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Abstract: A colloidal gold-based lateral flow immunoassay was developed for the rapid quantitative
detection of Cystatin-C in serum and whole blood. This device has an assay time of 15 min, making
it a convenient point-of-care diagnostic tool. The device has a quantification range spanning from
0.5 to 7.5 µg/mL, with a lower limit of detection at 0.18 µg/mL. To validate its accuracy, the test
was compared to a standard nephelometric immunoassay, and the results exhibited a robust linear
correlation with an adjusted r2 value of 0.95. Furthermore, the device demonstrates satisfactory
levels of analytical performance in terms of precision, sensitivity, and interference, indicating its
potential for precise Cystatin-C quantification, particularly in renal-failure patients. Notably, the
Cystatin-C-LFA device also demonstrates satisfactory stability, as a 30-day accelerated stability study
at 50 ◦C showed no change in the device performance, indicating a long shelf life for the product
when stored at room temperature.
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1. Introduction

Acute kidney injury (AKI) or chronic kidney disease (CKD) are characterized by a
reduction in glomerular filtration rate (GFR) [1]. In the course of CKD, monitoring GFR
is crucial, as it is used to estimate functional nephron loss and to guide the diagnosis
and treatment of kidney diseases [2]. At present, serum creatinine levels are used for the
evaluation of GFR [3,4]. However, serum creatinine is not an ideal marker for the estimation
of GFR, as the levels of creatinine increase only after a 30 to 50% reduction in GFR [5]. This
means that any mild or moderate reduction in GFR cannot be detected using creatinine
levels, leading to late detection of kidney failure. In addition, creatinine levels can also
vary due to the patient’s gender, age, muscle mass, and diet, leading to false-positive or
false-negative results [6–8].

Cystatin-C is a non-glycated protein with a molecular weight of 13.3 kDa, belonging
to cystatin protease inhibitors [9]. It is produced by all nucleated cells in the body [10].
Cystatin-C in systemic circulation can only be cleared by glomerular filtration and can
be reabsorbed through the proximal convoluted tubule, followed by catabolism, without
returning to the bloodstream. This indicates that only glomerular filtration determines the
concentration of Cystatin-C in the blood and does not rely on any other external factors,
such as muscle mass, age, diet, and gender. It also suggests that Cystatin-C is a better
marker reflecting the changes in the GFR [11,12]. In a healthy human, the concentration of
Cystatin-C in whole blood is in the range of 0.51–1.5 µg/mL, which can increase up to ten
times the normal levels as GFR decreases when kidney failure occurs. Symptoms such as
overhydration, hyperkalemia, azotemia, and metabolic acidosis will occur [13,14].

Various immunoassay techniques are employed for the quantification of Cystatin-
C, including particle-enhanced nephelometric immunoassay (PENIA), turbidimetric im-
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munoassay (PETIA), enzyme-linked immunosorbent assay (ELISA), and radioimmunoas-
say (RIA) [13,15–18]. Of these, PENIA and PETIA are commonly utilized for serum Cystatin-
C quantification. Nevertheless, these methods involve intricate and precise laboratory pro-
cedures, including multiple incubations, washings, and sample pretreatment steps, which
limit their practical use in society and markets [19]. In contrast, lateral flow immunoassays
(LFAs) are regarded as point-of-care sensors due to their simplicity, user-friendliness, and
cost-effectiveness. These assays employ colloidal gold nanoparticles (AuNPs) as labels,
producing distinct colored lines that can be assessed with a portable reader to determine
the analyte concentration [20–23]. Unlike traditional fluorescent LFAs, the use of AuNPs as
reporters overcomes shortcomings such as poor stability, photobleaching, and the need for
expensive detection systems [24]. While there are reports on the quantitative detection of
Cystatin-C in serum and urine using fluorescence LFAs [25,26], there have been limited
investigations into the colorimetric detection of Cystatin-C, and a comprehensive validation
of these devices is still lacking [27].

In this study, we developed a colloidal gold-based lateral flow immunoassay device for
the quantitative detection of Cystatin-C with an assay time of 15 min with the experimental
procedure shown in Figure 1. The developed device exhibited a range of quantification from
0.5 µg/mL to 7.5 µg/mL and a lower limit of detection of 0.18 µg/mL. These characteristics
make the developed device suitable for point-of-care testing and can also help to spread
the wide usage of Cystatin-C as a renal failure marker. The performance of the Au-LFA
device was investigated by performing accuracy, stability, analytical sensitivity, specificity,
and repeatability studies.
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Figure 1. The schematic of the experimental procedure in analyzing the developed LFA strip. The
shaded area represents the tolerance and the red line is for the baseline correction.

