
Citation: Paglia, E.B.; Baldin, E.K.K.;

Freitas, G.P.; Santiago, T.S.A.; Neto,

J.B.M.R.; Silva, J.V.L.; Carvalho, H.F.;

Beppu, M.M. Circulating Tumor Cells

Adhesion: Application in Biosensors.

Biosensors 2023, 13, 882. https://

doi.org/10.3390/bios13090882

Received: 4 July 2023

Revised: 23 August 2023

Accepted: 1 September 2023

Published: 12 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Circulating Tumor Cells Adhesion: Application in Biosensors
Eduarda B. Paglia 1,†, Estela K. K. Baldin 1,2,†, Gabriela P. Freitas 1,2, Thalyta S. A. Santiago 1 ,
João B. M. R. Neto 3 , Jorge V. L. Silva 2, Hernandes F. Carvalho 4 and Marisa M. Beppu 1,*

1 School of Chemical Engineering, Department of Process and Product Development, University of Campinas,
Campinas 13083-852, Brazil; e203320@dac.unicamp.br (E.B.P.); estelakerstner@gmail.com (E.K.K.B.);
gabrielafreitas197699@gmail.com (G.P.F.); t211758@dac.unicamp.br (T.S.A.S.)

2 Renato Archer Information Technology Center, Campinas 13069-901, Brazil; jorge.silva@cti.gov.br
3 Technology Center, Federal University of Alagoas, Maceió 57072-900, Brazil; jbmrneto@gmail.com
4 Institute of Biology, Department of Structural and Functional Biology, University of Campinas,

Campinas 13083-864, Brazil; hern@unicamp.br
* Correspondence: beppu@unicamp.br
† These authors contributed equally to this work.

Abstract: The early and non-invasive diagnosis of tumor diseases has been widely investigated by
the scientific community focusing on the development of sensors/biomarkers that act as a way of
recognizing the adhesion of circulating tumor cells (CTCs). As a challenge in this area, strategies for
CTCs capture and enrichment currently require improvements in the sensors/biomarker’s selectivity.
This can be achieved by understanding the biological recognition factors for different cancer cell
lines and also by understanding the interaction between surface parameters and the affinity between
macromolecules and the cell surface. To overcome some of these concerns, electrochemical sensors
have been used as precise, fast-response, and low-cost transduction platforms for application in
cytosensors. Additionally, distinct materials, geometries, and technologies have been investigated
to improve the sensitivity and specificity properties of the support electrode that will transform
biochemical events into electrical signals. This review identifies novel approaches regarding the
application of different specific biomarkers (CD44, Integrins, and EpCAm) for capturing CTCs. These
biomarkers can be applied in electrochemical biosensors as a cytodetection strategy for diagnosis of
cancerous diseases.

Keywords: electrochemical biosensor; circulating tumor cells; CD44; integrins; EpCAm

1. Introduction

Cancer is a significant public health problem, being the second leading disease with
highest mortality rates worldwide [1,2]. According to the International Agency for Research
on Cancer (IARC), cancer cases will increase by approximately 50% between 2020 and
2040 [3]. Early detection and isolation of cancer cells is essential for understanding and
treating this type of disease [4]. Circulating tumor cells (CTCs) refer to a population of
cells that have detached from the tumor and are circulating in the peripheral blood and/or
lymphatic system. They are found in almost all solid malignant tumors and play a crucial
role in the metastatic process [5–7]. Furthermore, recent studies have indicated that tumor
cells can disseminate even in the early stages of tumor progression [8–10].

In this context, the diagnosis of cancer through the capture and analysis of CTCs has
become a crucial breakthrough for studying the progression and control of oncological
tumors [11]; being essential both for early prognosis and for advancing and monitoring
treatment [12]. Currently, the development of CTCs isolation techniques is based on com-
paring biophysical and biochemical properties of CTCs to the properties of blood cells.
The properties used for this purpose include to size, density, deformability, electrical and
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magnetic properties, and expression of cellular markers [13,14]. However, such differentia-
tion becomes limited due to their proportion in peripheral blood [15], with the presence of
1–10 CTCs estimated per billion blood cells [13].

The diagnosis through the detection of CTCs is a less invasive and more accessible
liquid biopsy approach than traditional diagnoses [16]. Among these, the CellSearch system
is currently the only technology approved by the FDA for determining the prognosis of
patients with advanced breast, prostate, and colorectal cancer through CTC enrichment [11]
expressing epithelial cell adhesion molecules (EpCAM) and cytokeratin [14,17]. How-
ever, as CTCs undergo this epithelial-mesenchymal transition (EMT), the expression of
EpCAM and other epithelial markers may decrease [14], leading to lower sensitivity of
the system [11]. Additionally, subsequent analysis of isolated CTCs may also be limited
due to antibody labeling [7,13]. Therefore, for highly sensitive and selective detection of
CTCs, there is still a technological challenge, and thus, the development of new biomarkers
appears to be a promising approach in this application area [18].

