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Abstract: The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to
develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely
used in the field of antibiotic detection because of their high specificity. Advanced artificial intelli-
gence/machine learning algorithms have allowed for remarkable achievements in image analysis and
face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper re-
views the biosensors that have been widely used in the simultaneous detection of multiple antibiotics
based on different detection mechanisms and biorecognition elements in recent years, and compares
and analyzes their characteristics and specific applications. In particular, this review summarizes
some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which
provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this
review gives a short review of biosensors for the detection of multiple antibiotics.
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1. Introduction

In recent years, food safety incidents have prompted people to rethink issues such
as drug residues and illegal additions in food safety monitoring. According to relative
statistics, about 3000 people die from foodborne diseases annually in the United States [1].
Among food safety issues, drug abuse and enrichment in the food chain make antibiotic
drug residues a key object in food quality monitoring. The excessive intake of antibiotics
through food will lead to cancer, reproductive system damage, or teratogenicity [2]. Notably,
unsafe food usually contains one or more antibiotics. Due to the additive or synergistic
effect, the coexistence of multiple antibiotics can even enhance toxicity and the detection of
single components is insufficient [3–5]. At present, the main detection method for antibiotics
is the instrumental analysis method, which has a high sensitivity. However, due to their
high cost and cumbersome pretreatment steps, traditional instrumental analysis methods
will no longer quickly satisfy the increasing number of samples, and most of the methods
can only be applied to the detection of a single target antibiotic. Therefore, it is necessary to
develop rapid, high-throughput, and cost-effective methods for the simultaneous detection
of multiple antibiotics to overcome these challenges. Simultaneous detection methods
have many outstanding advantages. First, the analysis of multiple targets can be achieved
in one detection process, reducing the sample consumption and testing cost. Second, by
analyzing multiple substances in one operation, high-throughput analysis can be achieved,
reducing labor force and improving detection efficiency. These advantages will meet
the market demand for commercial sensors. Up until now, the research directions for
detecting multiple antibiotic residues have mainly included: developing methods for the
simultaneous detection of multiple antibiotics residues to increase detection speed and
reduce detection costs; adopting methods with high sensitivity and confirmation ability
to improve detection accuracy and reduce detection limits. Moreover, appropriate data
statistics and analysis methods should be applied for the collected sensing data to improve
the accuracy of sensing data analysis.
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A biosensor is a type of diagnostic device that uses immobilized biological components
(enzymes, antigens, antibodies, hormones, etc.) or the organism itself (cells, organelles,
tissues, etc.) as sensitive elements. Due to the use of biological materials as sensitive
elements, biosensors are highly selective and are an ideal analytical tool for quickly and
directly obtaining compositional information of complex systems. The design of biosensors
involves many disciplines such as chemistry, physics, biology, nanotechnology, communica-
tion systems, etc. [6]. In recent years, in order to meet the need for detection under different
complex conditions, various modification elements, such as antibodies, aptamers, nanoma-
terials, and detection methods have been innovated [7–11]. Because biological materials
can increase the specificity and stability of target detection substances, they have provided
strong benefits to novel biosensors [11]. The growth of these nano materials, which have
ideal large surface-to-volume areas or biocompatibility, can help to achieve better sensitivity
and detection efficiency [12]. The merit of artificial intelligence- and machine learning
technology-based biosensors lies in that, on one hand, they can be applied to processing
large sensing data, reducing the workload of manual processing [13]. On the other hand,
they can process sensing signals with a certain amount of noise and interference [14]. In
addition, the fusion of AI/ML technology can extract more useful features and efficiently
analyze and process data [15].

Therefore, the purpose of this review is to present a timely discussion of and per-
spectives on advanced technologies and their applications in multi-antibiotic detection.
Based on the necessity and urgency of the simultaneous detection of multiple antibiotics
proposed above, the biosensors using different biological materials as sensitive elements in
antibiotic detection are summarized. In addition, the commonly used sensor types based on
different detection mechanisms that can be used for the simultaneous detection of multiple
antibiotics were reviewed, and the multidimensional features extracted from the detecting
methods of sensors were analyzed. Importantly, novel algorithms suitable for antibiotics
analysis are discussed with emphasis. Finally, the application and future development of
the above technology in the simultaneous detection of multiple antibiotics are prospected.

2. Antibiotic Recognition Elements

There are several main principles for biosensors to recognize antibiotics. One is to use
immobilized antibodies as recognition elements. Immobilizing antibodies that specifically
bind to antibiotics on the surface of the sensor can directly detect antibiotics [16]. The
second principle involves the use of aptamers. RNA and DNA aptamers can bind to target
analytes through ionic interactions, Van der Waals forces, or hydrogen bonds for detectable
analytes. In addition to the use of aptamers and antibodies as recognition elements for
antibiotics, another emerging method is the use of MIPs. Since biological materials are used
as the sensitive elements of the sensor, biosensors with highly selective materials are an
ideal analytical tool for quickly and directly obtaining information on the composition of
complex systems when antibiotics coexist.