2. Materials and Methods
2.1. Materials

Nitrocellulose (NC) membrane roll (150CNPH-N), backing cards (LP-25), and cassettes
(device 3) were purchased from MDI, Ambala Cantt, India. Absorbent pad (Grade 243),
glass fiber (8951), and blood separation pad (HV Plus, 1668) were purchased from Ahlstrom-
Munksjö, Bethune, SC, USA. The monoclonal mouse anti-Cystatin-C antibody (Cyst 24cc,
Hytest, Turku, Finland) and monoclonal mouse anti-Cystatin-C antibody (Cyst 28, Hytest)
were used as capture and detection antibodies, respectively. Recombinant Cystatin-C
antigen (8CY5) was purchased from Hytest, Turku, Finland. The polyclonal goat anti-mouse
IgG antibodies (41-GM25) were used as control-line antibodies and obtained from Fitzgerald
Industries International, Acton, MA, USA. Both Cystatin-C whole blood and serum samples
were obtained from Padmashree Diagnostics, Bangalore, India. A human plasma bag
of volume 200 mL has been obtained from Jeeva Voluntary Blood Bank & Diagnostics,
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Bangalore, India. Carboxyl-coated gold nanoparticles conjugation kit (ab269942) was
purchased from Abcam, Cambridge, UK. 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide
(EDC, 03449-1 G), phosphate-buffered saline (PBS), 10X tris buffer solution (TBS), bovine
serum albumin (BSA), Tween-20, and carbon black (242276) were purchased from Sigma
Aldrich, Gillingham, UK.

2.2. Instruments

A ZX1010 dispense platform from Biodot (Irvine, CA, USA) was used to deposit the
antibodies onto the NC membrane and spray the conjugate onto the conjugate pad. A
high-speed guillotine cutter from Prahas Healthcare, Vadodara, India was used to cut the
assembled materials. An ESEQuant Flex reader from Dialunox GmbH, Stockach, Germany
was used to analyze the test lines. An infinite M Plex plate reader from Tecan (Männedorf,
Switzerland) was used to obtain the UV-Vis spectra.

2.3. Antibody Conjugation onto Gold Nanoparticles

The Cystatin-C detection antibody was purified using an Amicon filter unit, with
pore size 10 kDa, to remove any amine-terminated molecules that might interfere with the
conjugation process, and the purified antibodies were resuspended in a 10 mM potassium
phosphate buffer of 7.4 pH. A conjugate of AuNP-Cystatin-C antibody was prepared
in accordance with the recommended protocol provided by Abcam, specifically for the
product with the code ab269942 [28]. In brief, AuNPs functionalized with the carboxyl
group were used to covalently bind Cystatin-C antibodies by using water-soluble EDC.
Then, 20 µL of 0.1 mg/mL Cystatin-C detection antibodies were mixed into 50 µL of AuNP
suspension (40 OD) followed by the addition of 20 µL of 1 mM EDC. The resultant solution
was incubated for 30 min at room temperature. Then, 1 mL of 1XTBS (containing 0.05%
Tween) was added to the mixture and centrifuged at 8000 rpm at 4 ◦C for 10 min. The
supernatant was carefully removed, and the pellet of the AuNP-antibody was resuspended
in 90 µL of 1XTBS, 0.5% BSA, 2% Sucrose, and 0.05% Tween to obtain 20 OD or 5 OD of
the conjugate.