Techniques based on CTCs adhesion through the expression of biomarkers can ex-
plore different strategies for modifying the adhesion surface, such as structural alterations
through nano topographical features and/or the use of chemical functionalization that may
or may not contain genetic ligands for biorecognition [13], such as antibodies, proteins,
and aptamers [19,20] However, CTCs exhibit heterogeneous characteristics, and their pres-
ence in minute quantities makes it challenging to identify a universal biomarker for their
detection and identification [21,22].

In addition to the perspective of using biomarkers, the employment of biosensor
technology as a sensing platform for CTCs capture enables the use of a simple, practical,
economical, and non-invasive technique [16,23]. Moreover, in the case of biosensors that
apply electrochemical techniques, advantages such as high reproducibility and sensitiv-
ity are also achieved [24]. Electrochemical sensors are based on the electron transfer at
the analyte-electrode interface, involving an analyte-receptor [25]; such interaction can
be analyzed through different detection modes, such as potentiometric, amperometric,
conductometric, impedimetric, and voltammetric measurements [26]. Thus, the prediction
of the pathological stage of cancer can be obtained through electrochemical biosensors, as
the tumor lineages are detectable, despite their heterogeneity, by changes in the capacitive
and resistive natures of the cell [27].

Furthermore, in recent years, studies have focused on increasing the bio-specificity
of functional electrodes through the immobilization of various types of cellular marker
biorecognition ligands [28]. Interaction with biomarkers such as CD44 [29], integrins [30]
and EpCAM [31] proved to be a promising strategy for the development of biosensors
with high sensitivity and specificity. Some research has also identified the application
of 3D micro/nanoelectrodes as an effective way to capture CTCs [32] or to enhance the
sensitivity and reproducibility of these electrodes through surface modification using
nanomaterials [33].

Therefore, this review will discuss current approaches to the different forms of
biomarker immobilization, by employing surface functionalization for the capture of circu-
lating tumor cells. Additionally, a brief discussion on the utilization of these biorecognition
elements applied to electrochemical sensing platforms will be presented, with a focus on
different types of functional transduction electrodes. Finally, future perspectives will be
discussed regarding the application of both the aforementioned topics in the early diagnosis
and/or assistance in the treatment of oncological diseases.

2. Biosensor

Biosensor devices allow the determination of relevant biomarkers by generating
signals of a substance of interest, which can be used for CTCs detection. These techniques
not only may be used to study the mechanism of cancer metastasis but also allow CTCs
to be detected in a minimally invasive way, by a method denominated liquid biopsy [34].
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Thus, there has been a great deal of interest in the development of biosensors for detecting
CTCs, as indicated by the statistical data shown in Figure 1.
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Biosensors have the advantages of being simple equipment and inexpensive [35].
However, a biosensor system for cancer detection poses the challenge of determining
relevant biomarkers or biomarker patterns on CTC surfaces or directly on tumor tissue [36].
In the analysis of cancer biomarkers, bio-affinity-based electrochemical biosensors are
usually applied to detect protein biomarkers [35].

Biosensors are formed by three components: receptor layer and/or biorecognition
element, transducer, and signal evaluation module [28], with the recognition element
being one of the most critical components [30]. The development of the biosensor must be
specific to selectively interact with the analyte of interest, which may be a specific molecule,
biomarker, or target of diagnostic importance, thus converting the resulting parameters
into an accurate reading signal for the diagnosis of the disease [25].

Electrochemical sensors have excelled in the field of quantitative detection of cancer
cells, including breast, prostate, liver, and cervical cancer cells [24]. These electrochemical
biosensors are devices designed to analyze the behavior of an electroactive surface. They
work through the interaction of a transducer electrode with the surface of interest, providing
quantitative or semi-quantitative analytical information [33]. In the case of the interface with
CTCs, which have different morphologies, internal molecular structures, and metabolism
than normal blood cells, consequently presenting a different dielectric constant from these
cells, which will always have the same constant value [24,37]. In addition, electrochemical
biosensors can predict the pathological stage of cancer, since screening for differentiation
and quantification of heterogeneity of tumor lineages can be measured by their distinct
capacitive and resistive natures [27].

Other types of transducers in addition to electrochemical techniques can be used
in cancer detection, such as optical transducers (colorimetric, fluorescent, luminescent),
calorimetric transducers (thermistors), mass variation transducers (piezoelectric/acoustic
waves) and magnetic transducers [27,28,30]. However, biosensors based on electrochemical
techniques have significant advantages in the early diagnosis and prognosis of tumors, due
to their high sensitivity and specificity, simple components, and low price [24]. One of the
most classical electrochemical biosensors for tumor detection is cell impedance sensing
technology, based on impedance changing at the microelectrodes interface due to growing
cells on their surfaces [24].
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Electrodes Used in Electrochemical Sensors Aiming at CTC Adhesion

The development of electrodes for application in electrochemical transducers aimed at
diagnosing tumor diseases prioritizes the search for surfaces with high catalytic activity
as well as obtaining an interface with high specificity regarding cell fixation [24]. Thus,
current demands are mainly focused on the investigation of different materials, changes in
their surface properties, as well as the development of new technologies for manufacturing
devices [38].

