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Abstract: Single-nucleotide polymorphisms (SNPs), the most common form of genetic variation
in the human genome, are the main cause of individual differences. Furthermore, such attractive
genetic markers are emerging as important hallmarks in clinical diagnosis and treatment. A variety
of destructive abnormalities, such as malignancy, cardiovascular disease, inherited metabolic disease,
and autoimmune disease, are associated with single-nucleotide variants. Therefore, identification of
SNPs is necessary for better understanding of the gene function and health of an individual. SNP
detection with simple preparation and operational procedures, high affinity and specificity, and
cost-effectiveness have been the key challenge for years. Although biosensing methods offer high
specificity and sensitivity, as well, they suffer drawbacks, such as complicated designs, complicated
optimization procedures, and the use of complicated chemistry designs and expensive reagents,
as well as toxic chemical compounds, for signal detection and amplifications. This review aims to
provide an overview on improvements for SNP biosensing based on fluorescent and electrochemical
methods. Very recently, novel designs in each category have been presented in detail. Furthermore,
detection limitations, advantages and disadvantages, and challenges have also been presented for
each type.
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1. Introduction

Single-nucleotide polymorphisms (SNPs) are the most common form of genetic varia-
tions in human genomes [1–4]. SNPs were first discovered in 1980; restriction endonuclease
assays were used to determine the presence or absence of DNA cleavage sites in the past [5].
SNPs account for approximately 90 percent of the human genome, and a great deal of them
were explored during the period of the Human Genome Project [6]. SNPs are highly univer-
sal in the human DNA polymorphisms, with a frequency of about 1 in 1000, and they have
an abundance of 1% or more at the lowest frequency in the human population [6]. They
have received considerable concern in all fields, such as drug toxicity, genetic variation,
and human diseases, and SNPs are becoming important markers in clinical diagnostics and
genetic research [7–10]. Therefore, the identification of SNPs is necessary for early clinical
diagnosis, effective treatments, and better understanding of the gene function and health
of an individual [8,11–15].

It has been reported that SNPs are frequently difficult to distinguish because of differ-
ences in only one base in the DNA sequence, corresponding to different alleles [16]. The
specificity, sensitivity, and cost-effectiveness of method designs are decisive measures for
improving SNP detection [17,18]. Moreover, it is crucial to exploit efficient assessment meth-
ods to detect SNPs in complicated genomes. The predominantly frequent SNP genotyping
methods, including heteroduplex analysis, allele-specific oligonucleotide hybridization,
enzymatic mismatch cleavage, oligonucleotide ligation, and single-strand conformation
polymorphism analysis, were utilized for point mutation detection [19–22].
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The main problem affecting hybridization stability is the specificity of hybridization,
as the effect of individual base mispaired double-stranded overall stability is minimal [23].
The use of probes, such as binary DNA probes, molecular beacons (MBs), and DNA ligation
forming probes, improves the stability and specificity of using structured probes compared
to ordinary complementary strands [23,24]. However, many hybridization-based reactions
cannot be multiply tested, confining the time of multiple sample interpretation [23].

In homogeneous hybridization reactions, TaqMan (TM) [25] or MB [26] probes are
used for real-time polymerase chain reaction (RT-PCR) fluorescence detection for SNP
genotyping. TM- and MB-based methods do not require PCR post-processing and label
separation stages, which have the advantages of high throughput [27]. The high cost of
machines and probes is the major disadvantage of this analytical method.

DNA microarrays are currently the most popular methods for SNP identification due
to their combination of high throughput and cost-effectiveness [28]. However, they are
limited by complicated procedures and lengthy operation time [29]. DNA Sequencing
can distinguish SNPs accurately and rapidly [30]. However, the sequencing process is
very expensive, especially when large numbers of samples are present. Expensive analyti-
cal instruments and sample specificity have been the key challenges for years [23,31,32].
Therefore, developing sensitive, rapid, and cost-effective methods to identify SNPs still
remains a challenge. In recent years, a variety of biosensing and SNP genotyping tech-
niques have been established. DNA biosensors offer great opportunities as an analytical
tool for genetic screening and detection [33], which have high specificity and sensitivity
over a broad spectrum of analytes [34]. Moreover, numerous SNPs in biosensors can be
differentiated by producing microarrays, leading to reduced cost and large-scale detection.
Many SNP biosensing strategies have been developed so far over the past decades. Optical,
electrochemical, and piezoelectric methods are some of the most popular transduction
techniques that have been used in fabricating SNP biosensing platforms [35,36]. In this
review, we highlight the improvements of SNP biosensing platforms, focusing on fluo-
rescent and electrochemical biosensors. The basic principles, detection sensitivity, and
specificity of the developed biosensors are described, as well as their detection limitations,
advantages/disadvantages, and challenges of biosensor-based technologies. In addition,
it covers future trends in the field of sensing, indicating the enormous potential of SNP
biosensing.

