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Abstract: Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care
(POC) settings. LFIA is performed using test strips—fully integrated multimembrane assemblies
containing all reagents for assay performance. Migration of liquid sample along the test strip initiates
the formation of labeled immunocomplexes, which are detected visually or instrumentally. The
tradeoff of LFIA’s rapidity and user-friendliness is its relatively low sensitivity (high limit of detection),
which restricts its applicability for detecting low-abundant targets. An increase in LFIA’s sensitivity
has attracted many efforts and is often considered one of the primary directions in developing
immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high
sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements,
discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required
time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and
discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for
step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art
of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses
future outlooks for highly sensitive testing in POC conditions.

Keywords: immunochromatography; highly sensitive detection; signal amplification; nanoparticles;
nanozymes; point-of-care testing; antibodies

1. Introduction

Lateral flow immunoassay (LFIA) is an analytical method that combines highly specific
antibody–antigen interaction and the affine partitioning of target and non-target species
during migration through a porous nitrocellulose membrane. LFIA is performed using
multimembrane assemblies (test strips) containing all reagents predispersed (Figure 1).
Usually, test strips have two zones (test zone and control zone, TZ and CZ, respectively)
with immobilized immunoreagents. Liquid sample migrates along the test strip by capillary
forces, rehydrates reagents, and initiates the formation of immunocomplexes [1]. For
the detection of immunocomplexes, various nanosized labels are used [2,3]. Labeled
immunocomplexes are usually detected visually (by the coloration of specific zones on the
test strip), although alternative registration methods are being actively investigated [4,5].

LFIA can be performed in two main formats [6]. LFIA in a sandwich format (Figure 1a)
is used for the detection of high-molecular (proteins, polysaccharides) or corpuscular (cells,
viral particles) antigens that have multiple sites for antibody binding. For sandwich LFIA,
the intensity of TZ coloration is directly related to the concentration of antigen in the sample
(Figure 1b,d). The absence of TZ coloration is interpreted as the absence of the antigen in
the sample (Figure 1c). LFIA in a competitive format (Figure 1e) is used for the detection of
small molecules (antibiotics, pesticides, mycotoxins, drugs, etc.) that have one site to bind
antibodies. For competitive LFIA, the intensity of TZ coloration is reversibly related to the
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concentration of antigen in the sample (Figure 1f,h). The coloration of the control zone is
considered an internal positive control for each test strip and is a mandatory requirement
for the validity of results in both formats (Figure 1c,g).
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Figure 1. The principle of LFIA in the sandwich (a–d) and competitive (e–h) formats. (a) Structure 
of the test strip for LFIA in the sandwich format. GNP-Ab stands for the conjugate of gold nanopar-
ticles (GNP) with antibodies. TZ stands for test zone. TZ contains antibodies against antigen. CZ 
stands for control zone. CZ contains binders of GNP-Ab. (b) LFIA for samples with antigen. (c) LFIA 
for samples without antigen. The upper parts of (b,c) show the structure of immunocomplexes in 
TZ and CZ after completion of LFIA. The bottom parts show the appearance of test strips after com-
pletion of LFIA. (d) Post-assay enhancement of sandwich LFIA. The appearance of test strips before 
and after enhancement and calibration plots before (blue) and after (red) enhancement are schemat-
ically shown. (e) Structure of the test strip for LFIA in the competitive format. TZ contains immobi-
lized antigen (Ag). (f) LFIA for samples with antigen. (g) LFIA for samples without antigen. The 
upper parts of (f,g) show the structure of immunocomplexes in TZ and CZ after completion of LFIA. 
The bottom parts show the appearance of test strips after completion of LFIA. (h) Post-assay en-
hancement of competitive LFIA. Schematically shown are the appearance of test strips before and 
after enhancement, and calibration plots before (blue) and after (red) enhancement. 
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detection of small molecules (antibiotics, pesticides, mycotoxins, drugs, etc.) that have one 
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tory requirement for the validity of results in both formats (Figure 1c,g). 

LFIAs find wide applications in clinical diagnostics, veterinary, food control, and en-
vironmental monitoring [7–9]. Such widespread use is explained by simple sample prep-
aration, assay performance, the registration of the results, rapidity (less than 10–15 min), 
and low cost [7]. Because of these benefits, many LFIAs have been developed to the level 
of commercially available test systems (including well-known rapid tests for the detection 
of pregnancy, drugs, and SARS-CoV-2). However, the set of analytes for commercialized 
LFIAs is significantly smaller than those reported in scientific articles. One of the major 
reasons for this shortage is an insufficient-low limit of detection (LOD) of LFIA [7,10]. 
Limitations of LFIA’s applicability are especially pronounced in medical diagnostics [7]. 
Many disease biomarkers are presented in concentrations below the typical sub-ng/mL 
LOD of LFIA [11]. Thus, more sensitive methods (ELISA, PCR, cultivation on a growth 
media, etc.) are used for these compounds in clinical practice. However, the use of these 
assays is limited to equipped laboratories and trained technicians. The endeavors to re-
duce the LOD of LFIA should not violate the benefits of the method (i.e., user-friendliness, 
rapidity, and low cost). Reducing the LOD of LFIA is the priority direction in developing 
immunochemical point-of-care assays [5] along with multiplexing [12]. 

Figure 1. The principle of LFIA in the sandwich (a–d) and competitive (e–h) formats. (a) Structure of
the test strip for LFIA in the sandwich format. GNP-Ab stands for the conjugate of gold nanoparticles
(GNP) with antibodies. TZ stands for test zone. TZ contains antibodies against antigen. CZ stands
for control zone. CZ contains binders of GNP-Ab. (b) LFIA for samples with antigen. (c) LFIA
for samples without antigen. The upper parts of (b,c) show the structure of immunocomplexes
in TZ and CZ after completion of LFIA. The bottom parts show the appearance of test strips after
completion of LFIA. (d) Post-assay enhancement of sandwich LFIA. The appearance of test strips
before and after enhancement and calibration plots before (blue) and after (red) enhancement are
schematically shown. (e) Structure of the test strip for LFIA in the competitive format. TZ contains
immobilized antigen (Ag). (f) LFIA for samples with antigen. (g) LFIA for samples without antigen.
The upper parts of (f,g) show the structure of immunocomplexes in TZ and CZ after completion of
LFIA. The bottom parts show the appearance of test strips after completion of LFIA. (h) Post-assay
enhancement of competitive LFIA. Schematically shown are the appearance of test strips before and
after enhancement, and calibration plots before (blue) and after (red) enhancement.

LFIAs find wide applications in clinical diagnostics, veterinary, food control, and envi-
ronmental monitoring [7–9]. Such widespread use is explained by simple sample prepara-
tion, assay performance, the registration of the results, rapidity (less than 10–15 min), and
low cost [7]. Because of these benefits, many LFIAs have been developed to the level of
commercially available test systems (including well-known rapid tests for the detection
of pregnancy, drugs, and SARS-CoV-2). However, the set of analytes for commercialized
LFIAs is significantly smaller than those reported in scientific articles. One of the major
reasons for this shortage is an insufficient-low limit of detection (LOD) of LFIA [7,10].
Limitations of LFIA’s applicability are especially pronounced in medical diagnostics [7].
Many disease biomarkers are presented in concentrations below the typical sub-ng/mL
LOD of LFIA [11]. Thus, more sensitive methods (ELISA, PCR, cultivation on a growth
media, etc.) are used for these compounds in clinical practice. However, the use of these
assays is limited to equipped laboratories and trained technicians. The endeavors to reduce
the LOD of LFIA should not violate the benefits of the method (i.e., user-friendliness,
rapidity, and low cost). Reducing the LOD of LFIA is the priority direction in developing
immunochemical point-of-care assays [5] along with multiplexing [12].

Factors Determining the LOD of LFIA

The sensitivity of LFIA is determined by the number of parameters at all stages,
from sample preparation and the selection of antibodies to registration and processing of
the results [13]. However, the optimization of sample preparation, choice of antibodies,
and LFIA’s conditions (type of membrane, concentration of immunoreagents) can be
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performed in a limited range. Available manipulations during sample preparation are
restricted by the physicochemical properties of the target molecule (i.e., molecular weight,
solubility in water and organic solvents, charge, etc.) and usually should be selected for
each target individually. The choice of antibodies is often determined by their availability.
Fundamentally, antibodies with pico-molar and lower affinity are relatively rare because of
the nature of immunoresponse. Accepting that the association rate of antibody–antigen
interaction is limited by the diffusion rate (ka ≈ 106 M−1 s−1). The affinity is limited by the
dissociation rate constant kd ≈ 10−4 s−1, which can be explained by the lack of evolutionary
necessity for further reducing kd during immunoresponse [14,15]. Thus, the selection
of antibodies for LFIA remains an empirical task. Varying of the interaction conditions
(i.e., the creation of more favorable conditions for antibody–antigen binding) is limited to
increasing the interaction time by preincubation before LFIA [16] and migration time on
the test strip by changing its geometry [17].

Thus, the explicit focus on post-assay enhancement as a universal strategy seems
reasonable from a practical view. Post-assay enhancement approaches based on chemical
reactions are an actively developing area in LFIA [7,18]. Many existing enhancement meth-
ods are performed in a post-assay manner—e.g., registration of surface-enhanced Raman
spectroscopy [19], fluorescent [20], magnetic [21], and thermo [22] signal readout. However,
all these methods require additional costly equipment and have limited applicability in
POC conditions. On the contrary, post-assay enhancement approaches based on chemical
reactions are easy to use and can be performed by the analyst without training. These
chemical reactions occur at room temperature, do not require highly toxic compounds, and
facilitate a significant decrease in LOD.

Before considering post-assay enhancement approaches, one needs to establish the pa-
rameters determining the value of the registered signal in the test zone. As most scientific
developments and commercial products utilize GNPs as labels, we discuss the factors in-
fluencing the LOD value on the example of GNPs as the colorimetric label. For post-assay
enhancement, we will consider the test strip after sandwich LFIA as a model. The color intensity
of the TZ is directly related to the concentration of labeled immunocomplexes. Khlebtsov and
coauthors [23] have experimentally determined the surface density of GNPs (i.e., the number
of spherical GNPs with diameters from 16 to 115 nm per mm2) on the membrane sufficient
for the formation of the detectable colored zone. The authors experimentally showed that
the number of GNPs sufficient for the coloration corresponding to visual LOD is irreversibly
proportional to d3.1, where d is the diameter of the GNP. In accordance with their results,
GNPs with a diameter of 16 nm require 6.5 × 107 particles/mm2, while 115 nm GNPs require
only 1.4 × 105 particles/mm2. It is important to note that these calculations were made for
GNPs being passively adsorbed on the membranes. Thus, these estimations cannot be directly
transferred for quantitative characterizations of LFIAs. First, larger particles have poor colloidal
stability and migration through the membranes. Thus, the larger particles will bind to the
membrane non-specifically. As a result, higher background, limiting the assay sensitivity, will
be observed. Second, a steric hindrance for immunobinding for larger particles may result in
higher LOD values. However, considering post-assay signal amplification, one may neglect
affine binding and poor colloidal stability of larger particles, as the signal amplification is
performed after completing LFIA. Thus, following the results of Khlebtsov and coauthors [23],
to increase the coloration of the test zone (and hence the sensitivity of the assay) after the
performance of conventional LFIA, one needs to increase the size and number of GNPs.

Many efforts have been made to increase the sensitivity of LFIA, which are summa-
rized in multiple reviews [3,7,18,24,25]. However, most reviews examine all the existing
approaches for LOD reduction, from selecting high-affine binders to instrumental methods
of signal registration. Thus, post-assay chemical enhancement approaches are discussed
briefly, without critically evaluating the benefits and drawbacks of their variants. Although
such reports are undoubtedly important, the applicability and possible LOD decrease
rates of the approaches remain undiscussed. In this review, we focus only on post-assay
enhancement approaches with chemical reactions for sensitivity enhancement.
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In the second section, we suggest a classification of the post-assay enhancement ap-
proaches based on the signal amplification mechanism. Then we briefly discuss each
approach with references to the main articles published in the area. In the third section, we
discuss the developments and state-of-the-art of LFIA with an integrated signal amplifica-
tion step. In the fourth section, we quantitatively compare the enhancement approaches.
In addition, we report and explain discrepancies in the literature focusing on post-assay
enhancement of LFIA. In the fifth section, we suggest a workflow for the development
and validation of LFIA with post-assay enhancement. We believe this review will be inter-
esting for the researchers developing LFIAs and practitioners in the industry working on
commercializing such rapid tests.

2. Post-Assay Chemical Enhancement Approaches

Post-assay chemical enhancement approaches are focused on the sensitivity enhance-
ment of LFIA by amplifying the registered signal from immunocomplexes in TZ. The signal
is amplified by the performance of various chemical reactions.