Materials consisting of carbon, gold, and titanium have been widely used in the man-
ufacture of electrodes, due to their high stability, biocompatibility, and signal amplification
effect [39–41]. In addition, the sensitivity, specificity, and efficiency of these electrodes
can be improved by combining materials, such as the incorporation of graphene, metal
nanoparticles, and polymeric materials [42–45]. Safavipour et al. (2020) developed elec-
trodes based on TiO2/graphene oxide, observing the increase in resistance on the transfer
of electric charge due to the incorporation of TiO2 nanoparticles [41].

Shi et al. (2016) proposed topographic changes in PDMS polymer electrodes as a
promising approach for capturing CTCs, independent of surface marker expression or
size of CTCs. Comparatively, nanograting structures with nanometric dimensions showed
higher selectivity and efficiency for the capture of different cell lines (MCF-7, HeLa, MDA-
Mb-231) based on cell adhesion by providing better contact orientation about the geometry
of the nanopillars [46]. However, the existing limitation in 2D platforms in terms of the non-
mimicry of the cellular environment can result in the reduction of cell adhesion, affecting
the detection limit for application in cytosensing [47].

Thus, in recent years, nanostructured electrodes obtained by physical and chemical
methods have been investigated due to their better surface-to-volume performance, boost-
ing not only the conductivity but also the chemical interaction with receptor agents [38,48].
Three-dimensional (3D) and nanohybrid arrays have shown excellent performance in
terms of increasing surface area exposure [49]. Xu et al. (2015) demonstrated that carbon
nanotubes functionalized with indium tin oxide significantly improved the sensitivity
of the electrochemical detection method, presenting a wide linear range when used as
electrochemical transducers [50].

Damiati et al. (2018) developed electrodes composed of multiwall carbon nanotubes,
functionalized with chitosan, with high sensitivity to the synergistic effects promoted
by the superficial adhesion of tumor cells and high specificity for the detection of liver
cancer cells concerning mammary cells [51]. In 2019, Wang et al. investigated electrodes
in the form of gold nanostars with a diameter of 60 nm, uniformly dispersed on a carbon
platform, as a support for specific aptamers of CTCs. Due to molecular recognition of the
aptamer combined with reduced resistance to electron exchange by the presence of gold,
the authors reached a detection limit of 5 cells·mL−1 for for the MCF-7 line as well as a
specificity of CTCS for normal cells in samples of blood [40]. In 2021, Chen et al., proposed
electrodes formed by polystyrene microtubes on a mesoporous silica structure for use in an
electrochemical cytosensor, aiming at capturing MCF-7 cells line. The authors obtained a
linear detection range of 1.0 × 107 cells·mL−1 and a detection limit of 4 cells·mL−1, denoting
excellent electrochemical and selectivity behavior for the proposed platform [47]. Wang
et al. (2021) developed an electrochemical biosensor composed of a vertical tetrahedral
DNA structure, used to modify a screen-printed gold electrode, and an inverted tetrahedral
DNA structure multivalently bonded with aptamers. They achieved a linear range of 1 to
105 MCF-7 cells with a detection limit of 1 CTC [52].

On the other hand, the advancement of technology related to manufacturing tech-
niques is allowing the development of three-dimensional platforms for obtaining stan-
dardized functional electrodes with complete, sensitive, and low-cost geometries for diag-
nostic purposes [53]. In 2018, Hamzah et al. presented a mini-review showing potential
conductive materials to be used in electrochemical sensors obtained using additive manu-
facturing [54]. The authors conclude that despite the technology presented showing the
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development of robust and precise electrodes, there is still a need for appropriate analytical
comparison with other conventional methods.

Recently, Rocha Neto et al. (2022) presented a review focused on the development of
3D electrodes obtained by additive manufacturing for tumor cell detection. The authors
presented the main advantages and advances of three-dimensional printing for the diag-
nosis of tumor diseases, highlighting that the development of complex geometries can
be one of the ways to improve the properties of selectivity and sensitivity compared to
conventional detection methods [32].

Figure 2 exemplifies several strategies aimed at creating electrodes to be used as
platforms for electrochemical transduction in biosensors for the detection of oncological
diseases. These approaches emphasize the importance of advancing electrodes constructed
from nanotechnological materials, as well as the immobilization of biological recognition
components of circulating tumor cells. Finally, together with the development of nanostruc-
tured electrodes to act as transduction elements, understanding the biological recognition
rules for different CTC lineages requires a complex investigation of the expression of
biomarkers, as well as their interaction with the support electrode that will transform
biochemical events into electrical signals in electrochemical cytosensors.
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Figure 2. A potential approach involves creating label-free electrochemical biosensors for cancer
detection. This entails enhancing electrodes with nanotechnology-based materials, immobilizing
biorecognition elements using specific protocols, and utilizing robust electrochemical detection
methods [26].

