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Abstract: The increasing research and rapid developments in the field of exosomes provide in-
sights into their role and significance in human health. Exosomes derived from various sources,
such as mesenchymal stem cells, cardiac cells, and tumor cells, to name a few, can be potential
therapeutic agents for the treatment of diseases and could also serve as biomarkers for the early
detection of diseases. Cellular components of exosomes, several proteins, lipids, and miRNAs
hold promise as novel biomarkers for the detection of various diseases. The structure of exosomes
enables them as drug delivery vehicles. Since exosomes exhibit potential therapeutic applications,
their efficient isolation from complex biological/clinical samples and precise real-time analysis
becomes significant. With the advent of microfluidics, nano-biosensors are being designed to
capture exosomes efficiently and rapidly. Herein, we have summarized the history, biogenesis,
characteristics, functions, and applications of exosomes, along with the isolation, detection, and
quantification techniques. The implications of surface modifications to enhance specificity have
been outlined. The review also sheds light on the engineered nanoplatforms being developed for
exosome detection and capture.
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1. Introduction

Exosomes are nano-sized extracellular vesicles having a diameter in the range of
30–150 nm [1]. They are found to be secreted in various body fluids. Exosomes pos-
sess lipid bilayer membrane structure and a variety of cellular components that are
biologically active. Exosomal nucleic acids and proteins play an important role in inter-
cellular communication or information exchange and signal transduction [2]. Isolation,
detection, and quantifications of exosomes are essential for their potential applications.
There are numerous methods available for the isolation and detection of exosomes.
Ultracentrifugation (considered as the gold standard), precipitation, immunoaffinity,
and size exclusion chromatography are some of the conventional methods, whereas
microfluidic-based separation techniques, including nano-biosensors, lab-on-chips, and
nanoplatforms are being recently studied to develop next-generation and highly efficient
separation methods [3].

Nanomaterials or nanocomposites are of great interest, owing to their large surface
area-to-volume ratio, which can help in increasing exosome capture efficiency and mag-
netic properties (especially for magnetic nanoparticles) for easy separation. In a study,
Fang et al. [4] summarized the use of nanomaterials for exosome isolation and analysis for
the detection of diseases via liquid biopsy. Nanomaterials also act as signal transducers and
signal amplifiers for the molecular detection of exosomes. Moreover, surface modification
of nanomaterials using organic and inorganic moieties and conjugation to aptamers or
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target-specific antibodies can be carried out to enhance exosome capture. Once the exoso-
mal bodies are isolated and detected, they further need to be characterized and quantified
on the basis of their size, number, concentrations, and purity. Some of the commonly used
techniques for this purpose involve nanoparticle tracking analysis (NTA) [5], dynamic light
scattering (DLS) [6], tunable resistive pulse sensing (TRPS) [7], Western blot [8], atomic
force microscopy (AFM), spectrophotometry [9], and transmission electron microscopy
(TEM) [10].

There is growing research in this field, as exosomes can serve as potential diagnostic
biomarkers for the detection of several diseases, for example, neurodegenerative diseases,
cancer, autoimmune disorders, and diabetes [11]. This could be attributed to the various
biomarkers, CD63, CD81, CD151, CD9, GPC, and several proteins, HSP70 and HSP90,
expressed on the surface of exosomes [12]. Exosomes could also act as therapeutic agents
against several diseases, for instance, liver disorders, kidney dysfunctions, skin burns,
cancer, central nervous system diseases, and diabetes and as therapeutic cargo delivery
agents [13,14]. There are various studies suggesting that exosome-derived miRNAs, such
as miR-587, miR-298, miR-4443, miR-450-2-3p, miR-21, miR-4454, miR-125b miR-223, miR-
29, miR-103, miR-107, and let-7, could act as both diagnostic markers and therapeutic
agents [15,16]. One such study was performed by Giau et al. [17], who extensively reviewed
the advances in research of exosomes and exosomal miRNAs as biomarkers for disorders
like Alzheimer’s disease.