We determine four criteria to distinguish the post-assay chemical enhancement meth-
ods from all others. Post-assay chemical enhancement methods (a) are performed after
completion of conventional LFIA in situ (i.e., after the formation of immunocomplexes
on the test strip); (b) are aimed at the amplification/generation of the signal from the
immunocomplexes; (c) utilize chemical reactions for the amplification/generation of the
signal; and (d) are performed on demand (i.e., if the coloration of the conventional LFIA is
strong enough, the user can decide not to perform the additional enhancement step).

As indicated above, in the post-assay conditions, the coloration of the TZ is determined
by the size and concentration of the nanosized label [23]. Thus, post-assay approaches for
sensitivity enhancement can be ultimately categorized into two groups:

1. Approaches focused on the modification of physicochemical properties of the nano-
sized labels. The ultimate goal is increasing the “visibility” of nanoparticles on the
membrane. Among these properties are size, shape, and chemical composition affect-
ing the optical properties of nanoparticles [26,27]. Further in this paper, we focus on
GNPs as the most widely used nanolabel in LFIA. The intensity of the coloration of
GNPs on the membrane is determined by light absorption and scattering, and the
impact of each parameter is determined by the size of the particles [23]. Larger GNPs
have a higher scattering intensity and molar extinction coefficient, which provides
higher coloration for the given number of particles [28–30]. Non-spherical GNPs
also have a higher extinction coefficient than similarly sized spherical GNPs [31].
Changing the chemical composition of nanoparticles by in situ formation of metal
shells (Cu, Ag, Pt) over initial GNPs also increases the molar extinction coefficient and
facilitates highly sensitive detection [32]. The signal amplification is based on in situ
formation of particles that can be detected at lower concentrations than initial GNPs.

2. Approaches focused on the increase of the label number are aimed at the accumulation
of an additional amount of labels (driven by non-covalent binding between labels) or
by catalytic conversion of a substrate to the detectable product (usually its oxidation to
a colored or fluorescent product) [25]. The signal amplification is based on increasing
the concentration of the registered product of the catalytic reaction.

Further in this paper, we review the methods of signal enhancement in both groups.
We discuss the mechanism of signal amplification, the performance of enhancement, its
advantages, and possible pitfalls. The quantitative characteristics of enhancement are
discussed in Section 4 of this review.

2.1. Modification of Physicochemical Properties of Nanoparticles

These approaches include several chemical reactions that change the physiochemical
properties of the nanosized label. Such reactions involve gold, silver, and copper enhance-
ment. The principle of all these metal enhancements is similar. GNPs act as the catalyst in
the reaction of metal salt reduction. As a result, core@shell nanoparticles (GNP as a core,
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reduced metal as a shell) are formed in situ (Figure 2a,b,d). Such newly formed core@shell
nanoparticles are larger than the initial GNP and facilitate a higher colorimetric signal.
These nanoparticles can be detected in lower concentrations, thus providing detectable
coloration for the initially low/undetectable concentrations of GNPs.

Chemical reactions of metal reduction with GNPs in the colloidal solution and on the
membrane (surface-bounded) have different kinetics and facilitate the formation of particles
of varying morphology [33–35]. Bare GNPs in the solution form monodisperse core@shell
nanoparticles [36], while larger and non-spherical particles are formed for immobilized
GNPs [37,38]. This observation can be explained by the non-uniform diffusion of the enhanc-
ing reagents to the surface of immobilized GNPs. Using GNPs of various sizes immobilized on
silica oxide, Festag and coauthors [39] showed that the size and morphology of the nanopar-
ticles after silver and gold enhancement depends on the density of the particles, the size
and charge of the particles, and the diffusion of enhancing reagents to the particles. The
areas with a higher density of immobilized particles show lower enlargement of particles
due to limited diffusion of enhancing reagents. This observation explains lower signal am-
plification for high-colored zones (high antigen concentration) than for low-colored zones
(low antigen concentration). Such discrepancy in signal amplification between initially high
and low colored zones does not hinder the application of enhancement, as the users are
interested in amplification of low/non-detectable signals. The initial larger particles tend
to form larger particles after enhancement compared with smaller ones. Also, the authors
experimentally demonstrated that the stepwise addition of enhancing reagents facilitates the
formation of almost three-times-larger GNPs. This observation was explained by the localized
depletion of enhancing reagents. As the developers of enhanced LFIA aim for maximum
signal enhancement, they must consider the possible impact of reagent depletion (especially
while enhancing the areas with a high density of immobilized GNPs).
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Figure 2. SEM microphotographs of test zones and corresponding test strips. (a) GNPs before
enhancement. (b) Au@Ag nanoparticles after silver enhancement. (c) Au@Ag-Au nanoparticles after
silver enhancement and galvanic-assisted Pt deposition. (d) Enlarged GNP after gold enhancement.
The bars are equal to 500 nm [40].
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Important to note is that GNPs are not unique catalysts for the reactions of gold
and silver enhancement. Wang and coauthors [41] performed silver enhancement using
quantum dots as a catalyst. Dias and coauthors [42] reported gold enhancement catalyzed
by silver, iron oxide, and silica nanoparticles.

In addition, methods of changing the chemical composition of nanoparticles via
galvanic reaction were recently developed for LFIA enhancement [40,43]. The method is
based on the electrochemical process leading to the oxidation of one metal (particles) by
the ions of another metal (in solution). Metal in the particles will be oxidized and dissolved
while the ions of the second metal will be deposited on the particle [44]. As a result, particles
of different chemical compositions and morphologies (Figure 2c) are synthesized.

2.1.1. Gold Enhancement

Gold enhancement is based on HAuCl4 reduction by various reducing agents (hydro-
gen peroxide [42], hydroxylamine [36], MES [45], and cethyltriammonium bromide-ascorbic
acid [46]) in the presence of GNPs. Hydroxylamine and hydrogen peroxide are the most
commonly used reducing agents for LFIA. Gold enhancement was initially developed to
increase small GNPs’ visibility in immunohistochemistry [47]. Since then, gold enhance-
ment has been widely utilized in various bioanalytical techniques [48–50]. Focusing on
LFIA, gold enhancement is used to increase the detectability of GNP in the test zone by
increasing their size.

The chemical equation of gold enhancement (for the case of hydroxylamine as the
reducing agent) is the following (Equation (1)) [51].

4HAuCl4 + 6NH2OH = 4Au + 3N2O +3H2O + 16HCl (1)

As a result of this reaction, gold atoms are reduced on the surface of GNPs, forming
enlarged particles. GNPs act as a catalyst in the reduction reaction of gold salt. Some articles
report that the reduced gold atoms form new layers around existing GNPs [36,52,53]. Thus, no
GNPs should be formed de novo in the enhancing solution (mix of HAuCl4 and reducing agent).
However, some articles report in situ formation of GNPs in enhancing solution without adding
seeds of GNPs [54,55]. It is crucial to suppress in situ formation of GNPs in the enhancing
solution, as it causes non-specific background limiting LOD reduction [51,56]. Components
of gold enhancing solution can be stored separately for a long time and mixed right before
the enhancement. Considering all published protocols and the available commercial products
(e.g., multicomponent “Goldenhance“ from Nanoprobes) to date, the long-term storage of
the premixed gold enhancement is not recommended, as it may cause high background and
low signal amplification due to the self-nucleation of GNPs. Thus, the components for gold
enhancement should be stored separately and premixed only before use.

Gold enhancement is actively used for the post-assay signal enhancement of various an-
alytes, e.g., viruses [57–59], pathogenic bacteria cells [60–62], high molecular weight [51,63],
and small molecular weight biomarkers [64]. Duan and coauthors [51] demonstrated
that gold self-nucleation in the enhancing solution (hydroxylamine was used as the re-
ducing agent) was significantly more pronounced at higher pH and directly related to
hydroxylamine concentrations.

The deprotonated form (NH2OH) of hydroxylamine at high pH has a higher reducing
ability than its protonated form (NH3OH) at lower pH. Duan and coauthors [51] studied the
effect of pH on the gold enhancement of GNPs deposited on the membrane. Three zones on the
test strip were studied (Figure 3a(I))—the blank zone (bare nitrocellulose membrane), control
zone (BSA was immobilized), and test zone (conjugate of GNP with BSA was immobilized,
shown with red circles, Figure 3a(I)). Gold enhancement was performed at pH = 2 and
pH = 5. The authors did not observe gold nucleation in the blank (B zone, Figure 3a(II)
and control (C zone, Figure 3a(II)) zones when pH = 2. Enlarged GNPs were detected
only in the test zone (T zone, Figure 3a(II)). These results confirm that selected conditions
for gold enhancement facilitate low background coloration. On the contrary, non-specific
nucleation of GNPs in the blank zone and control zones was observed at pH = 5 (Figure 3a(III)).
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Such non-specific nucleation facilitates higher background staining and is not applicable for
LFIA enhancement. To confirm their statement about the effect of the reducing ability of
HA on the performance of gold enhancement, Duan and coauthors [51] performed gold
enhancement using chemical derivatives of HA –N-tert-butylhydroxylamine (containing an
electron-donating group, i.e., having a higher reducing ability than hydroxylamine) and N-
hydroxyacetamine (containing an electron-withdrawing group, i.e., having a lower reducing
ability than hydroxylamine). As expected, the reducing agent with the electron-donating group
showed a significantly higher rate of Au3+ consumption with and without the addition of seed
GNPs. These results prove that hydroxylamine (and analogs) reducibility is determined by
the electron density of the hydroxyl group, which depends on the aminogroup’s protonation.
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Figure 3. Gold enhancement for LFIA amplification. (a) Effect of pH on gold enhancement. Scanning
electron microscopy was performed on three zones of test strips. B zone—blank membrane containing
neither GNPs nor immobilized proteins. C zone contained 1 mg/mL of BSA. T zone contained
20 pM/L of BSA-GNP conjugate. I—test strip and microphotographs of three zones before gold
enhancement. Red circles show the localization of GNP in T zone. II—test strip and microphotograph
of three zones after gold enhancement at pH = 2. III—test strip and microphotograph of three zones
after gold enhancement at pH = 5. (b) LFIA of hepatitis B surface antigen (HBsAg), test strips before
and after gold enhancement. (c) Calibration plots for LFIAs before and after gold enhancement [51].



Biosensors 2023, 13, 866 8 of 46

The formation of HCl during gold enhancement (Equation (1)) decreases the pH value
and slows down the reaction due to the decline of the reducing ability of HA. However,
even at low pH values, reduction of gold will occur, so the reaction (1) in minute timescale
is limited by the concentration of gold salt [36]. Important to note is that pH also affects the
reactivity of gold precursor [56]. Based on the pH of the solution, the various forms of ions
will be in equilibrium, and the highest reactivity will be observed at low pH values [65].

For the biological samples, there are no reported inhibitors of gold enhancement. On
the one hand, this is beneficial for the users, as the performance of gold enhancement
does not require any additional sample preparation or test strip cleaning procedures. On
the other hand, it means that there are no methods for terminating gold enhancement.
Thus, washing test strips from enhancing reagents is the only option to terminate gold
enhancement in a timely manner. If the gold enhancement is not terminated, a high
background will be observed, hindering the visual detection of the results.

2.1.2. Silver Enhancement

Silver enhancement is based on the reduction of silver salts (silver nitrate, lactate, or
acetate) by the reducing agent in the presence of GNPs. Metol, ascorbic acid, ammonium
iron (II) sulfate, pyrogallol, formalin, and hydroquinone were reported as the reducing
agents [66–68]. Hydroquinone is the most commonly used reducing agent for silver
enhancement that is also widely used in photography. Silver enhancement has been known
for a while, being actively used to enlarge GNPs in immunohistochemistry [69,70]. Enlarged
core@shell Au@Ag nanoparticles can be easily localized in tissues. GNPs are considered the
catalyst in the reduction reaction of Ag+ ions. However, early reports show that insoluble
metal sulfides can also catalyze the reaction of silver reduction [66,71].

Among three metal enhancement approaches, silver enhancement utilizes less stable
reagents. Even exposure to light can catalyze the reduction of silver ions in the solution.
Hydroquinone also tends to oxidize during storage with the formation of 1,4-benzoquinone.
As a result of low stability, low LOD decrease and/or high background will be observed.
Even thorough optimization could not completely suppress the background, as silver ions
interact with proteins immobilized on the membranes [72]. These bounded ions will be
reduced with the formation of Ag particles, resulting in the grey coloration of the test strip.
Many efforts focused on developing more stable silver-enhancing solutions [67,73]. Among
the practical recommendations (separate storage of silver salt and reducing agent in the
darkened place), modified protocols were proposed [74]. As the protocols were optimized
for microscopy applications, the efforts were focused on preserving the monodispersity and
spherical shape of enlarged particles by slowing down the silver reduction reaction [69].

The source of silver ions is an important parameter affecting enhancement efficiency
and background staining. Silver lactate and acetate are partly ionized in the solution,
while silver nitrate is whole ionized salt. The high concentration of Ag+ ions in the
solution can result in a faster reduction rate, leading to background staining [70,71]. Silver
acetate is also considered “light-insensitive” [75], which makes this precursor applicable to
POC settings [76].