3. Approaches for CTCs Adhesion

The number of CTCs is commonly used as a marker for cancer progression, even at
early stages, to predict tumor survival [55,56], which suggests that the detection of CTCs
represents a label-free strategy for cancer diagnosis and clinical management. Multiple
strategies have been used to detect CTCs, however, these cells are extremely rare and mixed
with normal blood components, which requires technological approaches able of isolating
and selectively detecting them [57]. Hence, the study of new and rapid methods for CTCs
detection is essential for timely cancer diagnosis. In this section, different strategies for
selective capture of CTCs are described, highlighting their most recent applications in
cancer diagnosis, and therapy. Such interactions between different biorecognition strategies
and electrochemical cytosensing platforms are illustrated in Figure 3.
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3.1. CD44

CD44 is a polymorphic glycoprotein broadly distributed in different isoforms on the
surface of a wide variety of cells [58]. Due to its large variety of isoforms, this glycoprotein
plays different roles in cell behavior, being involved in different cell functions such as cell
adhesion, sensing, and signaling [59]. Despite its presence on non-tumor cells, CD44 is
commonly explored as a cancer-related biomarker since it is overexpressed on the cell
surfaces of major cancers, such as pancreatic [60], breast [61], prostate [52], lung [62], and
gastric cancer [63].

As a biomarker for cancer, the level of CD44 present in the tumor cells has an essential
role in cancer incursion, evolution, and metastasis. Several techniques are traditionally
used for CD44 antigen detection, such as imaging [64], flow cytometry [65] magnetic reso-
nance [66], enzyme-linked immunosorbent assay (ELISA), and other labeled methods [67].
However, these techniques tend to be time-consuming procedures, expensive and have
poor performance in terms of limit of detection [68], which motivates the development of
low-cost, fast, and user-friendly methods for the detection of CD44 antigen.

Monitoring CD44 on CTCs in terms of detection and quantification can provide a
significant improvement in clinical cancer diagnosis. Thus, a large number of platforms
with sensitive and specific properties, especially biosensors, have been developed to detect
selectively CD44 aiming at cancer diagnosis applications and CTCs detection [68]. The
main ligand for CD44 is hyaluronic acid (HA), an abundant component of the extracellular
matrix (ECM) expressed by stromal and cancer cells [69,70]. The interaction between CD44
and HA is mediated by hydrogen bonds [71] and it occurs in the N-terminal hyaluronan
binding domain (HABD) present in CD44 [71,72].

Several platforms for CD44 detection rely on the interaction of HA with CD44. Indeed,
this specific interaction has been widely explored as a strategy to produce biomaterials
able to detect CD44 overexpressed tumor cells. In this scenario, nanomaterials represent
versatile applications in developing cancer diagnosis approaches. Using hyaluronidase
and anti-CD44 antibody, Rocha Neto and colleagues concluded that the availability of
CD44 receptors and the level of HA are key factors to modulate the adhesion mechanism
of prostatic tumor cells on HA-based nanofilms [73]. These nanofilms were also used
to functionalize interdigitated electrodes for the detection of prostatic tumor cells by
using electrical impedance spectroscopy, distinguishing them in the range from 50 to
600 cells·µL−1 in vitro experiments [74].

Khang and co-workers reported the development of a label-free electrochemical sensor
using the ligand-protein interaction for CD44 detection. The authors conjugated HA into
carbon nanotube composites to capture CD44 selectively in human serum and cancer cells.
The sensor demonstrated high selectivity and reproducibility with a detection limit for
direct sensing of 5.94 pg·mL−1 without any post-labeling for amplification [75]. Amorim
and co-workers presented an LbL system using HA and PLL to study the substrates’
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interactions with CD44 in two human gastric cancer cell lines that overexpress this receptor
(AGS and MKN45). The authors considered the influence of different HA molecular
weights (6.4, 752, and 1500 kDa) and two different film interactions: covalent interaction
(HA cross-linking) and electrostatic interaction. The authors presented the non-covalent
interactions had limited stability compared to covalent interactions [70].

Li and co-workers utilized the multifunctional nanoprobe based on the HA-CD44 in-
teraction for image-guided photothermal therapy in human breast carcinoma cells (MCF-7
line). The authors used the CD44-HA interaction to target the cancer cells and thiolated-
hyaluronic acid labeled with Nile blue was used to stabilize the nanoprobes. They con-
cluded that the bioprobes fabricated can be excellent candidates to realize rapidly due to
the precise image photothermal therapy obtained [76].

Jeong and co-workers presented a fluorescence-sensing platform for CD44 detection.
The platform was based on gold-coated graphene oxide hybrid material (GO/AuNPs)
with CD44 aptamer to interact with the HA binding domain. The authors compared the
GO/AuNPs with GO alone, and the former presented higher sensitivity and specificity for
CD44 detection. The authors concluded that the fluorescence sensing platform used can be
developed for various target molecules based on their specificity, sensitivity, and simple
method [77].