2. Biosensors for SNP Detection

DNA biosensors have been widely used in disease diagnosis, genetic variation, and
SNPs due to their high sensitivity, fast response, simple operation, and low price in de-
tecting specific sequence genes. For the past several years, various types of biosensors
have been launched in this field and are divided into several types on the basis of their
signal converter elements. The most common types of biosensors include fluorescent and
electrochemical biosensors.

2.1. Fluorescent Biosensors

As the most common type of optical biosensors, fluorescent biosensors are widely
used in SNP detection due to their inherent simple operation and high sensitivity [37–44].
In fluorescent biosensors, when the fluorescent probes bind to the target substance, the
signal is converted into a readable fluorescent signal by a transducer to achieve quantitative
detection of a specific target.

Xiao et al. developed a novel branch-migration molecular probe (BM probe) that was
capable of recognizing the existence of discovered or undiscovered single-base variations,
including in highly GC-rich sequence regions up to 0.3–1% [45]. The introduction of
the strand exchange and displacement reactions technique into oligodeoxynucleotide
(ODN) molecular probes has resulted in an unprecedented level of improving the detection
selectivity and specificity. Taking advantage of these features of toehold exchange (TE), Yu
et al. developed a fluorescent assay based on toehold-mediated strand displacement and
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nuclease-mediated strand digestion for the detection of point mutations. This detection
strategy exhibited a 50~1000-fold discrimination among all possible single-nucleotide
mutations and a detection limit of 200 pM [46].

Based on fluorescence quenching, graphene oxide (GO) has gained popularity and was
sensitive enough to detect individual base mismatches [47–50]. Huang et al. exploited both
the quenching efficacy and differential binding affinity of GO to overcome the temperature
dependence distinguishment of single-base mutations in the allele-specific hybridization-
based approach. The detection limit was 1.7 nM [51,52]. Furthermore, Krissana Khoothiam
et al. used the superquenching properties of GO to efficiently perform fluorescence SNP
detection (Figure 1). This strategy combined the designed ssDNA probe and T4 RNA ligase
to effectively distinguish between perfectly matched and mismatched base pairs in DNA
duplexes analyzed by multiple primers-mediated rolling circle amplification (MPRCA)-
GO. The detection limit for this detection strategy was 0.87 fM [53]. In addition, carbon
quantum dots (CQDs) have also been used to detect SNPs and are similar to GO based on
fluorescence quenching, and they can be leveraged to develop a cost-effective test to detect
SNPs in disease [54].
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Figure 1. Schematic of fluorescence sensing detection strategy based on the multiple primers-
mediated rolling circle amplification combined with a graphene oxide (MPRCA-GO) [53]. Copyright
2019 Royal Society of Chemistry.

To achieve higher SNP detection sensitivity, the biosensor is usually designed com-
bined with some nucleic acid amplification technique. Rolling circle amplification (RCA)
is a simple, but efficient, isothermal amplification technique that is commonly used to
amplify short DNA primers to generate many long, linear, single-stranded DNA molecules
with repetitive sequences, which are complementary to circular DNA templates [55]. Cao
et al. constructed a fluorescence analytical method combining CRISPR/Cas12a and RCA
techniques to detect single-nucleotide variants (SNVs) in the PIK3CA H1047R gene. In this
design (Figure 2), RCA is amplified with the aid of the circular probes and the primers,
mutant targets, and mixing with wild-type targets, with LODs up to 10 aM, thanks to
signal amplification. The combination of CRISPR/Cas12a and RCA technology ensured
the sensitivity and specificity for SNV detection [56].