The presence of high-molecular polymer for the stabilization of particles facilitates
low background [77]. Scopsi and coauthors [70] demonstrated that Au@Ag nanoparticles
enlarged in the presence of gum arabic preserve the initial spherical shape. However,
such particles were smaller compared with those synthesized without polymer. Also, the
protocol is time-consuming and requires around 60 min for enhancement. Using PEG
and PVP as the stabilizing polymers, more rapid silver enhancement (around 10 min) was
achieved, and the particles were larger and non-spherical. Silver enhancement without
any protective polymer resulted in the formation of irregular silver precipitate and high
background even after 5 min.

Interesting to note is that these improvements were reported for microscopy. For
signal amplification in LFIA, “not optimal” protocols are used. There are no articles using
polymer-stabilized silver enhancement components, and no direct comparison of silver
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salts on the enhancement performance was reported for LFIA. However, the optimization
of this protocol was performed for microscopy usage; the silver enhancement reaction
was slowed down to maintain the spherical shape of nanoparticles. For LFIA, there is
no need to keep the particles spherical after enhancement. On the contrary, large and
non-spherical particles (Figure 4a,b) are reported as the more efficient colorimetric labels.
Enlarged Au@Ag nanoparticles have black/dark grey coloration and can be easily detected
on the white background of the nitrocellulose membrane (Figure 4c). Silver enhancement is
actively used for the post-assay signal enhancement of various analytes, e.g., viruses [78,79],
pathogenic bacteria cells [80,81], xenobiotics in food [82–84], and high molecular [85] and
small molecular weight biomarkers [86].
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strip before silver enhancement. The arrows show the position of nanoparticles. (b) Microphotograph
of nanoparticles after silver enhancement [68]. (c) Use of silver enhancement for LFIA of cardiac
troponin I. Concentrations of cardiac troponin I are shown above the test strips (i) before silver
enhancement and (ii) after silver enhancement [87].

On the one hand, the low stability of silver enhancement components is a drawback for
POC application. On the other hand, it provides a tool for the termination of enhancement
reaction on the test strip. In one of the first articles showing silver enhancement in LFIA,
the reaction was terminated by adding sodium thiosulfate solution (Equation (2)) [88].

2AgNO3 + Na2S2O3 → Ag2S2O3 + 2NaNO3 (2)

The formation of low-soluble silver thiosulfate terminated the reaction of silver en-
hancement due to the reduction in Ag+ concentration. Similarly, Panferov and coauthors
used Cl--containing buffer for termination silver enhancement (Equation (3)) [78].

AgNO3 + NaCl→ AgCl + NaNO3 (3)

Among all post-assay enhancements, LFIA with silver enhancement was developed
to the stage of commercial products. The Fujifilm SILVAMP TB LAM assay was reported
for the detection of lipoarabinomannan—a heat-stable secreted component of the outer
cell wall of Mycobacterium—in urine [89]. The device contains two buttons that release
silver-enhancing reagents to the test strip after the completion of the assay. Such LFIA
with silver enhancement facilitates high clinical sensitivity and is applicable for POC
diagnosis of tuberculosis. A similar principle was realized in the test system FUJI DRI-
CHEM IMMUNO AG Cartridge FluAB for the simultaneous detection of influenza A and B
viruses [79] and SARS-CoV-2 nucleocapsid protein [90]. Couturier and coauthors showed
high reproducibility of the silver-enhanced LFIA during storage for seventeen weeks at
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temperatures 4–37 ◦C, confirming the high stability of the enhancing solutions developed
by Fujifilm [91].

2.1.3. Copper Enhancement

Copper enhancement is based on the reduction of copper salts (usually CuSO4 and
CuCl2) by the reducing agent in the presence of GNPs. Sodium ascorbate is the most widely
used reducing agent, while some other compounds (sodium borohydride, sodium citrate,
and ascorbic acid) have been tested [92]. GNPs are reported to be a catalyst in the reduction
of copper salt. As shown by Wei and coauthors [93], the reduction of copper sulfate by
ascorbic acid can be catalyzed by Au, Pt, Pd, Ag, Fe3O4, and Cu2O nanoparticles as well.
First, Cu2+ is reduced by ascorbic acid to Cu+ that adsorbs on the surface of nanoparticles,
and can be further reduced by ascorbic acid to Cu0, forming core@shell nanoparticles.
While GNPs showed higher activity, one needs to understand that many nanoparticles can
catalyze the copper reduction reaction.

Copper enhancement can be performed with or without the addition of stabilizing
polymers in the enhancing solution. Kim and coauthors [94] used a mixture of CuCl2 and
polyethyleneimine (PEI). Amino groups of PEI bind copper ions, reducing the concentration
of free ions in the solution. As a result, the self-nucleation reaction is inhibited, facilitating
lower background coloration [95]. The same mechanism was reported for polyallylamine
hydrochloride, another amine-containing polymer [96]. PEI acts as a capping agent, facili-
tating the formation of polyhedral core@shell Au@Cu nanoparticles. Multiple corners and
edges, typical for polyhedral structures, increase the scattering properties of nanoparticles.
PEI-assisted copper enhancement was used for colorimetric signal enhancement in dot
blot assay of Mycobacterium tuberculosis antigens CFP-10 [92] and 85B [97] and bovine viral
diarrhea virus [98]. Some articles [95,98] report two-step enhancement protocols. In the
first step, PEI-Cu2+ complexes bind to GNPs. In the second step, sodium ascorbate is added
to reduce adsorbed on GNP PEI-Cu2+, facilitating the formation of Au@Cu core@shell
nanoparticles. Although Zhou and coauthors [95] showed the non-linear effect of PEI
concentration on the increase of colorimetric signal, there is no experimental comparison
of LOD reduction and background coloration for copper enhancement with and without
PEI. In some applications, copper sulfate is mixed with the ascorbic acid directly on the
test strip [99,100].

Compared with gold and silver enhancement methods, copper enhancement does
not have a very long history of use. Kim and coauthors published one of the first articles
reporting the use of copper enhancement to amplify colorimetric signal for POC assay [94].
The authors used a dot-blot assay with GNPs and utilized copper enhancement for color
amplification. Later, a few articles were published reporting the use of copper enhancement
for dot blot assay [92,97]. Only in 2019, Tian and coauthors [99] reported the application
of copper enhancement in LFIA for the first time. Since that, very few articles have been
published reporting copper enhancement for human gonadotropin and rabbit IgG [99],
E. coli O157:H7 [95,96], and nucleocapsid of SARS-CoV-2 [100].

The signal amplification by copper enhancement is similar to that of gold and silver en-
hancement. The formation of larger core@shell Au@Cu nanoparticles (Figure 5a) facilitates
a higher colorimetric signal due to significantly larger scattering than initial GNPs [94]. The
membrane affects nanoparticle growth, resulting in the formation of polydisperse nanopar-
ticles (Figure 5b,c). Initially faint-colored/undetectable GNPs can be easily distinguished
after copper enhancement on the test strip (Figure 5d–f).

As there are very few articles reporting the use of copper enhancement, no information
about inhibitors was published. However, considering the components of enhancing solu-
tions (Cu2+ ions and ascorbic acid), OH− ions will interfere with the reaction. Apparently,
OH− ions are not applicable for reaction termination, as Cu(OH)2 has intense coloration,
hindering visual registration of the results.
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2.1.4. Galvanic Replacement

Although galvanic replacement is actively used to synthesize nanosized labels for
LFIA [101–106], only two articles applied galvanic replacement for post-assay signal ampli-
fication [40,43]. To perform galvanic replacement, one needs to use particles made of metal
with lower reduction potential and ions in the solution with higher reduction potential. As
a result, the metal with a lower reduction potential oxidizes and migrates to the solution,
while the metal with a higher reduction potential reduces and deposits to the nanoparti-
cles [44]. The signal amplification is based on the change of optical properties, morphology,
and size of nanoparticles after galvanic replacement.

Panferov and coauthors [40] performed galvanic replacement for LFIA of the receptor
binding domain of SARS-CoV-19. The authors used conventional spherical GNP as the
colorimetric label. The post-assay enhancement procedure included two steps. In the first
step, silver enhancement was performed, leading to the formation of Au@Ag core@shell
nanoparticles. In the second step, the addition of HAuCl4 initiated the galvanic replacement
of Ag atoms in the shell to Au. As a result, Au@Ag-Au nanoparticles were formed. The
authors reported 61 times lower LOD compared with GNPs.

Shu and coauthors [43] applied galvanic replacement in situ for LFIA of salbutamol.
Conventional LFIA used CuS nanospheres as the colorimetric label. After the performance
of conventional LFIA, a solution of HAuCl4 was added, initiating the galvanic replacement
of Cu atoms to Au. As a result of the enhancement, the authors reported a two-times-
lower LOD value. Although CuS nanoparticles are not a commonly accepted nanolabel,
additional studies of their stability during storage and performance in various matrices
are required.

Galvanic replacement requires no heating, reducing agents, or catalysts, and can be
performed directly on a test strip. The undeniable benefit of galvanic replacement is the
high stability of enhancing reagents, namely salts of metals. These salts can be stored in the
solution for a long time and do not require temperature control. However, there are two
major restrictions on galvanic replacement for post-assay signal amplification.

First, the requirements to use metal ions with higher reduction potentials compared
with metals of nanoparticles. GNPs are commonly used as the colorimetric label for LFIA.
However, gold has a high reduction potential (Au3+ + 3e−→Au; reduction potential 1.5 V),
and ions of metals (e.g., Ag, Pt, Pd, Cu, Co, and Ni) cannot galvanically replace gold
because they all have lower reduction potential. Thus, to apply a galvanic replacement
reaction, one needs to use nanoparticles made of metal with lower reduction potential (Ag
nanoparticles) or core@shell nanoparticles with a shell made of metal with lower reduction
potential. The application of non-gold nanoparticles may be hindered by their poor stability
in matrices, non-optimized protocols of synthesis and conjugation, and higher LOD values
compared with GNP in conventional LFIA.

Second, there is not enough data confirming that nanoparticles synthesized by galvanic
replacement will facilitate significant LOD reduction. Changes in the optical spectra during
galvanic replacement were studied in detail for various combinations of metals [107,108].
However, there are no reports assessing the optical properties of initial and synthesized
during galvanic replacement nanoparticles in the colloidal solution and colorimetric signal
on the membrane. Thus, further fundamental studies of optical, catalytic, and electrochemi-
cal properties of nanoparticles synthesized by this approach are required for understanding
signal amplification.

2.2. Increasing the Number of Labels

This group of methods aims to increase the number (concentration) of labels in the test
zone. Two approaches based on chemical reactions can be utilized. In the first approach, the
increase in the label concentration is achieved by accumulating the additional amount of
labels driven by non-covalent interaction in the test zone. Examples of such interactions are
antibody–antigen, antibody–antispecies antibody, and biotin–streptavidin. As a result of
such crosslinking, higher numbers of nanoparticles are accumulated in the test zone, multi-
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plying the colorimetric signal. Amplification of the signal is achieved by attaching multiple
nanoparticles to a single immunocomplex in the test zone. In the second approach, one of
the components in the immunocomplex catalyzes the reaction of the substrate to product
conversion [25]. A product of the catalytic reaction is detected. The signal amplification is
based on the increased concentration of the label produced by a single catalyst.

2.2.1. Crosslinking of Nanoparticles

In most developments, crosslinking between nanoparticles happens while they mi-
grate through the membrane during the assay. While such implementations are easier for
the user (no need for the additional stages), their analytical performance is not often not
optimal because of the blocking of binding sites and uncontrollable crosslinking between
nanoparticles, leading to high background [109]. To reduce the background, optimization
of the nanoparticle concentrations is performed, and usually, relatively low concentrations
are selected as optimal [109,110]. As a result, moderate LOD reduction values are achieved.
The solution to overcome this limitation lies in the consequent crosslinking of nanoparticles.
First, immunocomplexes are formed as in the conventional assay, and only after this, the
additional nanoparticles are crosslinked with initial nanoparticles. Thus, post-assay en-
hancement approaches are methodologically applicable and favorable over conventionally
used strategies. The strategy of the consequent complex assembly is typical for many
bioanalytical methods, such as ELISA, biosensors, and immunohistochemistry. Immuno-
complexes are assembled in multiple stages, and all non-bounded species are washed away
during the washing steps. However, for one-step capillary-action driven LFIA, post-assay
approaches for crosslinking of nanoparticles are methodologically hindered, and only a
few reports have been published recently [111–113].

Hendrickson and coauthors reported multilayer GNP assembly directly on the test
strip driven by antibody–antispecies antibody binding [112]. After the performance of the
conventional assay, the test strip was incubated in the colloidal solution of GNP–antispecies
antibodies. After two cycles of layer-by-layer assembly of GNPs, the authors achieved
seven times lower LOD of okadaic acid compared to the conventional assay.