2.1. Antibody

Antibodies are commonly used as biorecognition elements in biosensors to develop
immunosensors. The principle of immune sensing is illustrated in Figure 1. In the past 40
years, the development of immunosensors has focused on reducing the incubation time,
amplifying the detection signals, the synthetizing of functional antibody, and optimizing
the antibody immobilization methods. Specific antigen–antibody interactions provide
the unique selectivity and high sensitivity of immunosensors, which are considered for
their ease of use, simplicity and reliability, short response time, miniaturized application
flexibility, and ease of integration into multifunctional analytical sensors [17]. The main
principle of biosensors using antibodies as recognition elements for realizing the simulta-
neous detection of multiple antibiotics is to detect multiple quantum dot or other signal
probe materials coupled to different target antibiotic antibodies. For instance, to achieve
multi-antibiotic detection in milk, Song et al. [18] realized the simultaneous detection of
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antibiotics streptomycin (SM), tetracycline (TC), and penicillin G (PC-G). Antibodies (Abs)
of antibiotics that were conjugated to quantum dots (QDs) of different emission wave-
lengths as detection probes (QD-Ab). Then, a direct competitive fluoroimmuno assay was
performed based on the fluorescence of the QD-Ab probe, through which the three residue
antibiotics were visually and simultaneously determined. The linear ranges for SM, TC,
and PC-G were 0.01–25 ng/mL, 0.01–25 ng/mL, and 0.01–10 ng/mL, respectively, with a
detection limit of 5 pg/mL for each sample. Compared to similar commercial products, this
method can realize the simultaneous detection of multiple target antibiotics, and improve
the accuracy, sensitivity, analysis efficiency of three antibiotic residues in milk.

However, the fluorescence detection method is time-consuming and hard to use on-
site. LFT is a suitable choice for the rapid and instant determination of antibiotic residues.
By designing detection in different areas of the paper, only one signal material is available
to achieve multi-target detection. Usually, the signal materials include AuNPs, AgNPs,
QDs, and amorphous CNPs [19,20]. Li et al. [21] designed a system with a simple sample
preparation strategy to detect antibiotic residue in honey. Relying on QD probes conjugated
to the antibiotic monoclonal antibodies, the lateral-flow immunochromatographic assay
(LFIA)-based strip and handheld sensor reader can simultaneously detect sulfonamides
(SAs) and tetracyclines (TCs) with a high sensitivity, extremely low detecting limits of
0.4 µg/kg, and good specificity.

The above-mentioned antibody-based immunoassay methods still have defects due
to the unstable chemical properties of antibodies, easy changes in antibodies during syn-
thesis, and alteration between antibody batches in the synthesis process. A promising
improvement method is to improve the synthesis process of antibodies or to find alternative
biorecognition receptors.
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different types of substances in solution, and triangles represent antigens.

2.2. Aptamers

As a powerful alternative to antibodies, aptamers have good thermal stability, less
batch variation, low immunogenicity, and a low cost [23]. Aptamer biosensors use ap-
tamers as recognition components to convert target signals into measurable sensing signals.
They can be easily labelled with multiple nanomaterials or redox probes to construct multi-
analyte aptasensors with high specificity and the on-spot detection of complex matrices [24].
Aptamers are synthetic oligonucleotides (DNA and RNA) with a length of 35−100 nu-
cleotides, and are selected through systematic evolution by exponential enrichment in vitro
(SELEX). The Figure 2 below shows the important steps of a typical SELEX program.
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Due to the high sensitivity and scalability of electrochemical detection systems, as well
as the specificity of aptamers, electrochemical aptamers are considered to be efficient devices
for the simultaneous detection of multiple target analytes [26]. According to previous
reports, a variety of aptamers with high antibiotic specificity have been screened and used
to detect multiple antibiotics at the same time. For example, Zhu et al. [26] reported a
dual ratio electrochemical aptamer sensor based on carbon nanohorns/anthraquinone-2-
carboxylic acid/Au nanoparticles (CNHs/AQ/AuNPs) for the simultaneous detection of
malathion (MAL) and omethoate (OMT) in fruit samples. The biosensing system exhibited
a linear range from 3 pg/mL to 3 ng/mL for MAL and from 10 pg/mL to 10 ng/mL for
OMT. To detect the multiple mycotoxins in vegetable samples simultaneously, Zhu et al. [27]
also reported a hairpin DNA-assisted dual-ratiometric electrochemical aptasensor with a
high reliability and anti-interference ability for the simultaneous detection of aflatoxin B1
and ochratoxin A. Their work has presented a novel way to fabricate a high-performance
aptasensor with a detection range of 10–3000 pg/mL for aflatoxin B1 and 30–10,000 pg/mL
for ochratoxin A, respectively.