Branched rolling circle amplification (BRCA) has been reported as superior to linear
rolling amplification due to its exponential amplification power [57]. Ma et al. coupled the
BRCA with pyrophosphate-sensitive fluorescence, generating terpyridine-Zn (II) complex
as a reporter probe. A detection limit of 0.1 pM was reported in this design [57]. Li
et al. developed a hyperbranched rolling circle amplification (HRCA)-based fluorescence
biosensor for detection of SNPs associated with the therapy of chronic hepatitis B virus
infection [58]. In addition, loop-mediated isothermal amplification (LAMP) has been
applied widely to nucleic acid detection. Sun et al. reported a simple artificial mismatched
ligatio (AML) probe combined with the ligase-assisted LAMP amplification (AML-LAMP)-
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based genotyping assay by combining the AML probe with the LAMP reaction for sensitive
and superspecific genotyping of SNVs. With the detection limit of 10 aM, the sensor was
capable of discerning up to 0.01% of mutated DNA [59], without high temperature and
complex thermal cycling equipment.

Biosensors 2023, 13, x FOR PEER REVIEW 4 of 22 
 

  
Figure 2. (a) Schematic explaining the method of the RCA-CRISPR/Cas12a technique for SNV 
detection; (b) representing the fluorescence intensity and real product photo corresponding to 200 
nM mutant and wild-type targets and blank group; (c) showing the fluorescence intensity 
corresponding to the gap-filling with different nucleotides. Reproduced with permission from [56]. 
Copyright 2021 Elsevier. 

Branched rolling circle amplification (BRCA) has been reported as superior to linear 
rolling amplification due to its exponential amplification power [57]. Ma et al. coupled the 
BRCA with pyrophosphate-sensitive fluorescence, generating terpyridine-Zn (II) complex 
as a reporter probe. A detection limit of 0.1 pM was reported in this design [57]. Li et al. 
developed a hyperbranched rolling circle amplification (HRCA)-based fluorescence 
biosensor for detection of SNPs associated with the therapy of chronic hepatitis B virus 
infection [58]. In addition, loop-mediated isothermal amplification (LAMP) has been 
applied widely to nucleic acid detection. Sun et al. reported a simple artificial mismatched 
ligatio (AML) probe combined with the ligase-assisted LAMP amplification (AML-
LAMP)-based genotyping assay by combining the AML probe with the LAMP reaction 
for sensitive and superspecific genotyping of SNVs. With the detection limit of 10 aM, the 
sensor was capable of discerning up to 0.01% of mutated DNA [59], without high 
temperature and complex thermal cycling equipment. 

To increase the discriminative ability of SNP detection, hairpins or other structural 
elements were added to the probe molecule to achieve highly selective single-base 
mutation detection [60–62]. Li and partners designed a tripartite DNAzyme ligation 
formation based on catalytic hairpin assembly (CHA) triggered by flap endonuclease 1 
(FEN1) invasion detection for specific recognition of K-ras gene fragments (Figure 3). 
Hybridization of single-base mismatched DNA of the K-ras gene with sensing probes 
inhibited the enzymatic activity of FEN1, which triggered the subsequent CHA of the 

Figure 2. (a) Schematic explaining the method of the RCA-CRISPR/Cas12a technique for SNV
detection; (b) representing the fluorescence intensity and real product photo corresponding to 200 nM
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to the gap-filling with different nucleotides. Reproduced with permission from [56]. Copyright 2021
Elsevier.

To increase the discriminative ability of SNP detection, hairpins or other structural
elements were added to the probe molecule to achieve highly selective single-base mutation
detection [60–62]. Li and partners designed a tripartite DNAzyme ligation formation based
on catalytic hairpin assembly (CHA) triggered by flap endonuclease 1 (FEN1) invasion
detection for specific recognition of K-ras gene fragments (Figure 3). Hybridization of
single-base mismatched DNA of the K-ras gene with sensing probes inhibited the enzymatic
activity of FEN1, which triggered the subsequent CHA of the three hairpins, in turn, to
form triplet ligation. In addition, fluorescence-quenched signal probes could be cleaved by
the DNAzymes cycle to restore the enhanced fluorescence response. This detection strategy
had outstanding specificity and high sensitivity, with the reported detection limit of 4.23
fM, in addition to its outstanding specificity, which was expected to become a powerful
molecular tool for early cancer diagnosis and clinical research [63].
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Wu et al. developed a selective fluorescent biosensor based on an X-shaped probe,
locked nucleic acid (LNA), and toehold-mediated strand-displacement reaction (TMSDR)
(Figure 4). The LNA-integrated X-shaped probes could be isolated from target-specific
regions and had prominent discernibility for β-thalassemia SNV. The introduction of the
TMSDR-assisted recycling amplification system significantly improved the sensitivity. The
detection limit under this strategy was up to 6 fM [64].
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Biosensors 2023, 13, 864 6 of 21