Huang and coauthors supramolecular assisted polylayer GNP assembly for highly
sensitive detection of carcinoembryonic antigen and HIV-1 capsid antigen p24 [113]. The
principle of the method is shown in Figure 6a. For the crosslinking, the authors used
GNP modified with β-cyclodextrin (CD) and 1-adamantane acetic acid (ADA) or tetrakis(4-
carboxyphenyl)porphyrin (TCPP) (Figure 6a). This host–guest polyvalent recognition
results in the tight binding of GNPs and an increase in the number of nanosized labels
per single immunocomplex (Figure 6b). For the conventional assay, GNPs conjugated
with antibodies and BSA-ADA were used. After completion of the conventional LFIA, the
second layer of GNPs was assembled by incubation with CD-conjugated GNP. The further
layers (up to eight) were assembled by host–guest interaction of GNP-CD with TCPP. Each
TCPP contains four binding sites of CD, facilitating polyvalent binding that results in the
accumulation of multiple GNPs.

As a result of such polylayer assembly, a significantly higher coloration of the test zone
was achieved (Figure 6c). Using this approach, the authors reported ultra-sensitive detec-
tion of carcinoembryonic antigen (0.1 fg/mL in contrast with 0.5 ng/mL for conventional
assay) and HIV-1 capsid antigen p24 (0.01 fg/mL in contrast with 0.5 ng/mL for conven-
tional assay). The achieved sensitivity (dozens of proteins per test strip) places the reported
LFIA in a row with PCR and facilitates early-stage cancer detection and HIV diagnosis.



Biosensors 2023, 13, 866 14 of 46Biosensors 2023, 13, x FOR PEER REVIEW 15 of 49 
 

 
Figure 6. Polylayer GNP assembly for LFIA enhancement. (a) The principle of the approach. After 
completion of conventional LFIA (cycle 0), conjugates of GNP with CD and TCPP are manually 
added to the test strips, resulting in the polylayer assembly of GNPs. (b) Scanning electron micros-
copy microphotographs of TZ after different cycle numbers. (c) Calibration plots after different cycle 
numbers [113]. 

As a result of such polylayer assembly, a significantly higher coloration of the test 
zone was achieved (Figure 6c). Using this approach, the authors reported ultra-sensitive 
detection of carcinoembryonic antigen (0.1 fg/mL in contrast with 0.5 ng/mL for conven-
tional assay) and HIV-1 capsid antigen p24 (0.01 fg/mL in contrast with 0.5 ng/mL for 
conventional assay). The achieved sensitivity (dozens of proteins per test strip) places the 
reported LFIA in a row with PCR and facilitates early-stage cancer detection and HIV 
diagnosis. 

However, both articles mentioned above used manually performed cycles of layer-
by-layer assembly of GNPs. The procedure requires additional incubation and washing 
steps. The requirements of multiple manually performed stages may be a significant 

Figure 6. Polylayer GNP assembly for LFIA enhancement. (a) The principle of the approach. After
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croscopy microphotographs of TZ after different cycle numbers. (c) Calibration plots after different
cycle numbers [113].

However, both articles mentioned above used manually performed cycles of layer-
by-layer assembly of GNPs. The procedure requires additional incubation and washing
steps. The requirements of multiple manually performed stages may be a significant
drawback for real-life applications. Thus, solutions for less laborious signal enhancement
are needed. Alternatively, electrophoresis can be used as a driving force instead of capillary
actions to perform layer-by-layer assembly of nanoparticles [111,114]. Electrophoresis on
the membranes is actively used for various analytical applications [115], and was recently
used for post-assay enhancement of LFIA. Panferov and coauthors [111] reported post-
assay electrophoresis-driven migration of biotin/streptavidin-modified GNPs for the signal
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enhancement of hepatitis B surface antigen LFIA. After completion of the conventional LFIA
(with biotinylated GNP-antibody conjugate), GNP-streptavidin and GNP-biotin conjugates
are electrophoretically dragged across the TZ and CZ. As a result, multilayers of GNPs
are assembled by biotin-streptavidin interactions. Electrophoresis combines continuous
washing of the test strip and GNP conjugate migration. As a result, the LOD value
was reduced from 7.8 ng/mL to 0.12 ng/mL in two minutes, facilitating highly sensitive
hepatitis B diagnostics. Further endeavors were dedicated to developing a portable, battery-
driven device for electrophoresis [116]. However, despite the rapid procedure and progress
in the miniaturization of the power supply, the performance of the assay requires the
manual addition of the reagents, which complicates its implementation in POC settings.
Further progress is related to the integration of automatic systems of reagent delivery.

Crosslinking of nanoparticles can be driven by various types of molecular interactions.
As the binding between nanoparticles is polyvalent (i.e., multiple molecules crosslink
nanoparticles), moderate/low affine bindings can be used, as the high stability (i.e., no dis-
sociation of nanoparticles aggregates) will be determined by high avidity [117]. Post-assay
crosslinking can be driven by boronate affinity (phenylboronic acid and its derivatives bind-
ing with cis-diol-containing molecules such as glycoproteins, glycans) [118], hybridization
of nucleic acids [119], vancomycin-D-alanyl-D-alanyl fragment in Gram-positive bacte-
rial cell wall [120], barnase–barstar [121], small molecule–protein [122] and other types
of binding.

2.2.2. Catalytic Accumulation of the Label

This group of methods is based on the transformation of the substrate into the product
by enzymes and enzyme-mimicking nanoparticles (nanozymes) [123]. The signal enhance-
ment is based on the generation of multiple molecules of detectable product by a single
catalyst unit. As the colorimetric detection of peroxidases (predominantly horseradish
peroxidase—HRP) and peroxidase-mimicking nanozymes is mainly implemented in LFIA
enhancement articles (as well as in ELISA), our consequent speculation about LOD reduc-
tion will be performed on this example.

The concentration of the product ([P], M) is determined by the catalyst’s activity
(turnover number, kcat, s−1), catalyst’s concentration ([No], M), and the catalytic reaction
time (t, s) (Equation (4)):

[P] = kcat × [No]× ∆t (4)

Considering the Michaelis–Menten model of catalysis and assuming that the product
can be registered in concentrations of the order 10−6–10−7 M (molar extinction coefficient
for peroxidase substrates varies 10,000–39,000 M−1 cm−1 [124], facilitating reliable optical
density ≥ 0.05 a.u following the Beers–Lambert law), kcat for HRP and most nanozymes is
in the range 103–105 s−1 (Figure S1, Table S1), the reaction time is limited to 300 s, and the
lowest detectable amount of catalyst can be estimated in the range (Equation (5)):

[No] =
[P]

kcat × ∆t
≈ 10−12–10−15 M (5)

Further recalculations to the numbers of HRP molecules/nanozymes particles in the
test zone (assuming the volume in the test zone is on a microliter scale) demonstrate that
catalytic amplification facilitates the detection of 102–105 catalytic particles. Considering the
fact that each nanoparticle can borrow multiple HRP molecules [125] and each nanozyme
particle contains multiple catalytic sites on its surface [126], the estimated number of
particles can be even one or two orders of magnitude lower. Compared with conventionally
used 20–40 nm spherical GNPs, catalytic amplification may facilitate lower LOD from
one to four orders of magnitude [23]. Although these calculations were made with many
assumptions, they still allow us to show the benefits of catalytic signal enhancement and
roughly estimate the expected LOD reduction range.
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Enzymes as the Catalytic Labels

Enzymes have been extensively used for signal enhancement/generation in ELISA
and biosensors. The application of enzymes for LFIA is a logical continuation of the
developments in these areas. The first use of enzymes in paper-based immune tests was
reported in 1985 by Zuk and co-authors [127]. The authors used paper test strips covered
with antibodies against theophylline and conjugates of theophylline with glucose oxidase
and HRP. These conjugates and free theophylline compete for binding with antibodies on
the test strips. Afterwards, the substrates for both enzymes (glucose for glucose oxidase
and 4-chloro-1-naphthol for HRP) were added. This paper is also notable as it introduced
the concepts of cascade catalysis (products for one enzyme are the substrates for another)
and in situ generation of hydrogen peroxide.

Since then, many articles have used HRP [128–130] and alkaline phosphatase
(ALP) [131–133] for signal generation/enhancement (Figure 7). Chemiluminescent (lumi-
nol with hydrogen peroxide, Figure 7a,b) [129,134] and colorimetric substrates (3-amino-9-
ethylcarbazole (AEC) [135], soluble [136] and insoluble [137] 3,3′,5,5′-tetramethylbenzidine
(TMB), 3,3′-diaminobenzidine (DAB) without [138] and with metal enhancement [139])
were used for the signal enhancement for HRP. The used colorimetric substrates of ALP
were limited by 5-bromo-4-chloro-3-indolyl phosphate with nitro blue tetrazolium (BCIP/NBT,
Figure 7c,d) [132,133]. Shu and coauthors [140] demonstrated that ALP and HRP could
be simultaneously detected due to the kinetics difference in substrate oxidation. After the
performance of the assay, the test zone was cut and placed into a microwell plate with
the combined substrate. Using time-resolved chemiluminescent detection, the authors
recorded chemiluminescent signal at 2.5 s (for HRP) and 300 s (for ALP). As a result, the test
strip with a single test zone can be used for the simultaneous detection of two pesticides.
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The selection of enzymes for signal enhancement is determined by the analytical
performance of conventional LFIA (required LOD reduction, background level) and en-
dogenous enzyme activity in matrices. Considering the kinetics of colorimetric substrate
oxidation, HRP has a higher turnover number than ALP. Although mutant forms of ALP
with high turnover number values were reported [141,142], most analytical papers used
commercially available mammalian ALP. Following Equation (4), ALP generates a lower
amount of the product per time. Combined with the fact that ALP has significantly higher
molecular weight than HRP (140–160 kDa for bovine alkaline phosphatase [143,144], 40 kDa
for HRP [145]), the lower amount of ALP can be conjugated to the single GNP [146]. As a
result, ALP usually generates lower product concentration and requires longer incubation
time. Thus, HRP seems the preferable enzyme in the first approximation. However, the
higher catalytic activity of HRP may cause issues with the background. Non-specifically
bounded HRP generates high background, hindering the visual/instrumental signal regis-
tration. Thus, the application of HRP may require a more thorough optimization of buffer
composition, blocking protocols, etc. The endogenous enzyme activity of matrices may
significantly interfere with signal amplification [147–149]. Thus, for assays in matrices with
high endogenous peroxidase activity (e.g., plant extracts), ALP is recommended [150,151].
The activity of enzymes is affected by the inhibitors in samples. For HRP-assisted signal
enhancement, excluding sodium azide and using alternative bacteriostatic agents is highly
desirable. ALP is inhibited by phosphate and pyrophosphate. Thus, for ALP-assisted signal
enhancement, phosphate-containing buffers should be avoided.

The low stability of substrates can be a bottleneck of enzyme signal enhancement
for POC conditions. Many efforts have been dedicated to stabilizing and increasing sub-
strates’ shelf lives [152,153]. Some commercial products were developed (e.g., ELISA TMB
Stabilized Chromogen or 1-Step Ultra TMB-Blotting Solution from ThermoFisher(Pierce
Biotehnology, Rockford, IL, USA). However, most of the articles use freshly prepared
substrates. Focusing on HRP-assisted signal amplification, stabilizing a two-component
substrate requires separate storage of hydrogen peroxide and the second component (TMB,
DAB, luminol). Storage of dry substrates will significantly simplify the assay performance
in POC. TMB/DAB/luminol can be dried on the membrane and rehydrated during analysis.
Hydrogen peroxide is formed in situ before/in parallel with enzyme signal enhancement.
For example, urea peroxide is a dried chemical that forms hydrogen peroxide in situ after
contact with a buffer [154,155]. Alternatively, hydrogen peroxide can be formed as a prod-
uct in enzymatic reactions. This approach was shown for the first time in the pioneering
work of Zuk and co-authors [127], where glucose was oxidized by glucose oxidase by
oxygen with the formation of hydrogen peroxide. In further developments, Min-Gon Kim’s
group developed an approach for in situ hydrogen peroxide formation by oxidation of
choline by choline oxidase [156,157]. Such in situ substrate formation has the potential
for POC conditions, especially combined with integrated signal enhancement systems
(Section 3).