Although the cost of designing aptamers is lower than that of antibodies, similar
to immunosensors, aptamer sensors also face unstable performance during point-of-care
testing (POCT) detection because the biological activities will be easily affected by the
environment. In addition, so far, only relatively few aptamers can meet the requirements
for both selectivity and specificity, which limits the development of multiplex aptasensors.

2.3. Molecularly Imprinted Polymers

A new technology is based on molecularly imprinted polymers (MIPs) whose physical
and chemical properties are similar to antibodies. Composite materials are used which are
composed of functional monomers, crosslinkers, and template molecules that can withstand
a more comprehensive range of pH and temperature than biological materials. Figure 3
illustrates the preparation process of MIPs. This technology has emerged as a promising
approach to improve the target selectivity of chemical/biosensors, and has been widely
used in the preparation of biosensors for antibiotics [28].

MIP-electrochemical sensors mainly use the interaction between the analyte and the
electrode surface to convert the analyzing signal. The current, voltage, etc., will be affected
by this effect. The classic structure and principle of MIP-based sensors is illustrated in
Figure 4. MIP-based sensors have the advantage of compatibility between MIPs and
electrochemical analysis, demonstrating a satisfactory reproducibility, sensitivity, and
chemical stability of the template molecules. Since the molecular-specific recognition ability
of MIPs is based on template-imprinted sites, it is helpful for the recognition needs of
various molecules in biological analysis [30]. In the detection and analysis of antibiotics,
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MIP-based electrochemical sensors are important methods for the analysis of antibiotic
residues in complex matrices. The molecule-specific recognition capability of MIPs is
based on template-imprinted sites, which contribute to a variety of recognition events in
biological analyses.
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Figure 3. Highly schematic representation of the molecular imprinting process: The formation
of reversible interactions between the template and polymerizable functionality may involve one
or more of the following interactions: [(A) reversible covalent bond(s), (B) covalently attached
polymerizable binding groups that are activated for non-covalent interaction by template cleavage,
(C) electrostatic interactions, (D) hydrophobic or van der Waals interactions or (E) coordination
with a metal centre; each formed with complementary functional groups or structural elements of
the template, (a-e) respectively]. A subsequent polymerization in the presence of crosslinker(s), a
crosslinking reaction or other process, results in the formation of an insoluble matrix (which itself
can contribute to recognition through steric, van der Waals and even electrostatic interactions) in
which the template sites reside. Template is then removed from the polymer through disruption of
polymer-template interactions, and extraction from the matrix. The template, or analogues thereof,
may then be selectively rebound by the polymer in the sites vacated by template, the ‘imprints’. While
the representation here is specific to vinyl polymerization, the same basic scheme can equally be
applied to sol-gel, polycondensation etc. Reproduced from reference [29] with permission. Copyright
2006, Wiley Online Library.
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To track and quantify trace amounts of drugs in biological tissue samples, Liu et al. [31]
proposed an anti-matrix interference, highly sensitive, and highly reproducible multiple-
template-imprinted polymer (MMIP) for the monitoring of trace sulfa antibiotics (SAs) in
mouse tissue samples. Based on theoretical calculation and experimental optimization, the
molar ratios of sulfamethoxazine (SMA), sulfamethoxazole (SMO), and sulfachloropyrazine
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(SCPA) to MMIP were estimated by the UHPLC-MS/MS method. The ultra-sensitive
monitoring and multi-component quantitative measurement of sulfonamide antibiotics in
samples were realized. The method showed an excellent linearity of detection in the range
of 0.1–500 µg/L, and the ultrasensitivity the with lowest limits of detection was 0.03 µg/L.
The maximum SA residue recovered from sample tissues was 5.48 µg/g. Furthermore,
compared with other materials, the MMIPs were reusable. After more than 100 tests, there
was only a slight degradation in performance.

Therefore, MIPs are an ideal material that can eliminate sample matrix interference and
effectively enrich trace antibiotics [32]. As recognition elements, the detection performance
of sensors can be improved. However, increasing the binding ability of MIPs and preventing
template leakage are still challenges in designing new MIPs.