Compared with organic dyes and fluorescent proteins, nano-fluorescent materials
have excellent photostability, high fluorescence quantum yield, and size-dependent optical
properties. In addition, the large specific surface area of nanomaterials facilitates the
covalent binding of various biorecognition molecules [65,66]. The integration of SNPs
with fluorescent nanomaterials endows the biosensor with the remarkable feature of high
sensitivity.

AgNCs become suitable fluorescent nanomaterials due to their high fluorescence
efficiency, good biocompatibility, and excellent photostability [67–71]. Liu et al. devel-
oped a novel AgNCs-based fluorescent biosensor for SNP identification. They created
a fluorescence mechanism based on AgNCs and were able to form nanocluster dimers
(NCDs) (Figure 5). When the interactions between SNPs occurred at diverse positions,
NCD increased the fluorescence intensity because of the spacing between the two AgNCs.
As the mismatched base position in the target DNA gradually moved, the fluorescence
intensity of NCD decreased proportionally. This technology uses nanocluster probes to
precisely locate the positions of different SNPs in a sensitive, low-cost, and enzyme-free
manner [72]. In addition, Guo et al. developed a DNA probe with an inserted cytosine loop
as double-stranded scaffolds to generate fluorescent AgNCs. The generation of fluorescent
AgNCs was highly sequence-dependent and could specifically identify single-nucleotide
mutations located outside the two bases of the nanocluster formation site, the sickle cell
anemia mutations [73]. For further applications of AgNCs in the detection of SNPs, Mar-
tinez and colleagues also reported a novel fluorescent molecular probe for a nanocluster
beacon (NCB), which emitted different colors when bound to SNP targets. Depending on
the recognition of AgNCs with DNA enhancer sequences, the fluorescence emission color
of NCBs could transform significantly. This SNP assay has been varied in three synthetic
DNA targets and six disease-associated SNP targets [74].
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based on different nanocluster beacons; (b) Fluorescence spectra of NCD-1, NCD-2, NCD-3, and
NCD-4 after hybridization; (c) Fluorescence intensities of NCD-1, NCD-2, NCD-3, and NCD-4
after hybridization at maximum emission. Reproduced with permission from [72]. Copyright 2017
Analytical Chemistry.

The common fluorescent metal nanoclusters mainly include gold nanoclusters (AuNCs),
silver nanoclusters (AgNCs), and copper nanoclusters (CuNCs). Due to their good photo-
stability and biocompatibility, metal nanoclusters are widely used as fluorescent probes for
chemical sensing and biological detection [75]. Among metal nanoclusters, CuNCs are con-
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sidered to be very promising green nanomaterials due to their rapidly in situ production,
low price, and non-toxicity. In addition, DNA-mediated fluorescent CuNCs synthesis with
large Stoke shifts has great potential to diagnose nucleic acids in biosensor systems [76,77].
Recently, Chen et al. established a fluorescence detector for diagnosing spinal muscular
atrophy (SMA) based on the poly-T-mediated CuNCs (Figure 6). They used molecular
inverted probes to identify nucleotide variations in genes and perform roll-around amplifi-
cation with primers to produce poly-T single-stranded DNA. The fluorescence of CuNCs
was detected only existing in the SMN1 gene. This strategy was well adapted to a valid
and specific method of 65 DNA samples in clinical trials [78]. In addition, Jia et al. reported
that dsDNA-based copper nanoclusters (CuNCs) could identify mismatches in DNA se-
quences. For the dsDNA-templated CuNCs, the fluorescence intensity is closely related to
the base type located in the groove. The results of this study provided sensitive and rapid
fluorescence detection of the mismatch types in specific DNA sequences [79].
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SNPs have been confirmed in quantum dots (QDs) in microarray format. The result
showed that due to the large size of quantum dots, the surface density was lower, so that
the sensitivity of the QD-labeled sensor was lower than that of fluorescent dye labeling [80].
In order to effectively distinguish between fully matched DNA and mismatched DNA,
Guo and coworkers used streptavidin-coated quantum dots (strAV-QDs) to label fixed MBs
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to detect SNPs on target DNA sequences, which had an increased signal–noise ratio to 8,
and the detection limit as low as 10 pM, exhibiting a genotype-dependent fluorescence
signal [81].