Liu and co-workers proposed an electrochemical cytosensor to detect HeLa cells based
on the overexpression of CD44 in these tumor cells. The cytosensor was based on the
interaction between HA-CD44 and HA and was grafted into a 3D multi-walled carbon
nanotube. The 3D structure improved the surface area, increasing the amount s of HA.
The cytosensor presented a detection limit of 70 cells·mL−1 with higher selectivity and
sensitivity [78].

Using a strategy without the interaction of HA-CD44, Paltusheva and colleagues
reported the development of a zinc oxide fiber-optic biosensor for the detection of CD44.
The biosensor was also tested with a control PSA protein and without CD44 antibodies
proving to be sensitive to CD44 detection with a detection limit of 0.8 fM [79]. Kumar
and co-workers developed an electrochemical biosensor to detect CD44 in breast cancer
based on graphene quantum dots. The authors reported a selective and sensitive detection
with a linear response in the range between 1.0 pg·mL−1 and 100.0 ng·mL−1 in spiked
serum samples. Just like HA-based biosensors, both reported platforms could also be used
to detect CD44, making them suitable biosensors to detect CD44 biomarkers in cancer
diagnostics [29].

3.2. Integrins

Integrins are another cancer targeting related to tumor progression and metastasis.
They are composed of two non-covalently subunits designated “α” and “β” [80]. Integrin
deregulation contributes significantly to several pathophysiological states, such as deleteri-
ous embryonic development, autoimmune diseases, cardiovascular diseases, thrombosis,
and cancer [81,82].

The alteration of integrins function is correlated with a range of steps in tumor progres-
sion and metastasis, such as invasion of the extracellular membrane, detachment of tumor
cells from the primary site, and cell spread in the circulation and attaching to target organs
promoting secondary lesions [83]. The correlation of integrins with tumor progression is
an opportunity to improve cancer diagnostics and directed therapies [84]. Some integrins,
such as αvβ3, α5β1, and αvβ6, are usually expressed at low or undetectable levels in most
adult epithelia but can be highly upregulated in some tumors [85].

Integrin αvβ3 is overexpressed in different tumor cells, and its expression has been
linked to invasiveness and metastatic potential of malignant tumors [86]. An increase
in the expression of activated αvβ3 receptors has been reported to be correlated with
metastasis to the bone in prostate cancer [87,88], breast cancer [89], lung cancer [90], and
glioblastoma [91].
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The integrin ligands to the Arg-Gly-Asp (RGD), as αvβ1, αvβ3, αvβ5, αvβ6, αvβ8,
and α5β1, recognize the motif RGD activating a range of intracellular signaling path-
ways [92]. RGD motif is the most effective short peptide sequence for stimulated cell
adhesion to surfaces [93,94]. The mechanism of RGD motif recognition and subsequent
cell attachment is based on integrins on cell surfaces [95], which are promising cancer
targets. Thus, these peptides may be associated with biomaterials for promoting specific
cell adhesion [92,96,97].

The immobilization of RGD in a biomaterial is considered an approach to enhancing
cell adhesion due to the advantages of its applications, the RGD functionality is kept after
the protein biosynthesis process, and the process is considered cheap, which is a benefit
for clinical application, and finally, the motif RGD can be attached to materials surfaces
with variables orientations and densities [97]. In this context, Jiant et al. (2017) present the
possibility of using polyethylene glycol hydrogels functionalized with Cage-RGD peptide
for the screening of PC-3 tumor cells, based on high-throughput microarrays, these occur
through the release of RGD motif from Cage-RGD when PSA protease is secreted from
PC-3 [98].

Artificially engineered proteins with designed targets can be used as a strategy to
bind biological systems. Flora and co-workers synthesized elastin-like polypeptides (ELP)
containing RGD motif to adhere to HUVEC and HFF1 cells [99]. The findings indicated
that the inclusion of bioactive sequences within the recombiners facilitated the replication
of ligand-like properties, enabling interactions upon grafting onto a solid substrate. This
approach provides a versatile and effective solution for addressing diverse biological
and engineering challenges that necessitate precise control over the spatial and temporal
arrangement of cells.

To study the development of nanoparticles with multiple functions for cancer therapy
and diagnosis, Yang et al. (2018) incorporated RGD peptide at the surface of manganese
oxide (MnO) nanoclusters particles, grafted with a polyethylene glycol layer. Manganese
oxide accelerated liberation at U87MG cells would generate more precise cancer images,
while the RGD motif can improve the direction of the target, which are the tumor cells. The
authors present that RGD targeting of cancer cells that overexpress αvβ3 integrins allowed
the selective capture of human glioblastoma U87MG cells [100].

The RGD application in tumor diagnosis was explored by Zheng et al. (2022) in
dual-modal magnetic resonance/fluorescent imaging (MRI/FI). The researchers evaluated
a dual-modal imaging agent known for its enhanced sensitivity and specificity to improve
image quality. They developed a derivative polypeptide-based compound containing
RGD groups as integrin-targeting molecules. The RGD motif was attached to gadolinium
diethylenetriaminepentaacetic acid (Gd-DTPA) and rhodamine B (RhB), resulting in the
derivative RGD-Gd-DTPA-RhB. The authors concluded that this compound has the poten-
tial to serve as a contrast agent for tumor targeting. RGD-Gd-DTPA-RhB demonstrated
selective tumor uptake and exhibited a high affinity for B16F10 melanoma in mice through
its RGD motif. This led to improved imaging results and significant enhancements in both
uptake and fluorescent signals compared to the control group [101].