The available literature on exosomes provides brief insights on their biogenesis,
detection and isolation techniques, and therapeutic potential, with a little focus on
the technological advancements for the detection and isolation of exosomes [18–20].
Herein, we will address the biological as well technological aspects in the field of
exosomes. The advent of nanobiotechnological approaches is highly crucial for designing
nanoplatforms and nanobiosensors for the efficient isolation and detection of exosomes.
These advancements have led to the design of efficient lab-on-chip nanobiosensors
possessing a low limit of detection and multifunctionality. Further, surface modifications
impart the desired specificity.

In this regard, this review will briefly summarize the history and biogenesis of
exosomes and their characteristics. Traditional as well as emerging methods of isolation
and detection along with the quantification and characterization techniques of exosomes
will be discussed. The recent developments in fabrication and surface modification
approaches of microfluidic-based nano-devices for the isolation and detection of exo-
somes will also be outlined. This review will also shed light on various functions and
applications of exosomes. The studies on technological development and advancement
in the field of nano-biosensors and nanocomposites for the early detection of diseases
will be highlighted along with the therapeutic potential of mesenchymal and cardiac
cell-derived exosomes against several diseases, as shown in Figure 1. The current status
of using exosomes in clinics as therapeutic agents against various diseases will also
be discussed. Challenges and future prospects of the use of exosomes for clinical pur-
poses will be highlighted. Two comprehensive tables will be provided for the isolation
and diagnostic potentials of exosomes. Another table will list the clinical status of
exosome-based therapeutics.
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Figure 1. Graphical abstract portraying the techniques involved in the isolation, detection, quantifi-
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In the beginning, when the extracellular vesicles (EVs) were first discovered, these 
micro-vesicles along with the exosomes were seen as cellular wastes or the by-prod-
ucts/debris of cells [21,22]. The exosomes were first discovered in the year 1983, as de-
scribed in two different research works by Harding et al. and Pan et al. The movement of 
transferrin receptors (TfRs) was observed onto the maturing reticulocytes from the plasma 
membrane. These TfRs were found to be taken up by the cells, further reassembling in the 
form of tiny vesicles within them [23]. These small vesicles were later given the name “ex-
osomes”, seen as a product secreted from the maturing red blood cells, thereby discarding 
the initially assumed fact that the exosomal vesicles are waste, destined to be destroyed 
by the trafficked lysosomes [24]. 

EVs are found to be secreted from almost all types of cells and are majorly classified 
as exosomes, microvesicles (MVs), and apoptotic bodies depending upon their structure, 
size, and origin of formation [25] . Various EVs fuse to produce an endosome, which fur-
ther develops into multivesicular bodies (MVBs). During the formation of MVBs, intralu-
minal vesicles (ILVs) carrying the cytosolic content are generated by the invagination of 
the outer membrane of the endosomes [26]. The diameter of ILVs varies in the range of 50 
to 90 nm. The synthesized MVBs are of two main providences, viz., intermediate for-
mation involved in intracellular protein degradation or exosome synthesis [27]. Though 
the factors determining the fate of an MVB are not very clearly understood, some studies 
reveal that the destiny of a particular MVB depends on the amount of cholesterol present. 
So, the one with a higher level of cholesterol is preferably selected for further secretions, 
and the rest (with a low cholesterol concentration) are sent for lysosomal degradation 
[28,29]. Now, unlike the generation of other MVBs, which are mainly formed from “bud-
ding off” of the cell membrane, the biosynthesis of exosomes involves much more com-
plexity. It includes the reverse membrane enfolding and dispensation of the MVBs, lead-
ing to the release of exosomes into intercellular fluid [30]. So, the exosomes are believed 
to be secreted when the secretion of plasma membrane-fused MVBs takes place [31–33]. 
Furthermore, the cargo of exosomes represents its fidelity by demonstrating the molecular 

Figure 1. Graphical abstract portraying the techniques involved in the isolation, detection, quantifica-
tion, and characterization of exosomes.