Genetic testing in clinical practices demands efficient screening methods that meet
the requirements of point-of-care testing (POCT) strategies. On this ground, different
detection platforms with simple architecture and less expensive instruments have been
developed [82,83]. Watterson et al. developed a disposable fiber-optic biosensor for SNP
detection associated with SMA. The system used total internal reflection fluorescence (TIRF)
to identify motifs capable of distinguishing PCR specimens of 202 base pairs acquired
from patients. Real-time and significant discrimination can be performed with widely
varying ionic strengths, significantly reducing reaction time and enabling evaluation to be
completed in less than 1 min [84,85].

For a comparison, Table 1 summarizes the fluorescent strategies used for SNP detec-
tion.

Table 1. Fluorescent biosensors with various signal amplification strategies for mutation detection.

Signal Amplification Strategies Target Mutation LOD Ref.

CRISPR/Cas12a with RCA SNV of the PIK3CA
H1047R 10 aM [56]

Invader assay-induced multiDNAzyme
junctions SNP 4.23 fM [63]

Universal locked nucleic
acid-integrated X-shaped

probe
SNP 6 fM [64]

Core-shell gold nanocube (AuNC) and
plasmon-enhanced fluorescence (PEF) SNP 1.3 pM [86]

RT-PCR associated with G-quadruplex RCA Multiple SNPs 8.3 fg [87]
Fluorescence polarization (FP) and

target-initiated rolling circle amplification
(RCA)

KRAS G13D and
G12D mutations 5.88 pM [88]

Multiple primers-mediated RCA coupled
with a graphene oxide-based fluorescence Multiple SNPs 0.87 fM [53]

2.2. Electrochemical Biosensors

Biosensing methods based on electrochemical transduction mechanisms have been
reported to be sensitive, selective, rapid, and amenable to miniaturization and experimental
convenience [89–94]. A variety of strategies aiming at improving the target recognition and
signal transduction performance have been developed [95–99]. Owing to the features of
enzyme-free, LNA-integrated, and toehold-mediated SDR techniques, Gao et al. devel-
oped a reusable DNA sensor for SNP detection. This biosensor not only offered specific
discrimination for SNP detection, but also was able to function even in contaminant-ridden
samples, such as human urine, soil, saliva, and beer [100].

Zhao and colleagues developed an ultrasensitive electrochemical method to detect
point mutations in the K-ras gene by combining streptavidin horseradish peroxidase
(streptavidin-HRP)-modified SiO2 nanoparticles and DNA polymerase in the sandwich
design. In this design (Figure 7), the streptavidin-HRP-SiO2 nanoparticles had the effect of
amplifying the signal. HRP reacted catalytically with 3,3’,5,5’-tetramethylbenzidine (TMB)
to produce an electrochemical signal. A wide linear range (0.001–100 pM) and 0.42 fM
detection limit was reported under this design [101]. Its simplicity and cost-effectiveness
give it an advantage over PCR-based assays.
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To solve the problem of interference by trace mutants and endogenous substances
in actual samples, Liu et al. proposed a unique DNA point mutation detection strategy
based on the ligase chain reaction (eLCR) of novel electrochemical biosensors. In this
design, a porous monolayer was constructed by modifying bovine serum albumin (BSA)
molecules on gold electrodes, which relied on Au-S bonds to link double-stranded DNA
generated by LCR. This method identified mutations in the CYP2C19 gene (G681A) with
remarkable specificity and sensitivity, without the involvement of pre-PCR. The detection
limit of this sensing method was 0.5 fM. Due to its advantages of simple primer design,
easy handling, and easy miniaturization, it has potential applications in clinical analysis
and genetic diagnosis [102].