2.4. Preparation of Depleted Serum, Calibrators, Clinical Serum, and Blood Samples

Stripping of human plasma was performed by using carbon black to prepare the
Cystatin-C-depleted serum [29]. Human plasma pH was adjusted to 9.0 by using 1 M
NaOH and collected in 50 mL centrifuge tubes. To 30 mL of plasma, 6 g of carbon black
was added and incubated for 16 h at 4 ◦C. After incubation the charcoal-treated plasma
was centrifuged at 8000 rpm for 30 min at 4 ◦C to remove carbon black. The supernatant
was collected in a fresh tube and centrifuged again at 8000 rpm for 30 min at 4 ◦C, and
the collected supernatant was filtered through a 0.45 µm and 0.2 µm syringe filter to
remove any carbon particles. The filtrate was collected and stored at 4 ◦C for further
use. Cystatin-C antigen was spiked in 500 µL of depleted serum to prepare calibrators at
10 µg/mL, 5 µg/mL, 2.5 µg/mL, 1.5 µg/mL, 1.0 µg/mL and 0.5 µg/mL concentrations.
Cystatin-C levels in the prepared calibrators were evaluated using the Atellica NEPH-
630 analyzer to determine the Cystatin-C levels accurately. After calibrators evaluated
through Atellica NEPH-630, Cystatin-C levels were measured at 9.4 µg/mL, 4.4 µg/mL,
2.18 µg/mL, 1.25 µg/mL, 0.82 µg/mL, and 0.59 µg/mL in the calibrators. A total of
93 serum and 21 whole blood samples were obtained from Padmashree Diagnostics. The
concentration of these patient samples was measured using the nephelometry technique,
and the values are presented in Table S1. Serum samples were collected using vacutainers
containing clot activator and stored at −20 ◦C to prevent Cystatin-C degradation. All serum
samples were stored at −20 ◦C to prevent degradation of Cystatin-C. It is worth mentioning
that all the serum samples did not show any degradation in Cystatin-C concentration for
more than three months. Blood samples were collected using K2-EDTA-coated vacutainers
and were stored at 4 ◦C for a maximum of one day prior to measurement. The study was
approved by the ethical committee of Padmashree Diagnostics at Bangalore.
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2.5. Fabrication of LFAs

Cystatin-C capture antibodies and control line antibodies were dispersed in a printing
buffer (10 mM PBS, 1% sucrose, pH: 7.4) at a concentration of 2 mg/mL and 1 mg/mL. Both
the antibodies were dispensed onto the NC membrane using a Biodot (ZX1010) dispense
platform at a flow rate of 1 µL/cm to obtain a test line and control line width of 1 mm.
The NC membrane was dried in an oven at 37 ◦C for 120 min. Gold conjugate (5 OD) was
sprayed onto a glass fiber pad at a flow rate of 10 µL/cm and dried in an oven at 37 ◦C
for 120 min. Finally, the NC membrane, conjugate pad, absorbent pad, and sample pad
were manually assembled on a plastic backing card and cut into 4.75 mm test strips with
a guillotine cutter. The LFA strips were enclosed in a lateral flow assay cassette for easy
handling and sample loading.

2.6. Colorimetric Lateral Flow Immunoassay Procedure

A total of 5 µL of Cystatin-C serum samples or 8.5 µL of blood samples were added into
495 µL of dilution buffer (10 mM PBS, 1% BSA, and 1% Tween-20) and mixed thoroughly.
Subsequently, 60 µL of the mixture was loaded onto the sample port of the cassette and
wicked towards the absorbent pad with capillary forces. After the assay time, the device
was inserted into the LFA reader to measure the peak area of the test and control lines
under the illumination of 530 nm wavelength. Only the test line peak area was considered
when obtaining calibration curves and for measurements thereafter.

2.7. Validation of Developed LFA

The performance of the developed device is characterized by recovery, stability, repro-
ducibility, and interference. The recovery and interference tests were applied to investigate
the matrix effects and individual components of the blood. Accelerated stability tests were
performed to determine the shelf life of the developed devices. The depleted serum was
tested 10 times to obtain the mean and standard deviation. The concentration correspond-
ing to mean +3 × SD is considered as the limit of detection (LOD) and the concentration
corresponding to mean +10 × SD is considered as the limit of quantification (LOQ) [25,30].

2.8. Measurements with Atellica NEPH-630

The FDA-approved Atellica NEPH-630 analyzer is widely used as the gold standard
for measuring Cystatin-C concentrations in serum samples. It is based on the principle
that a dilute suspension of small particles will scatter light passed through it rather than
simply absorbing it. A sample containing the target antigen is mixed with a specific
antibody labeled with a particle. The antibody binds selectively to the antigen, forming an
antigen–antibody complex. The presence of antigen–antibody complexes causes the light
to scatter. The extent and pattern of scattering depend on the concentration of the antigen–
antibody complexes. The intensity of scattered light from the sample is then compared to
the calibration curve to determine the concentration of the antigen in the original sample.
Atellica NEPH-630, which is an FDA approved analyzer, is considered as a gold standard
technique for obtaining Cystatin-C concentrations in serum samples.