3. Simultaneous Detection of Multiple Antibiotics Based on Different Methods

The methods for the simultaneous detection of antibiotic residues mainly include the
microbial method, electrochemical method, high-performance liquid chromatography and
liquid-mass spectrometry, fluorescence method, Raman spectroscopy, etc. Different detec-
tion methods have their own advantages and disadvantages. There are also many defects
in the development of methods for the simultaneous detection of multiple antibiotics. First,
cross-reactivity cannot be neglected when the structure of the target analytes is similar. Sec-
ond, multi-target detection requires different signal labels, and signal overlap and mutual
interference are not conducive to detection and analysis. Third, complexity of the sample
matrix will affect the detection results. In the past few years, more and more related studies
have tried to overcome the above-mentioned problems [33–36]. The following section will
introduce these sensors in detail. Nanomaterials have the characteristics of surface effect,
quantum effect, and small size effect. They exhibit a series of unique optics, magnetism,
electricity, good biocompatibility, and catalytic ability when combined with these sensing
methods, and have been widely used in the field of antibiotic detection.

3.1. Fluorescence Method

Fluorescent sensors have attracted considerable attention in the field of the multiplex
detection of antibiotics due to their ease of manipulation, fast response, high sensitivity,
and potential for instant detection. Among fluorescence methods, multiplex sensors based
on Forster resonance energy transfer (FRET) have shown superior performance in the
simultaneous detection of a few antibiotics [24]. Fluorescent sensors for the detection
of multiple antibiotics usually require the construction of two or more distinguishable
fluorescent signals derived from labels on different biorecognition probes to identify target
molecules. According to the different presentation forms of the signal, FRET biosensors
can be further divided into fluorescence “turn-on”, “turn-off”, ratiometric biosensors, and
fluorescence upconversion biosensors. Fluorescent “turn-on” and fluorescent “turn-off”
sensors usually utilize fluorophores or quantum dots as fluorescent probes, and the intensity
of the fluorescent signal will vary with the presence of the analyte [37]. Due to the superior
optical properties of quantum dots, such as a long fluorescence lifetime, photostability,
large Stokes shift, low background noise, and large molar extinction coefficient, quantum
dots have been favored and widely used in multiplex antibiotic detection [38]. In addition,
quantum dots usually have a wide excitation spectrum and a narrow emission spectrum,
which can reduce the problem of the mutual interference of different fluorescent signals
that often occurs in multiplex detection.

To detect antibiotic residues in chicken meat, Li et al. [39] combined fluorescent
nanobiosensors with homemade fluorescence analyzers for the simultaneous identification
and quantification of three antibiotics. The mechanism of the system is based on the
targeted antibiotics and signal labels of antigen-quantum dots (IQDs) that are competitively
attached to the recognition elements of antibody magnetic beads (IMBs) to form conjugates.
Then, three quantum dots with different excitation wavelengths are used to divide the three
target antibiotics simultaneously. Through magnetic separation, the fluorescent signal in
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the supernatant is proportional to the concentration of the antibiotic, and the concentration
of the antibiotic can be indirectly quantitatively detected by analyzing the fluorescent
signal. The fluorescence biosensing system can be used to analyze enrofloxacin, tilmicosin,
and florfenicol in chicken samples with detection limits of 0.34 µg/kg, 0.7 µg/kg, and
0.16 µg/kg, respectively.

Since the detection signal of antibiotic small molecules is usually too low to be detected,
signal amplification strategy is another active area of research in this field, and the amplifi-
cation part based on nanomaterials and DNA has attracted continuous attention [40,41].

3.2. Electrochemical Method

An electrochemical sensor is a device for the qualitative or quantitative analysis of
target substances. Its essence is that the sensing signal generated by the reaction of the
measured substance with a specific sensing element will be converted into an identifiable
electrical signal that is proportional to the concentration of the target substance through a
specific sensor. Figure 5 shows the basic principle of an electrochemical sensor.
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Electrochemical methods can be generally divided into potentiometric methods, am-
perometric methods, conductometric methods, impedance methods, and voltammetric
methods [43]. Among them, the impedance method, differential pulse voltammetry, and
ECL are widely used to detect various antibiotics in food [44–48]. For the electrochemical
detection of multiplex antibiotics, two or more distinguishable electrochemical signals need
to be generated. From existing studies, common materials used to develop distinguishable
electrochemical signals are quantum dots, metal ions, Methylene Blue, Ferrocene, etc.

In order to detect multiple antibiotics in milk, based on aptamers and quantum dots,
PbS, CdS, and ZnS, Xue et al. [49] designed a sensing system that can simultaneously detect
streptomycin, chloramphenicol, and tetracycline. The low detection limits for streptomycin,
chloramphenicol, and tetracycline reached 10 nM, 5 nM, and 20 nM, respectively.