Li et al. (2011) developed RGD-targeted paramagnetic liposomes to improve early
tumor detection via magnetic resonance. The RGD was added into lipid bilayers due to
their specific bounding to tumor promoted by the interaction with ανβ3-integrin. The
integrin ανβ3 is a maker of tumor angiogenesis and its expression is correlated with neo-
vessel formation, cell invasion, and tumor migration. The authors concluded that the
liposomes presented specific binding to human lung carcinoma cell lines (HUVEC cells)
and human umbilical vein endothelial cells (A549 cells). The competition experiments
showed that specific interaction was mediated via RGD motif/integrin [102].

The application of RGD into functional biomimetic film sensors to improve cell adhe-
sion, allowing real-time electrochemical detection, was observed by Guo et al. (2012). The
authors developed a live cell sensor by covalently bonding RGD-peptide on graphene to
detect nitric oxide. Nitric oxide is released from living cells, and its expression is correlated
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with important biological signaling and also with tumor angiogenesis. The results showed
that the motif RGD and its interaction with the extracellular matrix allowed cell attachment,
resulting in a high sensitivity and good selectivity of the desired molecule [103].

Using a strategy without the interaction of RGD-integrins, Khaksari et al. (2023)
studied the aptamer used for CTC detection. Aptamers are synthetic short and single-
stranded DNA or RNA oligonucleotide ligands that form well-defined three-dimensional
structures so that they bind to their targets with high specificity and affinity [104,105]. The
authors developed an electrochemical microfluidic biosensor for the detection of A549
human adenocarcinoma cells, recognized for being CTCs, through the interaction between
α6β4 integrin present on the cell membrane surface and the α6β4 integrin-specific DNA
aptamer [30]. The biosensor showed a wide linear dynamic range of 50−5 × 105 cells·mL−1

and a detection limit of 14 cells·mL−1.

3.3. EpCAm

The molecule of epithelial cell adhesion—EpCAM, is a transmembrane protein, de-
scribed as a tumoral prognostic marker and an anchor for circulant tumoral cells highly
expressed in carcinomas and their metastasis [106]. EpCAM is a type I glycoprotein
transmembrane, consisting of a sequence of 314 amino acids, constituting a large extracel-
lular domain, transmembrane, and cytoplasmic region [107,108]. EpCAM is a mediating
molecule for independent Ca2+ adhesions, different from typical intercellular junctions like
cadherins [109].

The EpCAM superexpression in a tumoral cell is an unknown mechanism. In vitro
studies denote that the phenomenon is correlated with the stimulation of the cell cycle,
upregulating the proto-oncogene c-myc and inducing the cell proliferation [110].

The upregulated expression of EpCAM denotes a highly aggressive cancer prolifer-
ation due to involvement in the regulation of cellular adhesion, migration, proliferation,
cycle metabolism, and metastasis, negatively correlating the EpCAM expression with the
expected survival of cancer patients. [111]. The literature related that EpCAM expression
occurs at a high level of primary carcinoma from the colon, stomach, prostate, lung [112],
ovarian, and endometrial cancer [107].

In the literature, many procedures for CTCs detection based on cellular adhesion
mediated by EpCAM have been described, however, the sensitivity and the specificity still
are a challenge. EpCAM molecules are highly expressed in epithelial cells and cancer, but
it is absent in blood cells. Moreover, circulating tumor cells (CTCs) are infrequent, scarce,
and prone to genotypic and phenotypic changes [113], making them an attractive target for
the development of tumor detection methods.

Chen and co-workers introduced a new microfluidic device fabricated through 3D
printing. It exhibited a large surface area and allowed for the manipulation of fluid flow. The
device was functionalized with anti-EpCAM antibodies, enabling the capture of circulating
tumor cells (CTCs) from peripheral blood samples [114]. The researchers demonstrated
a successful capture of EpCAM-positive cancer cell lines, including MCF-7 breast cancer,
SW480 colon cancer, and PC3 prostate cancer, with an efficiency exceeding 90%. In the case
of the EpCAM-negative cancer cell line (293T kidney cancer), the capture efficiency was
measured at 26.14 ± 5.30%.

Ortega et al. (2015) synthesized a microfluidic immunosensor to quantify EpCAM
in biological samples. A nanoparticle of silver covered with chitosan (AgNPs-Cts) was
functionalized with antibodies anti-EpCAM. The determination of CTCs in peripheral
blood occurred with blood samples from patients with metastatic advanced colon cancer,
and the detection limit was set at 8 CTCs in 12 mL. The microfluidic immunosensor showed
higher sensibility and shorter assay time employed than the common-use, commercial
ELISA test, the detection limit was 2.7 pg·mL−1 in 34 min, and 13.9 pg·mL−1 and 370 min,
respectively [115].

