagnosed with AD. This approach has
the potential to provide an early diagnostic test, complementing clinical evaluation and
traditional laboratory tests [66]. Such early detection may improve the effectiveness of
recently introduced drugs, such as aducanumab and lecanemab [84,85].
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4.3. The Use of SERS in Parkinson’s Disease Research

PD is the most prevalent neurodegenerative movement disorder, characterized by
the progressive development of bradykinesia, muscular rigidity, rest tremor, and postural
instability [86]. These cardinal motor features stem from the gradual loss of dopaminergic
neurons in the substantia nigra pars compacta. Along with other ‘synucleinopathies’ in-
cluding dementia with Lewy bodies, multiple systems atrophy and pure autonomic failure,
PD is defined by the presence of abnormal intracellular deposits termed ‘Lewy bodies’
and ‘Lewy neurites’ [87]. The main constituent of these pathological hallmarks is thought
to be the unfolded protein α-synuclein, which is thought to aggregate from its native
monomeric α-helical conformation, undergoing a profound conformational transition to a
β-sheet-rich structure that form toxic oligomers and amyloid fibrils, accumulating as Lewy
deposits [88–90].

The pathophysiology of PD and the development of effective treatments depend not
only on the successful management of symptoms but also on targeting the underlying
disease mechanisms and achieving early diagnosis before symptoms and clinical signs
manifest. However, assessment results are often influenced by subjective and objective
factors, which pose challenges to clinical diagnosis. Recent diagnostic advancements
have harnessed the ‘prion-like’ properties of α-synuclein to develop SAAs, like the real-
time quaking-induced conversion (RT-QuIC) assay, in various tissues and fluids, such as
CSF [91] and, more recently, blood samples [92]. The combination of the RT-QuIC method
with a targeted SERS-based immunoassay approach using antibodies directed toward
specific proteo-forms of α-synuclein may thus offer an intriguing alternative approach in
PD diagnostics (Figure 3).
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detection in biofluids for disease diagnostics. SERS-based immunoassay of protein (antigen) carried
out by depositing biofluid samples on the Au substrate for immunocapture of the target antigen. SERS
measurements performed in the antibody–antigen immunocomplexes. Created with BioRender.com:
https://www.biorender.com, accessed on 16 November 2023.

Multiplexed detection of biomarkers could hold huge potential in early diagnosis
and personalized treatment of PD. Cao et al. fabricated a robust SERS-enabled lab-on-

https://www.biorender.com
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a-chip (LoC-SERS) platform for the simultaneous quantification of crucial PD-related
proteins such as α-synuclein, P-Tau 181, osteopontin, and osteocalcin [35]. A multiplex
amplification strategy has been developed to amplify the sensitivity of a lab-on-a-chip SERS
system, allowing simultaneous and highly sensitive detection of miR-214 and miR-221,
both potential biomarkers for the early-stage diagnosis of PD. [42]. Another study focused
on 5-S-cysteinyl-dopamine (CDA), a crucial metabolite with high relevance for the early
detection of PD [35]. This study involved assignment of SERS bands for CDA using silver
NP substrates in aqueous media, with analysis supported by theoretical calculations and
simulated Raman and SERS spectra [34].

4.4. The Use of SERS in Stroke Research

Globally, stroke continues to be the second most prevalent cause of mortality and the
third most common cause of disability [93]. The rapid and reliable analysis of stroke is a
primary goal for relevant therapeutic intervention. CT results may appear normal in the
early stages of ischemic stroke or in patients with minor symptoms and MR imaging is
often not feasible [94]. Although many blood biomarkers have been suggested for stroke
diagnosis [94], the need for more sensitive and specific biomarkers remains a priority.