In addition, how to improve the sensitivity of multi-channel electrochemical sensors is
a key focus for researchers when designing sensors. There are two basic methods to im-
prove the detection sensitivity of electrochemical multi-channel adaptive sensors. The first
approach is the electrode modification method based on nanomaterials (carbon nanotubes,
graphene nanosheets, etc. [50,51]). Since nanomaterials can improve the electrocatalytic
activity or the characteristics of electron transfer reactions, they are beneficial in improving
the performance of multiple electrochemical reactions [52,53]. The second method is to
amplify electrochemical signals by loading more electrochemical signal labels inside or
on the surface of nanomaterials, including AuNPs, hollow silica nanoparticles, MOFs,
apoferritin, etc. [54–61]
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Taking fish and milk as the detection substances, Shen et al. [61] prepared the coded
probes by loading deferrin with Cd2+ and Pb2+ ions and applied double-stranded DNA
markers. By the square wave voltammetry detection method, the peak currents of the
labeled Cd2+ and Pb2+ corresponding to the concentration of kanamycin and ampicillin
can realize the simultaneous detection of the two antibiotics within a range from 0.05 pM
to 50 nM.

3.3. Surface-Enhanced Raman Scattering (SERS) Method

SERS is an ultrasensitive vibrational spectroscopy technique that enhances the vibra-
tional spectroscopy of molecules that are adsorbed on or near metallic nanostructures or
surfaces [62,63]. Due to its high sensitivity, specificity, and non-destructive detection, it
has been widely used in the detection of food contaminants. SERS can be used to simul-
taneously detect multiple targets with unique fingerprints in the Raman spectrum [64].
According to the signal enhancement mechanism of SERS, the selection of suitable sub-
strates plays a crucial role in the sensitive detection of various antibiotics. In the past
few years, many nanomaterials have been used to develop SERS substrates or labels. For
example, Wang et al. [65] prepared a gecko-inspired nano-tentacle SERS substrate for the
direct detection of three different antibiotics. The nano-tentacle arrays containing AuNPs
and AgNPs were modified by the seed deposition method. The multiple components
of the sample were rapidly and reliably determined. In particular, under the optimal
conditions, a sensitivity of 1.6 ng/cm2 (S/N = 3) for thiram was obtained on apple peels
with a correlation coefficient of 0.99.

When using the SERS method to monitor antibiotic residues in food, methods such
as liquid–liquid extraction and solid-phase extraction are commonly used to preprocess
the sample to extract analytes from complex food samples. However, these methods
are cumbersome, laborious, time-consuming, and not environmentally friendly, which
limits the online analysis application of SERS technology. Jin et al. [66] proposed a simple
and sensitive hollow cellulose microextraction combined with SERS (HF-LPME-SERS)
technology for the rapid detection of multiple antibiotics in egg samples. In the HF-LPME
system, the target analytes are extracted from the water sample into the organic phase
in the hollow fiber hole, and then further into the absorption phase inside the hollow
fiber lumen. This method is superior to the traditional extraction method with simpler
operation and a lower cost, and can thus significantly reduce the amount of organic solvent
used. In addition, a laser-induced self-assembled SERS chip can further directly extract
the measurement spectrum. The results showed that 11 antibiotics in eggs could be tested
rapidly and economically by the novel HF-LPME-SERS method, and the concentrations of
multiple antibiotics in egg were detected as low as 10 ng/g with a RSD of 23.4%.

3.4. Colorimetric Method

The key principle of the colorimetric method is to analyze the color changes in the
analyte for detection by the naked eye or portable, low-cost equipment instead of other
more complicated equipment, and the output signal is directly visualized [67–69]. Metal-
lic nanoparticles have received widespread attention in colorimetric sensors due to their
optical properties related to distance/size [70]. Antibodies and aptamers can be easily ad-
sorbed on the surface of metallic nanoparticles with stronger affinity through non-potential
electrostatic response [71]. For multi-antibiotic detection, they can be detected by visually
reading and measuring the state changes in the solution using UV-vis spectroscopy [72–75].
In particular, AuNP-based colorimetric sensors have attracted great interest for detecting
antibiotic residues in food due to their extremely high optical extinction coefficient and
unique properties [76,77].

Aptamers are ideal biomolecules and sensing elements for colorimetric aptasensors.
The key point to be solved in establishing AuNP-based colorimetric aptasensors is the
aggregation and flocculation of unmodified AuNPs, which are induced by the passivating
surface layer, ionic strength, pH, and temperature. A feasible method is to covalently
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link thiol groups of ssDNA on gold nanoparticles [78]. For example, in order to detect
tetracycline and chloramphenicol in milk, Wu et al. [79] designed a multifunctional adapter,
which can be adsorbed on the surface of AuNPs. For the two antibiotics, due to the
differentiated recognition group with different lengths of the corresponding aptamers,
distinctive observed colors can be quantitatively detected by UV–vis spectroscopy. The
reported sensor exhibited remarkable sensitivity for the detection of chloramphenicol and
tetracycline, with LODs of 7.0 and 32.9 nM, respectively.