Jalil et al. (2021) developed an electrochemical biosensor by immobilizing anti-EpCAM
antibodies onto a nanohybrid material consisting of molybdenum disulfide (MoS2) grafted
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onto reduced graphene oxide (MoS2@rGO). The nanohybrid was then electrophoretically
deposited onto an indium tin oxide (ITO) coated glass substrate. The effectiveness of
the sensor was evaluated using human serum, urine, and saliva samples spiked with
10 ng·mL−1 of EpCAM. The results demonstrated that the biosensor exhibited excellent
performance in detecting EpCAM in all tested biological mediums, with a recovery rate
exceeding 90% [31].

Wu et al. (2023) evaluated CTCs detection in biological systems with an anti-EpCAM
functionalized chip aiming to monitor tumor recurrence. 4T1 mouse model of breast cancer
was used to evaluate and monitor tumor recurrence. The time necessary to detect CTCs
was compared with diagnosis via in vivo bioimaging and pathological examination. The
authors described that functionalized chip detected CTCs 10 days before an imaging exam.
The study also contributes to reinforcing the concept that CTCs expression has a direct
relation with tumorigenesis and metastasis [116].

Hashkavayi and co-workers developed an electrochemical EpCAM aptasensor with a
highly selective and sensitive response for CTCs detection using dual signal amplification.
The aptasensor was developed immobilizing the EpCAM aptamer in gold nanostructures
(GNSTs) and an approach for double signal amplification involving RCA with the catalytic
capacity of hemin/G-quadruplex complex. Real sample tests used human serum containing
cells of human colon cancer (HT-29) evaluated the recovery potential, resulting in a range
of 95–107%. The HT-29 limit of detection was 1 cell·mL−1 [113].

Luo et al. (2020) developed a photoelectrochemical biosensor for the detection of
CTCs based on a nanocomposite of magnetic nanospheres of Fe3O4 and anti-EpCAM and a
probe of nanoparticles of Cu2O and aptamer [60]. The aptamer specifically bound MUC1
overexpressed on the surface of breast cancer tumor cells (MCF-7). In addition, the use of
aptamer generated the amplification of the detection response, caused by the greater steric
impediment of the working electrode, being an efficient strategy for signal amplification in
biosensors. The linear response range was 3 cell·mL−1 to 3 × 103 cell·mL−1 and a detection
limit of 1 cell·mL−1. Peng et al. (2022) proposed an electrochemical biosensor controlled
by dual recognition, through the interaction between two aptamers and two breast cancer
tumor cell surface proteins (MCF-7), mucin 1 (MUC1), and adhesion molecules of epithelial
cells (EpCAMs), to improve the accuracy of the device [117]. This had a limit of detection
of 3 cells·mL−1.

Thus, Table 1 summarizes the main recent publications that address the use of tech-
nologies applied to electrochemical biosensing of tumor diseases. These publications deal
with the interaction between circulating tumor cells and the biomarkers discussed in this
review study.

Table 1. Main publications in the last 5 years that address the use of the biomarkers discussed in this
article applied to electrochemical biosensors aimed at detecting tumor diseases.

Type of Sensors Type of
Marker Cancer Cell

Type of
Affinity
Receptor

Detection
Limit Linear Range References

Electrochemical
immunosensor based
on polyamidoamine

dendrimer

EpCAM HepG2 Anti-EpCAM 2.1 × 103

cells·mL−1
1 × 104 to

1 × 106 cells·mL−1

Xu et al.,
2019
[118]

Electrochemical sensor
based on carbon nanotube
composites and hyaluronic

acid and
poly(diallyldimethy-
lammnium chloride)

CD44 MCF-7 Hyaluronic acid 660 cells·mL−1 -
Zhang

et al., 2019
[75]
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Table 1. Cont.

Type of Sensors Type of
Marker Cancer Cell

Type of
Affinity
Receptor

Detection
Limit Linear Range References

Sensor based on
nanosphere separation and

a DNA-generated
electrochemical current

EpCAM MCF-7 Anti-EpCAM 1 cell·mL−1 5 to 3 × 104

cells·mL−1

Shen et al.,
2019
[119]

Electrochemical
impedance spectroscopy
(EIS) sensor conjugating

hyaluronic acid (HA) with
bovine serum albumin
(BSA)-modified gold
nanoparticles (GNPs)

CD44
Receptor

MDA-MB-
231, HCT116

and L02

Hyaluronic
Acid

128 cells·mL−1

for MDA-
MB-231 cells,

167 cells·mL−1

for HCT116
cells, and

346 cells·mL−1

for L02 cells

Range of
2.0 × 102 to

3.0 × 105

cells·mL−1 for
MDA-MB-231

cells and
HCT116 cells,

and 5.0 × 102 to
3.0 × 105

cells·mL−1 for
L02 cells

Zhou
et al., 2021

[120]