PIK3CA gene mutation is one of the most common mutated types in human cancers,
and its presence is often associated with low survival in patients. Wang and colleagues
proposed an original electrochemical sensor for specific and ultrasensitive detection of
mutations in the PIK3CAH1047R gene, based on NsbI-restricted endonuclease-mediated
strand displacement amplification (NsbI-SDA) and four-way DNA ligation to enhance the
electrochemical response (Figure 8). It achieved ultra-sensitive detection by embedding
methylene blue (MB) electroactive molecules in four-way DNA ligation to form a sandwich
structure. With a detection limit of 0.001%, this biosensing method can be used to analyze
mutated genes incorporated into human serum samples, demonstrating promising use in
sensing analysis and clinical applications [103].

Liu et al. proposed an oligonucleotide-incorporated non-fouling surface (ONS) to
avoid nonspecific absorption (Figure 9). Using a sixteen-electrode array, they constructed a
novel electrochemical biosensor capable of high-speed SNP testing at C680T and G681A
in the human CYP2C19 gene. Capture probes with alternative terminal bases at the
3’-terminus were designed on the electrode surface. Only complete hybridization can
ligate the two probes. A current signal sixteen times larger than the blank sample could
discriminate ten percent of the single-base mismatch sequence [104]. Wan et al. also used a
typical “sandwich” scheme and ONS engineering strategies to detect SNPs on the surface
of gold electrodes. The ligation product can be catalyzed by peroxidase into an electrical
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signal. The approach to identify only a single-base mismatch could practically distinguish
SNPs [105].
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Notably, DNA sequencing and DNA microarrays are currently the most frequently
used SNP identification means due to their high throughput and cost-effectiveness. Never-
theless, highly specific SNP detection is required, and nanotechnology-based methods can
provide a solution [28,106,107]. Nanotechnology-enhanced electrochemical sensors show
great potential in detecting mismatched base pairs in DNA [108].

DNA-stabilized gold nanoparticles (AuNPs) are widely used for SNP detection [109–113].
Han et al. developed a facile, ultrasensitive DNA biosensor based on urchin-like carbon
nanotube–AuNP-conjugated (CNT-AuNP) nanocluster signal amplification. When the
dopamine-modifying gold electrode was attached to the DNA probes, DNA-functionalized
AuNPs were led to the biosensor through DNA bases complementation. Then, CNTs with
end-modified DNA were linked with AuNPs to form 3D radial nanoclusters, which gener-
ated significant electrochemical signals (Figure 10). Due to the large contact surface area
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and ultra-strong electronic conductivity of the CNT-AuNP clusters, this 3D radial nanos-
tructure exhibited ultrasensitive detection ability, good selectivity, and excellent stability
and regeneration ability for DNA detection, which obtained a low LOD of 5.2 fM [114].
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Moreover, nanotechnology-enhanced electrochemical biosensors have shown good
prospects for distinguishing single-base mutations [108]. The application of graphene (GR)
with a proverbial two-dimensional structure in electrochemical biosensors has aroused
great interest due to its superior performance, including large surface area, easy electron
transportation, and good biocompatibility [115]. Khoshfetrat & Mehrgardi developed a
graphene–gold nanoparticle (GR-AuNPs) nanocomposite-based biosensor with a triple
amplification strategy for SNP detection. This novel design exhibited outstanding sensitiv-
ity and specificity for G-T and A-C mismatch targets, with detection limits of 2 pM and
10 pM, respectively, and this GR-based assay could play a significant role in SNP detection
for related diseases [116].

Hwang and partners developed a sensing platform for SNP label-free recognition
combining DNA nanotweezer probes with GR field-effect transistor chips to improve
analytical efficiency. This super-sensitivity assay demonstrated the ability to wirelessly
transmit SNP detection-induced electrical signals in real time. DNA nanotweezers were
fixed on the GR surface, and SNP genotyping was performed using the GR field-effect
transistor sensor. Compared to previous studies, DNA nanotweezer probes increased
sensitivity by more than 1000 times, significantly enhancing the analytical characteristics of
SNP genotyping [117].

For a comparison, Table 2 summarizes the electrochemical strategies used for SNP
detection.
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Table 2. Electrochemical biosensors with diverse signal amplification assays for mutation detection.

Signal
Transduction

Biosensor
Platform Target Mutation LOD Ref.