However, since each method has its unique characteristics, so far, there is no optimal
method for multiple antibiotic detection. Generally speaking, fluorescence, colorimetric,
and electrochemical sensors are the common choice for high sensitivity and rapid detection,
while SERS-based sensors are an ideal choice for the non-destructive detection of antibiotics
in food because of their non-invasive detection. The above-mentioned types of sensors
for multiplex antibiotic detection have shown a superior detection performance under the
optimal conditions, but they are not suitable for on-site detection due to the large-scale
equipment that is required. Based on the lateral-flow test strips (LFT), the microfluidic
chip can meet the requirements of on-spot detection and is the development direction
of future sensors due to it having the characteristics of miniaturization, portability, and
easy-to-use analysis.

4. Artificial Intelligence/Machine Learning Algorithms for Antibiotic Detection

Nowadays, artificial intelligence and machine learning technology (AI/ML) have
allowed for impressive progress. Some innovative algorithms have been successfully
applied in many fields like image processing, face recognition, natural language processing,
and medical data [80–85]. However, for biosensors, especially in the field of multi-antibiotic
detection, there are still relatively elusive situations. The following will be a discussion
based on multi-antibiotic detection methods.

4.1. Benefits in Biosensing Antibiotics by AI/ML Algorithms

In the process of traditional empirical model processing and the optimization of exper-
imental methods for antibiotic detection, it is necessary to analyze multiple independent
factor variables. Since only one variable is changed while all other variables are kept
unchanged [86], this method obviously requires a lot of data analysis. The traditional
experiment is time-consuming and labor-intensive. In addition, aging biosensors have
insufficient repeatability and exhibit stability deterioration in actual sample detection.
There are a large number of interfering substances in real samples, as well as differences in
temperature, pH conditions, and laboratory environments. These problems are important
bottlenecks that hinder the commercialization of biosensors. Therefore, artificial intelli-
gence technology coupled with accelerated biosensors is another way to optimize sensors
to improve immediacy, accuracy, and reliability in real sample measurement sensors.

One of the applications of artificial intelligence in sensor design is to efficiently process
complex matrices or large-sample sensor detection data. By selecting appropriate machine
learning algorithms, the hidden relationship between the sample parameters and sensor
signals can be discovered through data visualization and mine the relationship between the
signal and the target detection samples. Traditional sensor data processing often applies
a single feature of the collected data as an indicator of the concentration of the detected
sample, and the relationship between them is established. However, one-dimensional data
analysis is not enough to obtain a sensitive signal that is highly correlated with the type
and quantity of the analyte, and it is necessary to combine multiple independent factor
variables with artificial intelligence tools.

Moreover, the complexity and multivariate analysis of biological systems and en-
vironments is another challenge for the current high-throughput sensing methods and
multi-analyte identification design. For example, due to the reactions between substances
when performing cyclic voltammetry testing of multi-materials, there are several types of
curves can be observed, such as separate current peaks, the coexistence of independent
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peaks and coupled peaks, and several peaks merged into one peak due to coupling reac-
tions [87]. Especially, when the molecular volume of and orbital differences in molecular
substances are small, the overlapping of current signals cannot satisfy the detection and
identification of multiple analytes. Therefore, artificial intelligence methods should be
combined to decouple and overcome this challenge for the detection of antibiotics [88–92].

4.2. General Process and Principle of Data Analysis

Designing an appropriate AI/ML model according to the type of data set and analysis
purpose (qualitative or quantitative detection) will help us to extend detection methods to
different data acquisition devices and application scenarios. To design an AI/ML model for
a specific biosensing system, the following details in the process need to be focused: (1) the
size of the input data set and the dimension of the input value. At present, biosensing data
mainly include sequence data sets obtained from electrochemical and spectral biosensors
or image data sets acquired by colorimetric and fluorometric biosensors. (2) The feature
selection and feature extraction processes: through feature selection, the prediction accu-
racy of the model, computational cost, risk of overfitting, and interpretability of data can
be improved. It is necessary to choose an appropriate feature selection method according
to the specific situation to avoid the influence of too many features on the model. The main
methods of feature selection include the filter, wrapper, and embedded methods. The main
methods of feature extraction include principal component analysis, linear discriminant
analysis (for sequence data), and the scale-invariant feature transform method (for image
data). (3) The pre-processing and post-processing according to the application scenar-
ios of the AI/ML model: general preprocessing methods include derivatives, denoising,
Fourier transform, etc. The different preprocessing methods are applicable to data from
different sources. For Raman spectra, each spectrum requires Savitzky-Golay smoothing,
background subtraction, and min-max to [0,1] [93]. Post-processing refers to the process
of processing data after data analysis. Post-processing should include operations such as
data visualization, data mining, and data modeling. The purpose of post-processing is to
better interpret the data, so as to make reasonable data analysis and decision-making. As
shown in Figure 6, t-Stochastic Neighbor Embedding(t-SNE) is a nonlinear dimensionality
reduction algorithm for mining high-dimensional data, which can map multi-dimensional
data into two-dimensional or three-dimensional space. Therefore, t-SNE is very suitable for
visualization operations on high-dimensional data. (4) The model architecture, including
number of layers, activation functions, loss functions, and the data dimension of the entire
processing pipeline: the loss curve is a key indicator for reporting the training status.
It can also reflect varying degrees of influence of hyperparameters. Figure 7 exhibits a
classic loss curve showing both overfitting and underfitting. (5) The model development,
including model training and tuning processes, such as transfer learning, regularization
methods, ensemble methods, tuning thresholds, performance evaluation indicators, etc.:
hyperparameter tuning is a key task in the analysis of sensory data in the verification
phase. The parameters of the algorithm include the number of hidden neurons, learning
rate, batch size, etc. The classic cross-validation method can be applied to hyperparameter
tuning and evaluate the predictive performance of the algorithm after parameter tuning.
As for metrics, in the field of biosensing, the correlation coefficient (R2), the relative error of
prediction (REP), and root-mean-square difference (RMSD) can be adopted to evaluate the
performance of the model.
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4.3. Various Algorithms of AI/ML and the Application in Antibiotic Detection