SERS detection of stroke biomarkers is considered a robust approach to overcoming
these limitations. In a recent study by Sun et al., a real-time assay for highly sensitive, label-
free, multiplexed electrochemical SERS identification of stroke biomarkers, specifically
neuron-specific enolase (NSE) and S100-β protein, was developed using a lateral flow
device [13]. Another study used a novel gold–silver alloy nanobox (AuAgNB)@SiO2-gold
nanosphere nanoassembly based on a core–shell–satellite structure for the SERS detection
of S100 calcium-binding protein B protein (S100B) [95]. Zhang et al. developed a novel
lateral flow assay based on Raman encoded core–shell SERS nanotags for the rapid relative
quantification of three cardiac biomarkers in the early diagnosis of acute myocardial
infarction [45].

4.5. The Use of SERS in Neurotransmitter Detection

Neurotransmitters are endogenous signaling molecules secreted by neurons affecting
a receptor on a target cell. Precise and proportional neurotransmitter release is vital
for normal brain function and imbalances in neurotransmission has long been proposed
to underlie many psychiatric and neurological conditions, including major depressive
disorder [96], schizophrenia [97], epilepsy [98], PD [99] and AD [100]. Therefore, the
monitoring of neurotransmitter concentrations could offer an exciting prospect in the
diagnosis, prognosis, and treatment monitoring of brain disorders.

Lussier et al (2017) introduced a dynamic SERS nanosensor (D-SERS), by modify-
ing a patch clamp nanopipette with gold nano-raspberries [101]. The nanosensor can
be precisely positioned within specific regions containing analytes under a microscope,
enabling concurrent measurements of ATP, glutamate, acetylcholine, gamma-aminobutyric
acid (GABA), and dopamine. The acquired SERS spectra of these neurotransmitters were
subsequently subjected to barcode data processing techniques. This D-SERS nanosensor
represents a versatile and reliable tool for investigating the secretion profiles of neurons.
Dopamine measurement in human serum was achieved through SERS detection using
a gold nanostructure fabricated on a silicon wafer to enhance plasmon resonance. To
enable this detection, 4-mercaptophenylboronic acid (4-MPBA) was employed as a reporter
molecule capable of forming covalent bonds with dopamine. The constrained Raman mode
of dopamine-bound 4-MPBA exhibited a directly proportional variation to dopamine con-
centration, suggesting the sensor possesses high sensitivity and selectivity when applied to
human serum for the purpose of dopamine detection [102].

Zheng et al (2023) recently developed a SERS-based method for neurotransmitters
detection using gold-nanoislands, decorated tapered optical fibers with sub-10 nm gaps,
enabling molecular fingerprint identification. The nonplanar repeated dewetting approach
amplifies the high-density layer's broadband near-field amplification, allowing the detec-
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tion of neurotransmitters without the use of exogenous reporters [103]. A SERS-active
neural probe with gold nanoislands platform can detect neurotransmitters in the micromo-
lar range, with a limit of detection of 10−7 M for rhodamine 6G and 10−5 M for serotonin
and dopamine [104].

Quantitative SERS-based multiplexed detection of dopamine, serotonin and nora-
drenaline in human urine has been developed through chemometric analysis [43]. The
consistent SERS signal intensities were a direct result of the precise sub-nanometer gaps
between neighboring NPs. These findings indicate that this sensor has the potential for
monoamine neurotransmitter detection in human urine at clinically relevant levels [43].
For serotonin, GABA, and glutamate, it was found that the lowest limits of detection were
achieved using AgNPs SERS enhancing substrate at an excitation wavelength of 633 nm. In
contrast, for indolic molecules like melatonin, dopamine, epinephrine and norepinephrine,
the lowest limit of detection (LOD) was obtained with AuNPs at an excitation wavelength
of 785 nm. This discrepancy is primarily attributed to the strong affinity of AuNPs to the
indole ring [105].

5. Conclusions

In conclusion, SERS has considerable potential to shape brain research. Its potential to
provide deeper insights into neurodegenerative disease and stroke pathology, diagnostics
neurotransmitter measurement and brain tumor monitoring opens huge and exciting
prospects. The emergence of portable SERS devices, machine and deep learning integration,
and multimodal imaging promises more accessible and advanced methods for studying
the brain. As these trends and prospects continue to evolve, they hold tremendous promise
for advancing our understanding of brain function and pathology.
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