Amperometric Electrochemical ligase chain reaction
(eLCR)

CYP2C19 (G681A) in
human whole-blood

samples
0.5 fM [102]

Impedimetric Graphene Apo E gene G-SL: 50 nM
G-FL: 6.6 pM [118]

Impedimetric Anchor-like DNA (alDNA)
electrochemical biosensor KRAS G12D mutation 0.1 pM/100 pM

(total/mutant DNA) [119]

Amperometric PNA/ds-DNA triplex formation p53 gene 10−6 M [120]
Voltammetric MDB as a hybridization indicator VDR gene 10.9 pmol/100 mL [121]
Voltammetric HCR and SDR P53 gene 20 aM [122]

Impedimetric CRISPR/dCas9-powered impedimetric ctDNA, PIK3CA exon 9
mutation 0.65 nM [123]

Voltammetric CRISPR/cas-enhanced electrochemical
biosensor SNPs 10 fM [124]

2.3. Other Biosensors

As mentioned above, fluorescent SNP biosensors have the advantages of high sensitiv-
ity, high selectivity, and high throughput. However, they are also very sensitive to some of
the disturbances that typically occur in fluorescence measurements, such as background
fluorescence and quenching effects. In addition, the measuring equipment is usually ex-
pensive, which increases the cost of fluorescent SNP detections. For electrochemical SNP
biosensors, the electrodes can provide a platform for subsequent modification of various
materials, with the aim of improving the sensitivity, selectivity, and stability. Electrochem-
ical SNP biosensors have the advantages of low cost, fast response, high sensitivity, and
easy to miniaturize, but the modification of electrodes is relatively complicated, and the
stability of the recognition elements and detection repeatability is expected to be improved.

Besides fluorescent detection, other optical methods, such as colorimetric analy-
sis [125], surface plasmon resonance (SPR) [126], and surface-enhanced Raman spectroscopy
(SERS) [127], have been also used for SNP detection.

Colorimetric assay, a technique for the determination of biological elements in so-
lution with chromogenic reagents, has the advantages of simple operation, visibleness
by the naked eye, and no requirement of expensive or complex instruments. In recent
years, many colorimetric analysis strategies for mutation detection have been developed.
Chen et al. developed a single-step, enzyme-free, non-labeled, universal strategy for the
colorimetric detection of SNPs based on the G-quadruplex-mediated conversion of a col-
orless 2,2′-azinobis (3-ethylbenzothiozoline)-6-sulfonic acid (ABTS2-) to a green ABTS as
the reporting signal for the presence of SNPs [128]. Wu et al. developed a simple and
rapid colorimetric platform for amplified single base-pair mismatch detection based on the
aggregation of exonuclease-sheared AuNPs. When the AuNP-binding probe binds to a
perfectly matched target, the exonuclease activity of Exo III facilitates the target recovery
process, which rapidly cleaves the DNA probe from the particle, producing an AuNP
aggregation-induced color change. This change does not occur with DNA targets that
contain single-base mismatches. This platform employs an AuNP-based, exonuclease
III (Exo III)-amplified strategy to achieve colorimetric SNP detection at low nanomolar
target concentrations [128,129]. Deng et al. developed a simple colorimetric assay for
highly sensitive and specific detection of SNPs based on the separation of magnetic beads
and the specificity of a mismatch-specific CEL II enzyme (surveyors nuclease) in cleaving
mismatched (interfering) DNA duplexes to the excellent signal amplification power of
DNAzyme. A detection limit as low as 0.40 fM and a dynamic range from 1.0 to 200 fM
were reported [130].
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The use of surface-enhanced Raman scattering (SERS) has increased significantly in
the biomedical field. SERS is a powerful surface-sensitive method that relies on Raman
signal resonance caused by molecular interactions with nanostructures or rough metal
surfaces. SERS has shown great potential in the detection of unlabeled DNA. Compared
with common biological methods (such as PCR), the DNA detection has advantages of
sensitivity, specificity, and detection speed [131–134]. Ngo et al. developed a highly
sensitive nanoplatform for DNA detection and SNP discrimination based on ultrabright
SERS nanorattles and magnetic beads for malaria diagnostics. Under this strategy, a
detection limit of approximately 100 attomoles was reported [135]. Lowe et al. proposed a
multiplex SNP genotyping technique based on the ligase detection reaction (LDR)-SERS. In
this platform, the diagnostic peak of Raman spectra was clearer than that of fluorescence
spectra, which allowed the technology to improve the reusability of current homogeneous
detection maps by preventing spectral overlap. The SERS signal acquired the LOD of
10 pM [136].