Random Forest (RF): As shown in Figure 8, RF is an ensemble learning method
that combines multiple decision trees to improve the performance and robustness of the
model [96]. The core of the random forest algorithm includes random sampling, random
feature selection decision tree construction, and integrated decision-making. At each node
of the decision tree, a random subset of features is considered for splitting. This helps
to introduce randomness and reduce correlation between trees. Overfitting is avoided
by randomly selecting a portion of samples and features for training when building each
decision tree. In the process of obtaining an integrated decision, the prediction results are
considered comprehensively. For classification tasks, the class prediction is determined
by majority voting among the decision trees. For regression tasks, the output is the
average prediction of all of the trees. A successful application of the RF algorithm was
the construction of a dual emission fluorescence/colorimetric sensor for the determination
of nine antibiotics by Xu et al. [97]. Detection data from the array sensor were processed
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and analyzed by the extreme random forest algorithm, which is an ensemble of unpruned
classification or regression trees. In addition, the classification accuracy of unknown
samples outside the data set was 100%, and the average concentration error was less
than 5%.
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Support Vector Machine (SVM): SVM is a supervised learning ML algorithm used for
classification and regression tasks. The principle of the algorithm is to find a hyperplane in
the feature space that can effectively separate samples of different categories and achieve
the largest interval (Margin). Figure 9 depicts the key components of the SVM algorithm.
For nonlinear problems, the SVM algorithm can map the data to a higher-dimensional
space through the kernel function, so as to find a linearly separable hyperplane in the new
space. The SVM algorithm performs well on small samples and high-dimensional data,
which can handle complex decision boundaries. Guo et al. [94] reported a t-SNE-PSO-SVM
algorithm to analyze the terahertz spectral data of 16 antibiotics to solve the problem that
antibiotics with the same absorption peak could not be distinguished by spectral features.
In order to reduce the training time, t-SNE was used to reduce the dimensionality of the
absorption spectrum data with a dimension of up to 143, and the 3D PCA of the absorption
spectra of different antibiotics was displayed by the t-SNE algorithm. After dimension
reduction, the new data matrix was trained by the SVM model and the parameter was
optimized with the particle swarm optimization (PSO) algorithm. The prediction accuracy
of the model is 99.91%, which is an ideal method for antibiotic identification.
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Artificial Neural Networks (ANN): ANN are composed of multiple artificial neurons
(nodes) and connections between neurons, and a layered artificial neural network gen-
erally includes input, output, and multiple hidden layers. The nodes process the given
signals and transmit them to the next connected node. The output of a node depends
on the weighted sum given by the nodes in the previous layer. The key parameter that
significantly affects the performance of artificial neural networks is the size of the hidden
layers [99]. Containing only one hidden layer, the MLP network model trained by the
backpropagation (BP) algorithm is widely used in artificial neural networks. BP-ANN
is a quite representative and widely used model in MLP networks [100,101]. The classic
structure of the BP-ANN feedforward network is shown in Figure 10. Shawkat et al. [102]
made quantitative measurements of three types of bacteria based on changes in impedance
under the same measuring conditions. The real-time impedance changes in the three types
of bacteria were measured by the impedance analyzer and the data were treated as input
for classification. Three targets of the same concentration (106 CFU) can be quickly detected
and classified by analyzing the impedance test data after 8 min. Therefore, the BP-ANN
method was applied to classify these bacteria. The key features included the measuring
power, the I-V curve, and the first derivative and second derivative of I-V characteristics,
and the classification accuracy reached almost 100%. Therefore, it can be applied as an
early detection and classification tool in the food industry.
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Convolutional Neural Network (CNN): The core parts of CNNs include the convolu-
tion layer, pooling layer, convolution kernel, activation function, and fully connected layer
(Figure 11). As the core component of the convolutional neural network, the convolutional
layer acts as an image extraction function. In a complex neural network, there are generally
multiple convolutional layers with convolution kernels of different sizes and designs to
set the step size in the image and traverse to extract image features. The fully connected
layer is the outlet of the model results, which adapt to different fully connected layers
and realize the transformation of the model classification or regression tasks. In addi-
tion to using traditional machine learning indicators to evaluate the quality of the model,
CNNs also introduces the Cross-Entropy Loss function (Cross-Entropy Loss) to evaluate
the model training effect, which effectively shows the difference between the prediction
result and the real label. In addition, the visualization of network layers also provides a
way to understand the specific characteristics of the model. Therefore, in order to process
high-throughput visualized spectral data, Huang et al. [91] used the CNN based on the
GoogLeNet framework to establish the relationship between image features and antibiotic
concentrations. The dataset with sufficient chromogenic features was obtained by using a
scheme of multispectral and mixed chromogenic systems together. The results show that
the method had a good detection effect for the three target antibiotics that were detected,
and the average relative error was about 5% in the concentration range of 200–800 mg/L.
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According to the information mentioned above, AI/ML algorithms can help to dis-
cover unknown complex relationships between similar data with a high inclusivity for
the dimensionality of the data source. It can simplify the process of analyzing experiment
results and improve the interpretation of complex sensing systems such as the detection of
the coexistence of multiple antibiotics. Therefore, it is foreseen that AI/ML will be widely
used in multi-antibiotic detection. However, in actual scientific research work, there are
two unavoidable challenges. One is to find an efficient and suitable AI/ML algorithm for
a specific biosensing system, and the other is how to provide a large number of training
data for the established algorithm model in a short experimental time. Although many
successful cases have proven that the AI/ML algorithm has excellent advantages in sub-
stance identification, up until now, there is still no suitable method that can effectively
collect enough antibiotic sensing data sets. A promising solution is to find suitable sensing
strategies coupled with AI/ML to effectively drive forward the development of technology
for the detection of an environment. Furthermore, for quantitative detection, the algorithm
has a satisfactory predictive effect only in a limited range, and higher precision algorithms
still need to be developed. As for biosensors integrated with AI/ML algorithms, there are
different statistical methods for performance indicators. However, each unique AI/ML
algorithm has its own most-valuable types of input data, and unified evaluation indicators
and methods are needed. Also, it is necessary to control information security during data
collection, transmission, and the processing of sensor development.