Electrochemical
impedance spectroscopy

(EIS) sensor of
CD(HA)/TiO2/Cu2+

CD44
Receptor MDCK cells Hyaluronic

Acid 2.31 cells·mL−1 -
Giang

et al., 2021
[121]

Electrochemical sensor
based on LiFePO4 particles
as an electrochemical label

MUC1
protein MCF-7 Aptamer 1 cell·mL−1 3 to 10,000

cells·mL−1

Zhang
et al., 2020

[122]

Electrochemical sensor
using hemin/

G-quadruplex complex
as a dua-signal

amplification strategy

EpCAM HT-29 Aptamer 1 cell·mL−1 5 to 107

cells·mL−1

Bagheri
Hashkavayi
et al., 2021

[113]

Photoelectrochemical
platform for sensitive

detection of soluble CD44
proteins engineered

with MXene-
TiO2/BiVO4 hybrid

CD44
Receptor CD44 Hyaluronic

Acid
1.4 ×

10−2 pg·mL−1

2.2 × 10−4

ng·mL−1 to
3.2 ng·mL−1

Soomro
et al., 2020

[123]

Electrochemical sensor
using Au/Ti/Si substrate EpCAM Capan-2 Aptamer 13 cells·mL−1 -

Li et al.,
2022
[124]

Electrochemical sensor
using Co-Fe-MOF EpCAM

HepG2, HeLa,
MCF7, MDA-
MB-468 and

MCF-10

Aptamer

11 for HepG2,
9 for HeLa,

10 for MCF7,
10 for MB-468,
11 cells·mL−1

MCF-10

-
Zhang

et al., 2023
[125]

Electrochemical sensor
NH2-Fe-MOF-Zn

nanosheet
CD44 MCF-7 Anti CD44

antibody - 103 to
106 cells·mL−1

Lian et al.,
2022
[126]

Electrochemical sensor
using BSA/Anti-EGFR/

Gold electrode
EpCAM MCF-7 Aptamer 2 cells·mL−1 5 to

1 × 106 cells·mL−1

Li et al.,
2023
[127]

4. Conclusions and Perspectives

Circulating tumor cells (CTCs) are extensively studied for their potential in cancer di-
agnosis and prognosis. However, there are significant challenges that need to be addressed.
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The heterogeneity of CTCs poses a difficulty for certain cell adhesion approaches, as they
consist of various types such as epithelial tumor cells, epithelial-to-mesenchymal transition
cells, hybrid tumor cells, irreversible tumor cells, and circulating tumor stem cells. This
heterogeneity makes them undetectable by some established methods [128].

Furthermore, the detection of CTCs is limited by their low abundance in peripheral
blood, with approximately only 1 cell present in every 105–107 cells [129]. The biological
characteristics of peripheral blood also present a challenge for CTC detection. Cancer-
related changes in blood clotting, sedimentation rates, viscosity reduction, and depletion of
fibrinogen alter the fluid dynamics of the system, interfering with the capture of CTCs [130].

To overcome these technical challenges, biosensors have shown great promise. They
offer high sensitivity and selectivity, low cost, and simplicity [16,23,35]. The development
of nanofabrication technologies and microfluidics knowledge has enabled the creation of
nanostructured electrodes, which enhance the surface-volume ratio and promote specific
interactions between the biorecognition elements and CTCs. Hierarchical topographic
structures at the micro and nanoscale mimic the cell environment, facilitating cell adhesion.
Studies have demonstrated the effectiveness of such structures in increasing the number
of adhered cells compared to flat structures [131,132]. Additionally, the geometry and
configuration of these structures impact the performance of biosensors. Recent research
has explored the development of 3D electrodes using additive manufacturing, which can
improve selectivity and sensitivity properties [32].

Combined methods are used to enhance CTC adhesion and improve cell detection.
Aptamer-based methods, utilizing aptamers against specific cancer cell-surface biomarkers
(e.g., CD44, Integrins, Ep-CAM), are considered highly promising. These approaches enable
specific interactions, are easily developed and modified, detect a variety of targets, and exhibit
stability, biocompatibility, and reusability [129,133,134]. Aptamers have been extensively
studied for CTC detection and the identification of new cancer biomarkers [63,135–138].
Moreover, these recognition ligands can amplify the sensor response signal, further enhanc-
ing their utility [52,60,61,117,129].

In summary, multidisciplinary efforts are underway to improve the sensitivity and
capture of CTCs through the study of sensor coatings, materials, geometries, and tech-
nologies. These advancements aim to develop cost-efficient technologies for early tumor
diagnosis. Over the past decade, significant progress has been made in understanding
cell adhesion mechanisms, but there are still opportunities to explore and investigate,
particularly in increasing specificity and target precision. The development of functional
and clinically viable sensors holds tremendous potential to revolutionize conventional
diagnostic techniques, enhance the quality of life for cancer patients through less invasive
methods like liquid biopsy, and improve prognosis and disease progression monitoring,
thus increasing chances of successful treatment and recovery.
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