3. Results and Discussion

UV-VIS absorption spectra were measured to reveal the plasmonic properties and
stability of the Au and Cystatin-C-Au nanoparticles. UV-VIS spectra are collected before
and after the conjugation of antibodies to the gold nanoparticles. Figure 2 shows the
successful conjugation of antibodies onto the gold nanoparticles where the resonance peak
is shifted to the right by about 4 nm (red shifted) due to the effects of the conjugated protein
on the plasmon resonance peak of the gold nanoparticle [28,31,32]. In addition, the FWHM
and OD of the conjugate are the same as those of the gold nanoparticles, indicating that the
conjugate consists of monodispersed gold nanoparticles attached to the detector antibody.
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The developed LFA is operated as a colorimetric sandwich immunoassay with gold
nanoparticles as the reporter nanoparticles. Figure 1 shows the schematic of the experimen-
tal procedure used to analyze the test lines of the developed device. Briefly, the sample
buffer is added to the blood separation pad and migrates to the conjugate pad via capillary
forces. The Cystatin-C in the sample buffer specifically binds to the Au-anti-Cys-C ab and
forms antigen–antibody complexes, which move forward on the NC membrane and are
captured at the test and control lines. The LFA device is inserted into the colorimetric reader
to obtain the peak area of the test and control lines. As the concentration of the Cystatin-C
increases the test line area increases, whereas the control line area decreases as the concen-
tration of Cystatin-C increases. Assay time is one of the most important parameters that
affect the quantification of the LFA testing. Assay time has been optimized by studying the
change in the peak area over time at Cystatin-C concentrations of 9.4 µg/mL, 1.25 µg/mL,
and 0.59 µg/mL, as shown in Figure 3. It has been observed that test line intensity at
Cystatin-C concentration of 9.4 µg/mL was saturated after 8 min and remained constant
up to 18 min. In the case of a Cystatin-C concentration of 1.25 µg/mL, test line intensity
was saturated after 12 min and remained constant for up to 18 min. For a Cystatin-C
concentration of 0.59 µg/mL, test line intensity was saturated after 14 min and remained
constant up to 18 min. This indicates that, with an assay time of 15 min, test line intensities
at all clinically relevant concentrations are completely developed, and remain saturated,
therefore 15 min is chosen as the assay time. Calibration curves were obtained with the
developed device by using calibrators across the concentration range from 0.59 µg/mL
to 9.4 µg/mL in triplicate, using an aforementioned procedure. The calibration curve is
obtained by plotting the test line area versus the concentration of Cystatin-C (Figure 4a),
fitted by a sigmoidal curve, and represented by Equation (1).

y = 141.58 +
(−647.50)(

1 + x
(0.095)

0.37
) (1)

The LOD and LOQ derived from the aforementioned procedure are obtained as
0.18 µg/mL and 0.39 µg/mL, indicating the developed test is suitable for determining
the Cystatin-C in a clinically relevant range. To evaluate the clinical performance of the
developed Au-based LFA device, 114 samples that include both serum and blood were
measured with the developed device. Samples were obtained from renal-failure and
diabetic retinopathy patients with concentrations ranging from 0.61 µg/mL to 7.4 µg/mL;
however, most of the samples were in the range of 0.61 to 3.0 µg/mL indicating the need
for the development of methods for accurate determination of Cystatin-C levels within
this range. All the serum samples were analyzed with an Atellica NEPH-630 and the
developed LFA device. In the case of blood samples, the corresponding serum samples
were analyzed with the nephelometry method, and blood samples were analyzed with the
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LFA device. The concentrations of all the samples obtained with the Atellica NEPH-630
and LFA methods are presented in Tables S1 and S2.
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A correlation plot of the Cystatin-C concentrations determined from the LFA results is
shown against the corresponding FDA-cleared method results from the Atellica NEPH-630
in Figure 4b. The results showed a linear correlation between the Atellica NEPH-630 and
the developed LFA method with the equation of regression Y = 1.02 × X − 0.03 and an
r2 of 0.95 indicating a good linear relationship between the concentrations determined
by the two methods. The systematic bias was investigated with a Bland–Altman plot for
the developed LFA and the Atellica NEPH-630. In the Bland–Altman plot, the difference
between the two methods is plotted against the average of the two methods (Figure 4c).
The plot consists of a horizontal line at the mean of difference and the limit of agreements.
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The limit of agreements is defined as the mean of differences plus/minus 1.96 times the
standard deviation of the differences. From Figure 4c, it is clear that the samples are equally
distributed on both sides of the mean, indicating that there is no positive or negative
bias and the distribution is within the 95% confidence interval. In addition, it can be
observed that the difference between the two methods increases as the concentration of
the Cystatin-C increases. However, Figure 4d shows the Bland–Altman plot that is plotted
with the percentage of deviation from the gold standard value against the gold standard
value, which indicates that the Cystatin-C level estimated with the LFA device deviates by
a maximum of 20% when compared with the values measured with Atellica NEPH-630
across the range of 0.5 to 7.5 µg/mL.