Nanozymes as the Catalytic Label

Nanozymes are nanoparticles with enzyme-mimicking activity. Nanozymes were
introduced in 2007 in reports of the peroxidase-mimicking activity of Fe3O4 nanoparti-
cles [158]. Since then, many inorganic materials with enzyme-mimicking properties have
been reported (Figure S1), and nanozymes found a broad application in various analyti-
cal methods [159,160]. Nanozymes consisting of metals of the platinum group [161–163]
and iron-containing nanozymes [164–167] are mainly considered in LFIA. Predominantly
peroxidase-mimicking nanozymes are used in LFIA, while the application of oxidase-
mimicking and catalase-mimicking nanozymes is also actively developing. Similar to
enzymes, various organic substrates were used for peroxidase-mimicking nanozymes,
including colorimetric (soluble [168] and insoluble TMB [162], 3-amino-9-ethyl-carbazole
(AEC) [169], conventional [170], and metal-enhanced DAB [171]) and luminescent (lumi-
nol [172]) ones.
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Oxidase-mimicking and catalase-mimicking enzymes can be beneficial because they
can be detected using one-component substrates. Oxidase-mimicking nanozymes (Au@Pt
nanorods [173], CeO2 nanoparticles [174], and MnO2 nanosheets [175]) catalyze the oxi-
dation of TMB without hydrogen peroxide. Unlike peroxidase and oxidase-mimicking
nanozymes, catalase-mimicking nanozymes catalyze reactions without forming colored
products. Instead, the detection of oxygen formation is performed using a handheld pres-
sure meter [176,177], by measuring the height of foam in detergent filled tube [178,179], by
monitoring disposable syringe pistol displacement [180], or by monitoring 3D pressure-
based foam resistance [181].

The current trend in nanozyme-based signal amplification in LFIA is the selection of
the most catalytic active nanoparticles (Figure 8) [182], although one needs to understand
that the high catalytic activity of nanozymes does not guarantee the high sensitivity of LFIA.
Matrix effect, and the reduction in catalytic activity after conjugation and during storage,
may negate the high catalytic activity of nanozymes (usually determined for bare particles)
and facilitate mediocre sensitivity. Thus, the experimental confirmation of a nanozyme’s
benefits in LFIA is crucial.
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Figure 8. LFIA with nanozyme signal amplification. (a) Principle of signal amplification. After the
performance of conventional LFIA, TMB substrate is added, and the nanozymes in test and control
lines catalyze accumulation of colored product. (b) Test strips after nanozyme signal amplification
(top) and conventional GNPs (bottom). Asterisks show the visual LOD values. (c) Calibration plots
for conventional and nanozyme signal enhancement [182].

Wei and coauthors used Ir-coated GNPs as the colorimetric and catalytic labels [182].
Ir-coated GNPs demonstrated 10-times-higher catalytic turnover for TMB than Pt-coated
GNPs (107 s−1 and 106 s−1, respectively). After functionalization with monoclonal antibod-
ies against carcinoembryonic antigen, the nanozymes were used for sandwich immunoassay
(Figure 8a). After conventional LFIA, the colorimetric signal was amplified by the oxidation
of TMB by hydrogen peroxide catalyzed by the nanozymes. LFIAs with GNP and Ir-coated
GNPs were compared (Figure 8b). The authors reported significantly lower LOD for Ir-
coated GNPs after enhancement compared with conventional GNPs (Figure 8c, 7.8 pg/mL
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and 1.26 ng/mL of carcinoembryonic antigen, respectively). It is notable that LOD values
for Pt-coated GNPs were ∼3.3 times higher compared with Ir-coated GNPs, which can be
explained by the superior catalytic activity of Ir-coated GNPs. The beneficial performance
of Ir-coated GNPs was confirmed using a prostate-specific antigen.

Panferov and coauthors also studied the relationship between the catalytic activity of
nanozymes and LOD values of LFIA [171]. Fifteen Pt-coated GNPs with Pt concentration
from 0 to 2 µM and peroxidase-mimicking activity varied from 0 to 4.39 ± 0.4 U/mg were
synthesized. The LOD values were directly related to the catalytic activity of nanozyme and
were varied in the range of 105 CFU/mL to 3 × 102 CFU/mL of phytopathogenic bacteria.

Nanozymes are often considered the functional replacement of enzymes in bioas-
says [183]. Being artificial nano-sized catalysts, nanozymes possess properties of both
enzymes and nanoparticles. Such combinations make nanozymes potentially more applica-
ble labels for LFIA than enzymes.

The first distinctive property of nanozymes is the tunability of their optical and
catalytic properties. Many approaches for the synthesis of nanozymes with tunable ab-
sorbance wavelength [101,102,184] and catalytic activity [162,171] have been developed.
These synthetic approaches are based on the precise control over the size and morphology
of nanoparticles [185], the chemical composition of nanoparticles [186], and their surfaces
(atomic-thin surface-dispersed active centers [162], single-atom nanocatalysts [187]). Such
flexible and on-demand structural properties tuning functional properties are unachievable
for enzymes [188–190].

The second distinctive property of nanozymes also arises from their morphology. A
single nanozyme particle can be conjugated with dozens/hundreds of functional molecules
(e.g., antibodies, aptamers, enzymes, etc.). In contrast, the number and availability of func-
tional groups limit the conjugation of receptor molecules to enzymes. For example, HRP
contains only two primary amine groups available for conjugation [191]. Direct conjugation
of HRP with IgG using bifunctional crosslinkers resulted in a low conjugation yield of
target HRP-IgG (around 2%) with the excessive formation of IgG polymers [192]. Thus,
alternative and more sophisticated methods are used. The commonly used method includes
the oxidation of carbohydrates in HRP by sodium periodate and consequent reductive ami-
nation with the protein [192]. However, this method is laborious, may be associated with
the use of highly toxic cyanoborohydride, and often results in aggregation/precipitation of
HRP conjugates [191]. Nanozymes can be conjugated with functional molecules by physical
adsorption or covalent binding [193]. Physical adsorption is arguably the easiest method
for the conjugation; it was used for binding antibodies to Pt nanoparticles [194], Pt-coated
GNPs [195], Fe3O4 coated with polydopamine [196], VS2 nanosheets [197], and Prussian
blue nanoparticles [198]. Covalent coupling uses bi-functional crosslinkers (usually con-
taining sulfhydryl and carboxyl groups) and reagents for carbodiimide chemistry [199–201].
The concentration of receptors immobilized on nanozymes can be optimized to achieve
the highest sensitivity of the assay [202]. It is noteworthy that the presence of immobi-
lized molecules may significantly reduce catalytic activity due to the surface shielding
effect [203,204]. Further in this paper, we briefly discuss this effect while considering
measurements of the Michaelis–Menten constant for LFIA optimization.

The third distinctive property of nanozymes is their multifunctionality. As mentioned,
nanozymes can serve as optical labels, carriers of functional molecules, and catalytic labels.
Nanozymes containing Fe3O4 can be used for magnetic enrichment of target [198,205–207],
facilitating an additional tool for LOD reduction and reducing the interference of matrix
components. Finally, some articles demonstrated that Fe3O4 nanozymes could be detected
using a magnetic signal reader [206] or photothermal detector [208,209]. Although there are
relatively few papers published about these detection methods, their application may be
promising for highly sensitive LFIAs. Registration of the magnetic signal is more beneficial
than the colorimetric signal, as it facilitates the detection of nanoparticles within the total
thickness of the membrane [21,210]. Photothermic registration is a promising approach,
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as it can be used to register nanoparticles in immunocomplexes [22,208] and increase the
peroxidase-mimicking activity of nanozymes [211].

The fourth distinctive property of nanozymes is the outstandingly high stability of
their catalytic properties at elevated temperatures [172,195], at high concentrations of
substrates [194,212] and inhibitors [171], and over a broad pH range [213,214]. Panferov
and coauthors used such high stability of peroxidase-mimicking properties of Au@Pt
nanoparticles for signal amplification in plant extracts with high endogenous peroxidase
activity [215]. All endogenous peroxidases in extracts were inhibited by elevated H2O2
concentration (>20 mM), while Au@Pt nanozymes maintained activity in 100-times-more-
concentrated H2O2. As a result, significantly lower background staining was observed,
and high LOD reduction was achieved. The use of high-stability nanozymes for post-
assay amplification is favorable, as all immunocomplexes are already formed, and harsh
conditions can be applied.

Actually, there is no “best-suited” nanozyme for LFIA (as opposed to ELISA, where
almost all articles and commercial kits use HRP). Following the speculation based on the
turnover number (Equations (4) and (5)) and experimental data [171,182], the obvious
recommendation is to use nanozymes with the highest catalytic activity. As the catalysis oc-
curs at the surface-exposed sites of nanozymes, the catalytic activity of nanozymes depends
on the size and shape of nanoparticles. It was shown for nanozymes of various chemical
nature (Fe3O4 [158], Prussian Blue [216], CeO2 [217], Pd [218]), the smaller particles tend to
have higher catalytic activity compared with larger ones because of higher surface area (for
the sane mass of material). Similarly, for nanozymes of various morphology and porosity,
the particles with higher surface area show higher catalytic activity [219–221]. However,
as there is no one accepted method for measuring nanozymes’ catalytic activity, compar-
ison of activities reported in different articles can be challenging. The discussion about
the calculation of nanozymes’ catalytic activity is still continued [126,222,223]. Jiang and
coauthors proposed the detailed protocol for measuring the catalytic activity and kinetics of
peroxidase-mimicking nanozymes [124]. In the reported protocol, the specific peroxidase-
mimicking activity is recalculated to milligram of nanozyme. Recalculation of the activity
to the unit of mass is applicable to enzymes, where each molecule is an active catalyst.
However, using a similar recalculation for nanozymes is questionable. Nanozymes can be
quantified based on the concentration/mass of particles (each nanoparticle is considered a
nanozyme unit), the concentration of components of particles (each atomic component is
considered a nanozyme unit), or the concentration of surface-exposed components (each
surface-exposed component is considered a nanozyme unit) [223]. As reported by Zandieh
and Liu [126], for 300 nm Fe3O4 nanoparticles, only 0.32% of the total Fe atoms are surface-
exposed and can catalyze the reaction. Thus, the quantification of nanozymes based on
their mass may cause a significant underestimation of activity. Because of the lack of
a commonly accepted protocol for measuring nanozymes’ catalytic activity, kcat may be
varied by six orders of magnitude! (Figure S1, Table S1). The uncertainty of nanozyme
activity quantification goes beyond the application in LFIA and requires fundamental
studies of the reaction mechanism, and the evaluation and quantification of active sites on
nanozyme surface.

However, the lack of consistency in nanozyme quantification does not hinder the
development of enhanced LFIA. While the proper kinetic characterization of nanozymes
remains an important fundamental task, the developers and users of LFIA are interested
in LOD values before and after catalysis. To avoid misinterpretation of kinetic data, the
performance of nanozymes as the catalytic label in LFIA should be evaluated by compar-
ing LOD values after and before catalysis [171,182,224]. Despite the issues with accurate
quantification of nanozymes’ activity, at least the Michaelis constant (Km, M) should be
measured for developing nanozyme-enhanced LFIA. Such measurements are often ignored
for enzymes, as the new developments rely on previously optimized protocols. However,
the kinetic parameters of nanozymes vary significantly from enzymes. The values of Km for
H2O2 for nanozymes can be two to four orders of magnitude higher than HRP [158,194,225].
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Conducting the signal enhancement using non-optimized concentrations of H2O2 (bor-
rowed from HRP protocols) will result in the performance of enhancement in non-optimal
conditions. Although the difference in Km values for TMB between HRP and nanozymes
is usually less significant, the kinetic measurements for both substrates are highly recom-
mended. Similar to the recommendations for measuring the enzyme’s kinetics [226], the
optimal concentrations of substrate for nanozymes should be in the range of 0.5 × Km to
5 × Km. [124]. The measurement for Km can be performed without disputable quantification
of nanozyme units and will ensure that enhancement is performed in optimal conditions.
Some protocols report the use of two-to-three-order-of-magnitude-higher concentrations
of H2O2 in the substrate solution for LFIA enhancement compared with conventional
ELISA [169,224,227]. The presence of adsorbed molecules on the surface of nanozymes sig-
nificantly reduces catalytic activity [203,204]. The adsorbed molecules shield the nanozyme
surface, thus reducing substrate availability and increasing the Km value [228]. There-
fore, kinetic characterization should be performed with the conjugated nanozymes, not
bare particles.

The surface recuperation method can be used to restore the nanozyme activity after
conjugation [177,229,230]. Surface recovery is performed in a post-assay manner and
includes the chemical reaction for coating seed particles with bare metal surface. This
approach was used for the deposition of Pt-layer and in situ synthesis of catalase-mimicking
nanozymes for ELISA-like [229] and LFIA [177]. Fu and coauthors [230] proposed a two-
stage post-assay enhancement approach that combines the consequent performance of gold
enhancement and the peroxidase-mimicking activity of enlarged bare GNPs (Figure 9).
As a result, the LOD value for E. coli O157:H7 was reduced from 5 × 103 CFU/mL to
1.25 × 101 CFU/mL for conventional GNP and nanozyme-enhanced LFIAs, respectively
(Figure 9b).
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Figure 9. In situ restoring of Au nanozyme surface. (a) Test strips after conventional LFIA with
GNP before gold enhancement (I), after gold enhancement (II), after gold enhancement and catalysis
(III). Red asterisks show the visual LOD values. The numbers below test strips correspond to E. coli
concentration from 2.5 × 105 (1) to 50 CFU/mL (15) and negative control (16). (b) Calibration plots of
three LFIAs shown in panel (a) [230].