Surface plasmon resonance (SPR) is also widely known in optical biosensor strategies,
especially in SNP detection [137,138]. SPR technology is based on the detection of refractive
index changes due to molecular interactions on metal surfaces or other conductive materials
by surface plasma waves [139]. Recently, Yi et al. reported a SPR method for apoE
gene and genotype discrimination associated with Alzheimer’s disease (AD). Due to
complete complementarity with the pre-immobilized biotinylated probes, the HhaI enzyme
selectively cleaved GCGC base pairs in the duplex, whereas the digestion reaction was
prevented in the presence of the single-base mismatch (GTGC). The detection level of 50 fM
was acquired [140]. Due to the capacity for multiplexed analysis, surface plasmon resonance
imaging (SPRi) biosensors have been widely used for the assay of SNPs [141]. Using the
Au nanoparticle tag, SPRi increased the detection sensitivity of target oligonucleotides by
more than 1000 times, with a LOD of 10 pM [142]. Li and coworkers combined the surface
enzymatic ligation reaction and enhanced hybridization adsorption of gold nanoparticles
on DNA microarrays. In this strategy, the detection limit of SNPs in the BRCA1 gene
associated with breast cancer by SPRi was 1 pM [143].

The QCM biosensor is an extremely sensitive mass sensor capable of measuring
subnanogram levels of mass changes [144–147]. QCM biosensors are suitable for direct
and label-free monitoring of affinity interactions of biomolecules [148–151]. In the efforts
to develop a new strategy for simple, selective, and sensitive detection of SNPs, different
designs including TSDR and nanomaterials-based QCM detection platforms have been
reported [152–155]. Compared with classical sandwich hybridization, toehold-mediated
DNA assembly has significant advantages. Li et al. developed a QCM sensor, driven using
toehold-mediated and DNA-AuNPs probes, for the detection of single-base mutations
(Figure 11). DNA-AuNPs can release the target sequence back into solution; therefore,
cyclic initiation of the strand displacement reaction can be achieved by displacing the
target sequence from the linker oligomers. This design helped to improve the sensitivity.
Thus, QCM-based DNA-AuNP probe-driven strand displacement reactions enable clear
discrimination of single-base mismatches. The detection limit was 35 pM [154].
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3. Conclusions

SNPs have attracted extensive attention in the field of genetics because of their effect
on DNA sequence polymorphisms caused by single-nucleotide variation. Researchers can
use these SNPs to obtain a wealth of molecular pathological information, early screening
of disease, and assessment of the loss of heterozygosity for genetic testing. Over the past
decades, researchers have been working to develop sensitive, fast, convenient, and cost-
effective SNP detection methods. Biosensing technology solves many problems in mutation
detection, including multi-sample detection, low work efficiency, and difficulty detecting
SNPs in a dsDNA, as well as sensitivity, selectivity, and accuracy. Assays are selected based
on individual needs, available materials, and mutations of interest. Despite significant
advances in biosensing detection methods, more novel mutation detection strategies are
needed to assess these issues for timely diagnosis and accurate detection of drugs and
diseases, which will greatly facilitate the clinical application.

Nowadays, sensing technologies have become more dynamic, powerful, and versa-
tile. Significant progress has been made in designing biodiagnostic tools to detect low-
abundance SNPs. A variety of assay strategies, such as fluorescent, electrochemical, mass,
and other optical biosensors, have been developed for SNP detection. In the design of SNP
biosensors, the combination of nanomaterials and amplification strategies is promising in
the enhancement of detection sensitivity and specificity, helping to facilitate the universal
application of SNP assessment. The introduction of biologically active substances and
immobilized materials to improve detection capabilities has yielded some interesting re-
sults. The use of enhanced substrates, such as graphene, metal nanoclusters, quantum dots,
and core-shell nanomaterials, could significantly improve the sensitivity and selectivity of
SNP biosensors. DNA amplification techniques, such as RCA, SDA, and LCR, have made
significant contributions to the sensitivity improvement of SNP analysis techniques. To
achieve high specificity, which is essential and difficult in SNP detection, technologies such
as CRISPR/Cas and structured probes, as well as mismatch-specific enzymes and proteins,
are helpful to improve detection selectivity. Therefore, future research will continue to
explore various techniques to address the above challenges and the designing and manu-
facturing of biosensors with high throughput, higher sensitivity, and higher specificity to
facilitate the general applicability of SNP detection.
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