5. Conclusions and Outlook

At present, the efficient and rapid detection of multi-antibiotics is of great significance.
However, the main challenges are the selection of front-end modifiers and the rapid and
accurate result output of the back end. This review introduces the current detection tech-
niques, biometric probes, and nanomaterials that are commonly applied in multi-antibiotic
detection. In particular, the application of AI/ML algorithms in multi-antibiotic detection
is reviewed, and the impact of this emerging technology on multi-antibiotic detection is
illustrated. Although the developed multi-antibiotic detection sensors have achieved satis-
factory results, there are still limits in the laboratory testing environment and the operation
of professionals, and there are still many challenges in practical applications. These chal-
lenges include the need to fix different biological receptors that are applied to constructing
biosensor systems for ensuring the biocompatibility of materials and biometric molecules;
the influence of non-uniformity of nanoparticles on the performance of biosensors; cross
interference within antibiotics; and the effective connection between nanomaterials and
biological recognition molecules.

The detection of antibiotics in food is relatively mature. In the previous chapters, many
methods for the detection of antibiotics in foods such as milk, honey, and eggs have been
discussed. However, antibiotic contamination may occur in various situations, especially
in aquatic environments, which is continuously harmful to human health. The pollu-
tion sources of antibiotics in water mainly include wastewater discharged from domestic
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sewage, medical wastewater, animal physiology, and aquaculture. Up until now, there are
only a few methods can simultaneously be adopted to detect multiple antibiotics in water
samples [105–107]. The focus of these studies is mainly on developing new antibiotic ex-
traction techniques, synthesizing new separation techniques, and improving water quality
through the solid-phase extraction of MIP materials. For the above-mentioned requirements
of various detection scenes, in addition to designing high-performance biosensors that
can cope with various detection environments, it is quite necessary to integrate AI/ML
algorithms. In the process of applying AI/ML algorithms, the most important factors are
the feature extraction process based on the detecting method of the antibiotic, and the
selection of appropriate AI/ML methods to reduce analysis errors. At the same time, it
is very important to apply interpretable AI/ML models to POCT electronic devices for
multi-antibiotic detection.
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