Further anticipated progress in nanozyme-assisted signal enhancement in LFIA is
related to the development of more catalytically active and multifunctional nanozymes.
These directions partly align with the developments of fundamental nanozymology [183].
Increasing the catalytic activity can be achieved by optimization of the chemical composition
of nanozymes [102,171,188,231], creating surface-dispersed catalytic centers [101,162] or
single-atom catalysts [232,233]. Nanozymes with surface-dispersed catalytic centers [234]
and single-atom catalysts have high catalytic activity and low consumption of precious
precursors [235], making them a prospective label for LFIA and other bioanalytical methods.
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3. Post-Assay-Integrated Signal Amplification

The predominant part of the described post-assay amplifications is performed man-
ually. The analyst adds the enhancing solution to the test strip and monitors the signal
growth. Some protocols require washing the test strips before and/or after signal amplifica-
tion. Such manually performed enhancement protocols are acceptable for proof-of-concept
experiments. However, any add-ons to the straightforward, one-step LFIA procedure are
considered a drawback for real-life applications. The ultimate goal is to create a flawless
procedure between the conventional LFIA and signal amplification—i.e., the integration
of the enhancement step to the LFIA procedure. The performance of such LFIA with
integrated enhancement should be similar to the conventional assay. The user adds a few
drops of the sample to the test strips and detects the results after 10–15 min. Further in this
paper, we review the major achievements in this area and discuss the limitations of the
integrated enhancement approaches.

The attempts to integrate the signal amplification into the LFIA procedure were
reported in the early developments. Se-Hwan Paek’s group reported multiple LFIAs
with cross-flow design for enzyme signal amplification [136,236–239] and silver enhance-
ment [240]. The typical design (Figure 10a) includes a vertically arranged test strip and
the additional pads with the enhancement components applied horizontally. After the
completion of the conventional LFIA, the horizontal pads were connected to each side of
a test strip. The enhancement components were rehydrated and migrated horizontally
through the test and control zones by capillary forces. Furthermore, this group developed
a fully integrated enhanced LFIA, including portable chemiluminescent [237,239] and
colorimetric [240] detectors. Such an implementation with fully integrated LFIA could be
practically demanded as it maintains all the benefits of conventional qualitative LFIA and
requires only minor and portable accessories.
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Figure 10. Various approaches for post-assay integrated signal amplification. (a) The use of additional
membranes maintains the migration of enhancing reagents [136]. (b) Hand-driven rotatory device
for the consequent delivery of immunoreagents and enhancing reagents [241]. (c) The test strip
with wax-printed barriers for consequent delivery of immunoreagents and enhancing reagents [242].
(d) The 3D system with an additional membrane that comes into contact with the test strip and
initiates migration of enhancing reagents after completion of conventional LFIA [157].
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Additional pads were also used for the storage of enhancing reagents. Storage in
dry form can be used to increase the stability of enhancing reagents. Deng and coauthors
reported the use of sodium perborate on the membrane as a way to avoid low-stable hydro-
gen peroxide [243]. After the performance of the conventional LFIA, a fiberglass membrane
with dried luminol and sodium perborate is placed on the test strip, and a drop of water
is added to initiate hydrogen peroxide formation in situ. The additional membranes with
dried reagents were also reported for silver enhancement [81,244,245]. Wei and coauthors
used two additional glass fiber membranes soaked with AgNO3 and hydroquinone [244].
After the completion of the LFIA, the test strip was covered with the fiberglass membranes,
and water was added to rehydrate the silver-enhancing reagents. Although these protocols
with the additional membranes simplify the amplification procedure to some extent, the
enhancement procedure is not fully integrated and requires manual operations.

The next step to post-assay integrated enhancement is the combination of LFIA with
hand-powered microfluidics. For such implementations, microfluidics chips serve as a tool
for delivering signal enhancement components. Zangheri and coauthors used a polymeric
cartridge that contains all reagents to detect HRP-catalyzed chemiluminescence on the
test strip [246]. After the conventional LFIA is completed, the user simultaneously pushes
reservoirs with hydrogen peroxide and luminol. The enhancement components are mixed
and incubated on a test strip to initiate a reaction of signal enhancement. Later, these
authors used a cartridge for the performance of an automatic HRP-catalyzed chemilumi-
nescent LFIA for salivary cortisol detection onboard the International Space Station [247].
The cartridge contained all reagents, and the astronaut performed the assay by a simple
sequence of manual operations (screwing and unscrewing of nylon screws). The developed
device had a chemiluminescent reader and could facilitate the screening from sample prepa-
ration to the quantitative result. The integration of the LFIA test strip into a microfluidic
cartridge was used for HRP-catalyzed chemiluminescent detection of ochratoxin A [248].
HRP-conjugate and substrates are delivered by pressing the chambers on the cartridge and
squeezing the reagents into the test strip. A similar approach with a manually squeezing
enhancing solution was implemented for silver enhancement of LFIA for tuberculosis diag-
nostics [89]. The Fujifilm SILVAMP TB LAM test system uses a cartridge containing the test
strip and reservoirs with silver-enhancing reagents. After performing a conventional assay,
the user manually presses the buttons on the chip, causing the release of enhancement
components to the test strip (video protocol is available as a supplementary video [89]).
Zhang and coauthors developed a LFIA which requires the user to press the button to
start signal amplification [154]. By pressing the button, the test strip bends and comes
into contact with the substrate solution. The device developed by Shin and Park allows
the user to deliver multiple reagents (for assay performance, washing, and HRP-assisted
signal enhancement) by manually rotating a lid around a stationary test strip [249]. By
rotating the device, the test strip aligns with the reagents and adsorbent pads, initiating
the fluid flow. Further improvement (Figure 10b) allows multiplex detection of foodborne
pathogenic bacteria with gold enhancement. Consequent delivery of samples, conjugates,
and enhancing reagent is achieved by hand-driven rotation of the device lid [241]. The
reported microfluidics devices were used for the delivery of quite large volumes of en-
hancing solutions (40–90 µL) comparable with the volumes added manually to the test
strip. Microfluidics were utilized only as the tool for the reagent delivery and did not
serve additional goals such as assay miniaturization and reducing the operating volumes
of reagents/samples.

Important to note is that all these developments used hand-powered microfluidics.
Pumping is performed by pressing or squeezing reservoirs with the enhancement com-
ponents. Although the control over liquid migration (volume, rate of migration, mixing)
is poor compared with conventional pump-driven microfluidics, the user-friendliness
outweighs the disadvantages. Although combining LFIA with microfluidic cartridges
does not allow the performance completely automatic enhancement procedure, this ap-
proach seems an acceptable trade-off between the benefits of highly sensitive LFIA and the
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drawback of the additional manipulations. This approach was successfully implemented
in non-laboratory conditions by testing saliva cortisol on board the International Space
Station [247] and field diagnostics of tuberculosis [89], indicating that practitioners may
admit its usage. Some microfluidic devices can be used for the performance of multiple
assays, which makes them practically feasible.

In parallel with microfluidic chips, paper microfluidic devices were actively developed.
Paper microfluidic devices are actively used for various analytical tasks. In this review, we
focus on two-dimensional [155,250] and three-dimensional [125,251] paper microfluidics
for delivering the enhancing reagents. Two-dimensional systems are based on controlling
the hydrodynamic flow rate [64,252,253]. Such 2D systems facilitate controllable migration
rates of multiple flows on a single device. Yager’s group in multiple publications reported
the use of two-dimensional paper networks for the consequent delivery of reagents for
gold enhancement [254–256]. Two-dimensional paper networks are add-ons connected
to conventional test strips that act as multiple inlets, facilitating the delivery of sample,
immunoreagents, washing buffers, and gold-enhancing reagents. The consequent delivery
of the reagents can be achieved by the geometry of the paper network and by creating
dissolvable sucrose barriers [257]. The higher the sucrose concentration, the more time is
required to hydrate and overcome the barrier. The consequent delivery of the reagents
can be achieved on a single test strip without add-ons by creating channels with various
widths/path lengths. Panraksa and coauthors used wax printing to create delayed and non-
delayed channels (Figure 10c) [242]. First, the sample migrates through the non-delayed
channel (Figure 10c, shown with two blue arrows), initiating immuno-complex formation.
The central channel with multiple baffles (Figure 10c, shown with the red arrow) was
designed to facilitate the delayed migration of gold-enhancement components to the test
zone. As a result, first immunoreaction in the test zone occurs, and then the signal is
amplified by gold enhancement. The test strip contains all reagents for immunoreaction
and gold enhancement in a dry form. Thus, the performance of the enhanced assay is
similar to the conventional assay. No additional washing steps, incubations, pads, and
solutions are required. Such integrated test strips facilitating the consequent reagent
delivery for assay performance and signal amplification in “one touch” can be considered
for practical applications [57,242,258,259].

The “one-touch” silver enhancement protocol was proposed by Kim and coauthors [260].
The authors used coaxial electrospinning to form core–shell nanofibers containing a water-
soluble polymeric shell and silver enhancement components in the core. When the sample
migrates through the membrane, it dissolves the soluble shell, resulting in a time-delayed
release of silver-enhancing reagents. As a result, immunocomplexes are formed in the test
zone first, and only after that, the enhancing reagents are delivered. The authors used
commercial test strips and achieved 10-times-lower LOD.

Three-dimensional microfluidic systems utilize a more sophisticated device archi-
tecture to perform sequential delivery of reagents. Min-Gon Kim’s group proposed a
new approach for sequential, time-delayed, and automatic reagent delivery to the test
strip [157]. The authors used an additional pad with the enhancing reagents that can
physically change position and come in contact with the test strip after 6 min of sample
application (Figure 10d). The automatic change of position occurred due to the expansion
of water-swellable tape. This approach was utilized in their further developments [125].
The authors showed that this approach could be used for the automatic delayed deliv-
ery of the enhancing reagents to perform gold enhancement, HRP, and ALP-catalyzed
signal amplification.

Driven by capillary action, paper microfluidics does not require any additional instru-
ments or manipulation. However, the practical affordability of such assays is questionable.
While the construction of 2D and 3D paper microfluidics is relatively performable in labo-
ratory conditions, its massive production for commercial test systems is doubtful. Even
minor deviations from the well-established production procedures will require integrating
new equipment into the existing in-lines.
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A critical feature of integrated signal amplification systems that often remains over-
looked is the hindered ability to control the time of the enhancement reaction. When
enhancing reagents are incubated on the test strip, the user controls the reaction time with
a stopwatch. Also, the enhancing reagents are added in excess (by volume and concentra-
tion), and their concentrations do not limit the reaction. For integrated signal enhancement
(primarily for embodiments with delayed reagents delivery), the control over the duration
of “residence time” of enhancing reagent with target zones on the test strip is hindered. The
user cannot precisely determine the start (when enhancing reagents were delivered) and
end (when enhancing reagents were washed) of the enhancement. As a result, the duration
of the enhancement procedure may vary from test strip to test strip. Often, the enhancement
time is not even reported by authors. Also, the delayed delivery of enhancing reagents with
the additional flow may cause potential bias. Laminar migration of enhancing reagents
does not allow adequate mixing. Thus, gradients of concentrations of enhancing reagents
during their rehydration are expected along the flow. As a result of these two biases, the
enhancement may be less reproducible and facilitate lower LOD reduction. Comparative
studies of analytical performance (time, LOD, background) of various integrated signal
amplification and conventional incubation with enhancing reagents are needed.

4. Comparison and Assessment of the Enhancement Approaches

After discussing the existing post-assay enhancement approaches, we focus on the com-
parative assessment of these approaches and discuss their applicability to POC conditions.
We mention some limitations of the enhancement approaches and the idea of post-assay
enhancement in general and end up with proposals for overcoming these limitations.

4.1. Quantitative Evaluation of the Improvements Reached by Different Enhancement Approaches

Although the signal amplification mechanisms are different, the enhancement ap-
proaches can be compared using quantitative parameters such as LOD values and time of
enhancement. The comparison of the values of colorimetric signals cannot be performed re-
liably between articles, as the authors use various ways to record and quantify these signals.
Having reviewed the articles published by June 2023, we selected 130 articles reporting
LOD enhancement (Table S2) and 151 articles reporting amplification time (Table S3). For
the comparative assessment of the enhancement approaches, we used LOD reduction
values (Figure 11a) and time required for enhancement performance (Figure 11b). The
absolute LOD value is determined by the affinity of immunoreagents, types of membranes,
and conditions of LFIA. Thus, we argue that only the comparison of LOD reduction values,
not absolute LOD values, is acceptable. We collected only LOD reduction made by using
the same immunoreagents. We did not use the data where the authors reported the LOD
reduction compared with the commercial LFIA or with literature-reported results with
different immunoreagents. The comparison of LOD values with ELISA (even made with
the same reagents) was not used. Also, we compared only LOD obtained in the same
sample composition (buffer or matrix). The selected methodology facilitates the evaluation
of the impact of the enhancement approach only, without biases arising from the affinity of
reagents, the influence of matrix components, etc.