The precision of the intra and inter assay was measured to evaluate the reproducibility
of the developed device. As shown in Table 1, the CVs of the intra and inter-assay were
6.78 to 7.55 and 9.28 to 10.87, respectively, which are below 15%, indicating an acceptable
precision for quantification of Cystatin-C. The specificity was assessed with common
blood components such as hemoglobin, triglycerides, bilirubin, and rheumatoid factor.
These analytes were spiked in patient serum samples at high concentrations and Cystatin-
C levels were measured by using the developed device. Table 2 shows the recoveries
measured by the device in the presence of the interfering agents, which are in the range of
80–12%, indicating that the developed device does not cross-react with any of the common
blood components.

Table 1. Reproducibility of the developed LFA.

Cystatin-C Levels
(µg/mL)

Average
(µg/mL)

Within Run
CV (%)

Between Run
CV (%)

Total CV
(%)

Level 1 (1.0) 0.97 6.78 9.28 10.3

Level 2 (2.43) 2.39 7.43 10.87 11.64

Level 3 (5.0) 5.17 7.55 9.76 10.58

Table 2. Cross-reactivity of the developed LFA.

Interferent Concentration
of Interferent

Cystatin-C
(µg/mL)

Lateral Flow
Result (µg/mL) Recovery (%)

Control - 2.0 2.2 ± 0.19 110

Hemoglobin 5 mg/mL 2.0 2.4 ± 0.089 120

Bilirubin 0.2 mg/mL 2.0 2.3 ± 0.18 115

Triglycerides 10 mg/mL 2.0 2.3 ± 0.15 115

Rheumatoid Factor 600 IU/mL 2.0 1.8 ± 0.25 80

To determine the shelf life of the developed device, accelerated stability studies were
performed by heating the devices in sealed pouches with desiccants at 50 ◦C, 37 ◦C, and
21 ◦C for four weeks. Recoveries were measured at the end of every week by using three
patient samples whose Cystatin-C concentrations were at 1.1 µg/mL (Level 1), 2.4 µg/mL
(Level 2), and 4.8 µg/mL (level 3). Figure 5 shows the recoveries measured with the three
samples in the range of 80 to 120%, indicating that the developed device has at least one
year of shelf life at room temperature.
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4. Conclusions

In this study, we developed a colloidal gold-based lateral flow immunoassay device,
which could provide a quantitative detection of Cystatin-C in human serum and whole
blood within 15 min. The developed device has shown a limit of detection of 0.18 µg/mL
and a range of quantification from 0.39 µg/mL to 7.5 µg/mL covering the concentration of
healthy humans (0.5 to 1.5 µg/mL) and renal-failure patients. In addition, the developed
device does not need either complex conjugation protocols or expensive readers which
allows for the rapid development of the device and easy commercialization. In addition,
the device has the potential to be used with a mobile phone reader or a scorecard to provide
home-based diagnostics to track renal conditions in a point-of-care manner.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios14010030/s1, Table S1 shows the serum Cystatin-C concentrations
determined with Atellica NEPH-630 and the developed LFA device. Table S2 shows the blood
Cystatin-C concentrations determined by the developed LFA device and the corresponding serum
samples Cystatin-C concentrations determined with Atellica NEPH-630.
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