The time of chemical enhancement was mined from the materials and methods sec-
tion. Only enhancement time (not the whole assay time) was collected. The results are
summarized in Figure 11 and Tables S2 and S3.

Most articles report LOD reduction in the range of one to three orders of magnitude
(Figure 11a,b). Such a significant LOD reduction is usually achieved in less than 10 min
(Figure 11c,d). None of the approaches is beneficial in terms of LOD reduction. One needs to
consider all advantages and limitations (Table 1) while selecting the enhancement strategy
in each case (e.g., type of matrix, required LOD value, target audience, cost of the enhanced
assay, etc.). The availability of reagents, properties of matrices, type of target, and many
other parameters dictate the selection of the enhancement approach. The area of post-assay
signal amplification is still actively developing. For example, the post-assay crosslinking
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approach (Section 2.2.1) was introduced recently, and all three articles [111–113] were
published between 2019 and 2023. Many thorough articles focusing on the improvement
of the existing and well-known approaches were published [51,56,261]. New types of
highly active [262,263] and multifunctional [205,264] nanozymes have been developed for
bioanalytical applications. The performance of post-assay signal amplification significantly
broadens the applicability of LFIA in practice, facilitating affordable diagnostics [8].
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Table 1. Comparison of the post-assay chemical enhancement strategies.

Enhancement
Strategy

Range of LOD
Reduction, Times

Duration of the
Enhancement Stage, Min Comments

Copper
enhancement 7.5–40,000 3–15

• High stability of enhancement reagents.
• No inhibitors were reported.
• Results readout should be done after

completion of the enhancement procedure.
• The approach has been characterized in a small

number of studies.

Silver
enhancement 2–1000 2–30

• Low shelf life of enhancement reagents.
• Light-sensitive reagents.
• Enhancement is inhibited by chloride and

phosphate ions.
• Enhancement solutions are available as

commercial products.
• Silver enhancement reaction can be terminated

for delayed result readout.
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Table 1. Cont.

Enhancement
Strategy

Range of LOD
Reduction, Times

Duration of the
Enhancement Stage, Min Comments

Gold enhancement 1.68–1024 1–10

• High stability of enhancement reagents.
• No inhibitors of the enhancement reaction

were reported.
• Enhancement is faster compared to

other strategies.
• Results readout should be done after

completion of the enhancement procedure.
• Enhancement solutions are available as

commercial products.

Enzyme
enhancement 4–1000 0.5–25

• High stability of enhancement reagents in a dry
form. The stability of substrate solutions
should be evaluated.

• Matrix components may inhibit the
amplification reactions. Selection of the
enzyme label should be done based on the
endogenous enzyme activity of the matrix.

• Results readout should be done after
completion of the enhancement procedure.

• Enhancement solutions are available as
commercial products.

Nanozyme
enhancement 1.7–50,000 0.5–30

• High stability of enhancement reagents in a dry
form. The stability of substrate solutions
should be evaluated.

• Optimal concentrations of the substrates
should be evaluated.

• Matrix components may inhibit the
amplification reactions.

• Results readout should be done after
completion of the enhancement procedure.

• Enhancement solutions are available as
commercial products.

4.2. Discrepancy in LOD-Reduction Values

Evaluating the results of LOD reduction (Figure 11a,b), one may notice that for the
same approach (e.g., gold enhancement), the authors report LOD reduction from 2-times to
three-to-four orders of magnitude. The non-optimal performance of some enhancements
can explain such a dramatic difference in LOD reduction. As a result, the enhancement
approach does not facilitate the maximal possible LOD decrease. We suggest several
reasons explaining this discrepancy in LOD reduction (Figure 12) and suggest ways to
overcome the limitations and implement the enhancement approaches’ full potential.

Factor 1: Non-optimized time of signal enhancement (Figure 12a). The time of the
amplification is selected experimentally. The amplification time that facilitates the highest
increase of the “specific” signal (test strip after LFIA of sample with antigen, Figure 12a,
black curve) while keeping the “non-specific” signal (test strip after LFIA of sample without
antigen, Figure 12a, red curve) minimal is considered optimal (Figure 12a, area between
t2 and t3 shown in blue). Often, the developers tend to reduce the amplification time to
keep LFIA in the POC paradigm. In this case (Figure 12a, area between t1 and t2 shown
in green), the full potential of the enhancement is not realized, and the lower reduction of
LOD is obtained. On the contrary, if the enhancement reaction is performed for too long, the
increase in the “non-specific” signal limits the benefits of the “specific” signal enhancement
(Figure 12a, area after t3 shown in red). The time of the signal enhancement can vary
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significantly (Figure 11c,d). Often, the developers do not optimize the reaction time and
use the time reported in the literature. As a result, the full potential of the approach for
LOD reduction may remain unrealized. Thus, the selection of optimal time (finding the
“blue” area, Figure 12a) should be performed for each new development. The effect of
temperature during the enhancement reaction is rarely studied, while this parameter affects
the LOD reduction, background staining, and optimal enhancement time [40].
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Factor 2: Non-equal chemical conditions while performing chemical reactions of
signal amplifications (Figure 12b). In all considered amplifications, the functionality of the
nanoparticles’ surface plays a critical role. The signal enhancement is performed after the
completion of conventional LFIA, and the particles in the membrane cannot be considered
functionally homogenous. Adsorbed on the surface of nanoparticles receptors and matrix
components, the charge of particles and density of distribution on the membranes will
significantly affect the reactivity of the particles. For LFIA amplification, it means that
nanoparticles in the test zone will survive various chemical transformations. As a result,
initially homogeneous particles (size, shape, charge) will transform into heterogeneously
enlarged nanoparticles with different optical properties. This observation is applicable for
gold, silver, and copper enhancement. As a result, accurate comparison, even within one
approach, can be challenging.

The presence of adsorbed protein molecules on the GNP surface slows down the
gold enhancement reactions and results in the formation of larger, non-spherical particles
because of the non-uniform diffusion of reagents to the surface of the nanoparticles [37,38].
For nanozyme-assisted amplification, the surface blockage causes the reduction of catalytic
activities [203,204]. Thus, nanozyme particles in the test zone cannot be considered the
particles with the same catalytic properties (as accepted for bare particles) (Figure 12b). For
the enzyme-assisted amplification, the activity of enzymes after binding to nanoparticles
is rarely characterized. After immobilizing, part of the enzyme molecules loses catalytic
activity. Thus, nanoparticles with enzyme labels are catalytically heterogeneous. Therefore,
the LOD reduction with enzymes will be determined by its functionality and matrix
effect that may contain inhibitors (e.g., phosphate anions for alkaline phosphatase) and
endogenous enzymes causing background. In conclusion, the heterogeneity of functional
properties of nanoparticles results in unequal conditions for the performance of signal
amplification reactions. Such heterogeneity could be a source of the challenges in finding the
optimum amplification time. Further progress in the unification of chemical amplification
methods lies in the fundamental studies of nanoparticle synthesis, functional activity, and
bioconjugation.

Factor 3: Various impacts of background signal. Background signal arises either from
the non-specific binding of immunoreagents or the interfering activity of matrix compo-
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nents. The non-specific binding of immunoreagents arises from the cross-reactivity of
bioreceptors and the high prevalence of non-target components in matrices (Figure 12c).
Background from bioreceptors’ cross-reactivity can be diminished by using highly specific
binders. The impact of the high prevalence of non-target components is a more common
problem, as the target molecules are presented in the micro-to-pico molar range on the
background of two-to-four orders of magnitude more concentrated non-target components.
As the conventional LFIA does not have additional washing steps to exclude non-target
components, the issue of non-specific binding is especially challenging. As a result of
such binding, nanoparticles are non-specifically accumulated in the test zone. Usually,
for conventional LFIA, the concentration of nanoparticles is low enough to generate a
non-detectable signal. After chemical enhancement, both specific and non-specific signals
are increased. The increased non-specific signal limits the LOD value. Unfortunately, there
is no signal solution for this problem. Various blocking agents (BSA, skimmed milk, gelatin,
DNA from salmon sperm, PEGs) and detergents (Tween, Triton, SDS) are used in buffer
and membrane pretreatment. Elimination of background remains the issue of optimization
for each LFIA development. Some matrix components may interfere with the performance
of chemical amplification reactions. For example, natural peroxidases in biosamples (raw
food components, plant extracts) will interfere with peroxidase-mimicking nanozymes
and HRP-assisted signal amplification. Natural peroxidases catalyze the oxidation of the
substrate, resulting in the significant increase of background coloration (signal) that may
completely mask the “target” coloration from the nanozyme/enzyme label. In conclusion,
the observed discrepancy of LOD reduction is a complex problem that arises from the func-
tional heterogeneity of nanoparticles, unequal conditions during chemical enhancement,
and matrix effects.

4.3. Proposal of Additional Studies in LFIA with Post-Assay Enhancement

We argue that in addition to the fundamental studies and development of new en-
hancement approaches, four types of comparative research (a–d) are important for the
accurate evaluation of enhancement approaches.

(a) Comparison of various enhancement approaches performed with the same antigen
and immunoreagents.

Most articles report the development of only one enhancement approach applied for
one antigen. This format is applicable for demonstrating the benefits of the particular
enhanced LFIA over conventional assay. However, the lack of articles comparing the
enhancement approaches hinders the evaluation of their performance. It is necessary
to rank the enhancement approaches in terms of LOD reduction, time of performance,
applicability in various matrices, etc. For example, many labels have been studied in
ELISA [150,265–267] (enzymes such as HRP, ALP, β-galactosidase, acetylcholinesterase,
catalase, penicillinase). However, at the moment, the set of labels has narrowed down to
HRP and partially ALP, while the other enzymes could not stand the competition due to low
sensitivity, poor stability, high price, safety issues of substrates, etc. Similarly, enhancement
approaches for LFIA should be evaluated and ranked. To do this, the comparison of various
enhancement approaches performed by the same developer for one target using the same
immunoreagents is required.

Currently, very few articles report the comparison of enhancement approaches. Phan
and coauthors compared the performance of silver and copper [92] and gold and copper [97]
enhancement approaches for dot blot paper assay. The authors report higher LOD reduction
for copper enhancement, comparable time for copper and silver enhancement, and a more
rapid procedure for gold enhancement. Tian and coauthors compared silver and copper
enhancement using commercial and self-made test strips [99]. Han and coauthors [268]
compared the performance of gold enhancement (Figure 13A), HRP (Figure 13B), and ALP
(Figure 13C) enhancement for colorimetric signal amplification in LFIA. The authors did
not report LOD values for all three enhancement approaches. However, as can be seen from
calibration plots, HRP enhancement facilitates the highest enhancement of colorimetric
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signal at low concentrations. ALP enhancement showed the lowest signal amplification
among all three studied.
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In theory, multiple post-assay enhancement approaches can be combined and per-
formed consequently, although very few papers have studied such combinations exper-
imentally. Panferov and coauthors have shown that combination of silver enhancement
(Figure 1b) and consequent galvanic replacement of silver with HAuCl4 (Figure 1c) facili-
tates 61-times-lower LOD compared with GNPs and 7-times-lower LOD compared with
LFIA after silver enhancement [40]. Fu and coauthors [230] consequently performed gold
enlargement and nanozyme amplification. The LOD values of E. coli O157:H7 were reduced
40 times compared with GNP and 10 times compared with gold enhancement.

Important to note is that both papers were not dedicated to combining multiple en-
hancement approaches. Panferov and coauthors [40] studied the various approaches to
enlarging GNPs. Fu and coauthors [230] proposed an approach to restore the catalytic sur-
face of nanozyme in situ. It remains unclear if the combination of enhancement approaches
has an additive effect on LOD reduction. However, the increase in time and cost of reagents
will be additive. As a result, more complex LFIA for multiple post-assay enhancements
raises questions about the practicality of such a combination.

(b) Comparison of one enhancement approach for various antigens in different matrices
performed by the same group.

Most articles use one antigen to demonstrate the benefits of the enhancements ap-
proach. Comparison of LOD values for one enhancement strategy for various antigens
in different matrices is important, as it demonstrates the impact of matrix components
on enhancement. Although some papers report the use of enhancement approach for
LFIA of various antigens (for example, prostate-specific antigen and carcinoembryonic
antigen [182]; Escherichia coli O157:H7, Staphylococcus aureus, Salmonella typhimurium, and
Bacillus cereus [241]; myoglobin, cardiac troponin I, creatine kinase MB isoenzyme [177]), the
compared antigens were in the same matrix. Comparison of LODs for such cases does not
allow the evaluation of the impact of matrix components on signal enhancement reaction.

(c) Quantitative comparison of research (a) and/or (b) performed with an interval of time.

Such a comparison must be performed using stored and freshly prepared stock solutions
of enhancing reagents. This experiment focuses on evaluating the stability of enhancing
reagents and immunoreagents during storage. While the high stability of antibodies and GNP
conjugates are often reported in the articles (and confirmed by the number of commercially
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available products), the stability of enhancing reagents usually remains undiscussed. The
authors usually report using freshly prepared enhancing reagents to avoid the negative effect
of storage. For further application in commercial products, one needs to measure the stability
of enhancing reagents and find solutions to increase their stability if required.

(d) Comparison of the enhancement approach for one target using the same reagents
performed by different groups.

With the growing concerns about reproducibility in science, it is crucial to evaluate the re-
producibility of enhancement approaches. Similar research has been performed for ELISA [269],
PCR [270], and biosensors [271]. The comparison experiment is focused on the study of the
reproducibility of LOD values, time of amplification, the amplitude of the enhanced signal,
background, linear range, etc., for each approach performed by independent laboratories.

5. Development and Validation of Enhanced LFIA

Highly sensitive assays (down to a single molecule) are a trend in bioanalytical chem-
istry [272], although one may question the practical necessity of such ultra-sensitive assays.
Indeed, the set of targets that need to be detected at the level of single molecules is limited
to some pathogens. The predominant set of targets needs to be detected in the pico-to-nano
molar range, i.e., at least six orders of magnitude higher than the single molecule level. How-
ever, ultra-sensitive assays for the detection of target analytes are in demand because they
facilitate the detection of oncoming health threats before symptoms arise and allow doctors to
take preventive measurements. Also, ultrasensitive detection allows the analyst to dilute the
matrix with buffer for the reduction matrix effect. Finally, even if the ultrasensitive detection
is not practically needed for the particular target (e.g., human chorionic gonadotropin), the
developments show a proof of concept that can be further applied to required targets [11].

However, such a race for ultra-low LOD values often sacrifices proper approbation
and validation of the enhanced LFIA. We suggest a workflow of experiments for char-
acterizing newly developed enhanced LFIA (Figure 14). The workflow starts with the
quantification of LOD value for conventional LFIA (Figure 14a), optimization of post-assay
enhancement (Figure 14b), quantification of LOD value for enhanced LFIA (Figure 14c),
measuring accuracy of enhanced LFIA (Figure 14d), and validation of enhanced LFIA using
real samples (Figure 14e). We argue that this is a required minimum for reporting enhanced
LFIA. Note that the proposed workflow focuses only on post-assay chemical enhance-
ment. The methodological recommendations about the development of conventional LFIA
(i.e., all steps before quantification of LOD, Figure 14a) can be found in tutorials [273–275].

1. Determination of the LOD value before enhancement for conventional LFIA in the
matrix (Figure 14a). LOD is a quantitative value that is determined as the target con-
centration that facilitates the coloration higher than the coloration of the blank probe
(Ablank) plus three standard deviations of blank (SDblank). From our experience, LFIA
with even minimal Ablank is poorly applicable for post-assay signal enhancement, as
it results in a high background. Often visual LOD of LFIA is reported. Visual LOD
is determined as the lowest analyte concentration facilitating detectable by bare-eye
coloration of the test zone. Although visual evaluation of test strips remains com-
mon in practice (e.g., pregnancy test screening, SARS-CoV-2 antigen rapid tests), for
scientific developments, LOD quantification is recommended. Visual LOD determina-
tion will be subjective and depend on the visual acuity, brightness of environment
light, matrix coloration, etc. Additional optimization for elimination Ablank before
proceeding further with post-assay chemical enhancement. Determining LOD in the
matrix, not the buffer, is important, as matrix components may cause higher Ablank.
To perform the first stage, the matrix is spiked with the known concentrations of the
target. Each concentration is measured at least in three repeats. As a result of this step,
the developer must have the LOD value of LFIA in the matrix.

2. Optimization of chemical enhancement (Figure 14b). At least two parameters need
to be optimized—concentrations of enhancing reagents (Figure 14b(I)) and reaction
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time (Figure 14b(II)). For the particular enhancement, other variables (e.g., pH of
the solution, presence of stabilized agents, method of signal enhancing solution
introduction, temperature, etc.) need to be optimized, but here we focus on general
parameters. Optimization of the signal enhancing reagents can be performed within
the recommended ranges of concentrations and reaction time (Figure 11c,d). For
these experiments, at least two samples are used. The first sample should contain the
target in a concentration close to the LOD value. The second sample should be an
unspiked matrix (blank probe). The goal of the optimization is to find the conditions
that facilitate the highest signal enhancement for the first sample (marked with an
asterisk) while keeping no signal for the second sample.

3. Determination of the LOD value after enhancement (Figure 14c). The LOD value for
the optimized procedure (second stage) is determined as described in the first stage.
Importantly, the developers should use Ablank and SDblank values for enhanced LFIA,
not for conventional, otherwise, the LOD value will be miscalculated. LOD reduction
is calculated by dividing LOD values before and after enhancement. It is crucial to
understand which LOD values can be compared for reporting enhancement effect. Often
authors compare enhanced LFIA with “conventional” GNP-based LFIA, commercial
test systems, or even LFIA published in other publications. We claim that LOD values
should be compared exclusively between LFIA assembled with the same membranes
and immunoreagents. Thus, all comparisons with literature and commercial test systems
are eligible to show the superior analytical performance of developed LFIA but not the
enhancement strategy. For reporting the benefits of the enhancement approach, it is
necessary to compare LOD values within a single study. Also, one needs to understand
the principles of signal amplification to compare LOD values before and after accurately.
For example, for gold/silver/copper enhancement, one needs to compare the LOD values
of LFIA with GNPs before and after the reduction of corresponding salts. Ideally, the
same test strips should be used. For nanozyme signal amplification, one needs to compare
LOD values before and after the addition of the substrate. The comparison of LOD values
for nanozymes after catalysis with GNP will not be accurate because nanozymes as the
optical label (before catalysis) may have different LOD values compared to GNPs. Thus,
the developers need to clearly understand the principle of signal amplification and only
compare LOD values before and after amplification within one strategy. To perform
this stage, the developer spikes the matrix with the known concentration of the target
and prepares the number of consequent dilutions (titration) as described for stage one.
Ideally, calibration plots for LFIA before (stage 1) and after enhancement (stage 3) and
LOD calculations should be performed in parallel using the same stock solution. Such
performance in parallel will reduce the impact of determinate and indeterminate errors.

4. Determination of the accuracy of LFIA before and after enhancement using the spiked
matrix (Figure 14d). Using the calibration plots (stages 1 and 3 for LFIAs before and
after enhancement, respectively), the developer determines the linear range based on
correlation coefficient (R2 ≥ 0.9×) [276]. After that, multiple artificially spiked matrix
samples are prepared with the target concentration within the linear range. Then,
conventional and enhanced LFIAs are used to quantify the target concentrations. The
results can be shown as added–detected (in percent) or in a graphical way (added
concentration vs. detected concentration). Values close to 100% in added–detected or
R2 ≥ 0.99 for a graphical representation are expected for accurate LFIA.

5. Validation of conventional and enhanced LFIAs using real samples (Figure 14e). This
stage aims to confirm the practical benefits of the enhanced LFIA over conventional
LFIA. As the practical benefits, we understand the ability of enhanced LFIA to detect
low-positive samples, while conventional LFIA report false negative results due to
insufficiently low LOD value. To perform this stage, real samples containing the target
in a wide range of concentrations (true positive) and without the target (true negative)
are used. The concentration of the target (or at least the qualitative results) should be
confirmed by an independent method (PCR, ELISA). The results of the independent
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method are considered the reference—i.e., true positive (presence of the target) and true
negative (absence of the target). Ideally, the developer should be blinded and perform
LFIA without knowing the results of the independent method. The qualitative (number
of true positive/negative and number of false positive/negative) and quantitative
(concentration of the target) results of conventional and enhanced LFIAs are compared
with the independent method. One expects a higher number of true positives (lower
number of false negatives) for enhanced LFIA compared with conventional LFIA because
of lower LOD. Also, the number of false positives should be the same, meaning that the
enhancement procedure does not sacrifice the specificity of the assay.
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of components in enhancing solution are used for signal amplification in positive (+) and negative (−)
LFIA. Optimal concentration facilitates the highest amplification for (+) while keeping the signal for
(−) minimal (I). The optimal concentration is shown with an asterisk. Optimal enhancement time is
selected using an optimized enhancing solution. Optimal enhancement time facilitates maximal signal
amplification for (+) while keeping signal for (−) minimal (II). The optimal time is shown as the blue
area and marked with an asterisk. (c) Determination of LOD of enhanced LFIA. (d) Determination
of the accuracy of enhanced LFIA. Matrix is spiked with the known concentration of the antigen.
Afterward, the concentration is determined by enhanced LFIA. Correlation between spiked and
measured concentrations is characterized quantitatively with R2 coefficient (I). The concentration of
antigen is measured in real samples with reference methods and enhanced LFIA. Correlation between
concentrations measured by the reference method and enhanced LFIA is characterized quantitatively
with R2 coefficient (II). (e) Detection of antigen is performed in real samples with conventional and
enhanced LFIA. Qualitative and/or quantitative characterization of real samples is performed by
the reference method. The number of true positive and negative, false positive and negative, and
specificity and sensitivity are calculated for conventional and enhanced LFIA.

Similarly to the article of Bustin and coauthors [277], we suggest the minimum infor-
mation that needs to be disclosed in an article reporting post-assay LFIA enhancement. The
report should contain detailed information about the following:

Reagents—supplier, purity, reference/catalog number. If any purification or derivati-
zation procedures were performed, they should be reported.

Enhancement procedure—the authors should report a detailed enhancement protocol
that includes information about the concentration, volume and type of buffer of enhancing
reagents, storage conditions of enhancing reagents, the temperature during enhancement,
the necessity of washing before and after enhancement, known inhibitors of enhancement
reaction, and time of enhancement reaction. The detailed procedure for matrix preparation
should be reported. In addition to this list of the minimum required information, if anything
else is important for the reproducibility of the enhancement approach (e.g., the order of
mixing of enhancing reagents), it should be reported.

6. Conclusions and Perspectives

Lateral flow immunoassay has been come a long way since its introduction as a rapid
pregnancy screening tool. Today, LFIA rapid tests are used in medicine, veterinary, food
control, and environmental monitoring. The COVID-19 pandemic sharply emphasized the
need for accessible and affordable screening tools [8]. Billions of LFIA tests were performed
during the pandemic, making LFIA an indispensable instrument in the test-trace-isolate-
quarantine strategy [278]. As a self-testing tool, LFIA demonstrates good acceptability
by patients/end-users [279,280], which makes it perfectly suitable for a wide scope of
applications. Increasing the sensitivity of LFIA is an inevitable requirement for further
broadening its application areas.

The prospects for post-assay chemical enhancements lie in the development of new,
more effective, and affordable methods. All bioanalytical methods include a signal am-
plification step—polymerases multiply the number of nucleic acids in PCR, and enzymes
catalyze the reaction of product to subtract transformation in ELISA and biosensors. All
these methods borrow “biological” amplification—approaches used by cells. Post-assay
amplification in LFIA steps out of the line, as, in addition to biological amplification
approaches (enzyme amplification), it mainly relies on “non-biological” amplification
(silver, gold, copper enhancement, crosslinking of nanoparticles, nanozymes). Further
developments of post-assay enhancement approaches may follow both ways—borrowing
“biological” amplification or applying “artificial” amplification principles.

Considering “biological” amplification, PCR-amplification facilitates exponential am-
plification of the number of detectable targets. Various types of PCR-like amplification are
performed before LFIA, while the test strips are used only to detect the amplified target
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sequences [281]. However, PCR-like amplification has not been utilized for post-assay
signal enhancement on the test strip in situ. Recent developments demonstrated the per-
formance of PCR-like amplification of nucleic acid in the integrated test strip holder [282].
Also, Posner’s group developed multiple assays with isothermal nucleic acid amplifica-
tion and consequent purification on the paper device [283–285]. Utilizing the principle of
immuno-PCR [286], where nucleic acids act as an amplifiable tag, this approach can be
used for highly sensitive LFIA of various targets. The further development of post-assay
PCR amplification (e.g., use of isothermal polymerases) may provide a new, highly efficient
signal enhancement approach.

Considering “non-biological” amplification, progress is related to the improvement
of the existing enhancement approaches and the development of new ones. For example,
the improvement of the gold, silver, and copper enhancement approaches is related to the
development of low-background protocols and stable, ready-to-use enhancing solutions.
Such efforts require a more detailed fundamental study of metal overgrowth, kinetic of
nanoparticles growth, colloidal stability of nanoparticles, etc. Considering the development
of new approaches, developments in related areas of signal amplification can be adapted
for LFIA, e.g., radical polymerization [287].

Also, the further progress of post-assay enhanced LFIA is undoubtedly related to
the development of more user-friendly amplification protocols and their application in
commercial products. The developers may even sacrifice the sensitivity to get a more
user-friendly test system.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13090866/s1, Table S1: Turnover numbers for HRP and
nanozymes; Figure S1: Characteristics of nanozymes as the catalytic labels; Table S2: LOD values for
various enhancement methods; Table S3: Time of various enhancement methods.
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