2. Exosomes
2.1. History and Biogenesis of Exosomes

In the beginning, when the extracellular vesicles (EVs) were first discovered, these micro-
vesicles along with the exosomes were seen as cellular wastes or the by-products/debris of
cells [21,22]. The exosomes were first discovered in the year 1983, as described in two
different research works by Harding et al. and Pan et al. The movement of transferrin
receptors (TfRs) was observed onto the maturing reticulocytes from the plasma membrane.
These TfRs were found to be taken up by the cells, further reassembling in the form of tiny
vesicles within them [23]. These small vesicles were later given the name “exosomes”, seen
as a product secreted from the maturing red blood cells, thereby discarding the initially
assumed fact that the exosomal vesicles are waste, destined to be destroyed by the trafficked
lysosomes [24].

EVs are found to be secreted from almost all types of cells and are majorly classified
as exosomes, microvesicles (MVs), and apoptotic bodies depending upon their structure,
size, and origin of formation [25]. Various EVs fuse to produce an endosome, which further
develops into multivesicular bodies (MVBs). During the formation of MVBs, intraluminal
vesicles (ILVs) carrying the cytosolic content are generated by the invagination of the
outer membrane of the endosomes [26]. The diameter of ILVs varies in the range of 50 to
90 nm. The synthesized MVBs are of two main providences, viz., intermediate formation
involved in intracellular protein degradation or exosome synthesis [27]. Though the factors
determining the fate of an MVB are not very clearly understood, some studies reveal that
the destiny of a particular MVB depends on the amount of cholesterol present. So, the one
with a higher level of cholesterol is preferably selected for further secretions, and the rest
(with a low cholesterol concentration) are sent for lysosomal degradation [28,29]. Now,
unlike the generation of other MVBs, which are mainly formed from “budding off” of the
cell membrane, the biosynthesis of exosomes involves much more complexity. It includes
the reverse membrane enfolding and dispensation of the MVBs, leading to the release of
exosomes into intercellular fluid [30]. So, the exosomes are believed to be secreted when
the secretion of plasma membrane-fused MVBs takes place [31–33]. Furthermore, the cargo
of exosomes represents its fidelity by demonstrating the molecular processing part, taking
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place within the parent cell, and serves as a potential surrogate of the respective parent cell
in the body fluids [30].

Moreover, the MVBs, along with the casing of their cargo protein, turn to the endoso-
mal sorting complex required for transport (ESCRT), like the ESCRT-0, 1, 2, 3 associated
with some proteins, for example, Vps4, Flotillin, Tsg101, and Alix. Formation of the
budding membrane takes place when the ESCRT-0 complex associates with ESCRT com-
plexes 1 and 2 after the membrane deformation. Altogether, these complexes meld with
ESCRT-3 and Vps4 protein, giving rise to the formation of ILVs by cleaving the neck of the
buds formed [7,34]. Figure 2A depicts the biogenesis of exosomes. However, there exist
some ESCRT-independent pathways as well for exosome formation, using raft-associated
lipid microdomains (present on the cell membrane) and certain linked proteins (like the
tetraspanins). The sphingomyelinases-augmented lipid rafts convert sphingomyelin to
ceramide, which induces a spontaneous budding of the membrane, forming ILVs [35,36].
The exact contribution of tetraspanin proteins in vesicle formation is not yet completely
understood. However, the tetraspanin-enriched microdomains (TEMs) are associated with
the processes like loading of cargo molecules, grouping particularly targeted receptors, and
processing the essential molecular components into exosomes [37,38].

Exosomes act as a very crucial source of cellular dumping, enclosing within them various
biomolecules, like proteins, lipids, and nucleic acids (DNA, mRNA, miRNA, etc.) [39–41].
Figure 2B depicts the b composition of exosomes, along with the biomarkers expressed
on their surface. Thus, the exosomes play a vital role in multiple physiological and patho-
logical states of the body, serving as blueprints of their parental cells [42–45]. In fact,
exosomes are associated with a plethora of functions and applications, as discussed in the
following sections.
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2.2. Key Characteristics

Exosomes are known to be of endosomal origin. These are tiny (virus-sized) vesicles,
appearing as flat spherical structures [48,49]. Exosomes are membranous vesicles spanning
in the diameter range of 30–150 nm [28,50]. Being derived from MVBs, exosomes possess
a lipid bilayer that is rich in unsaturated fatty acids, phosphatidylserine, polyglycerin,
sphingomyelin, cholesterol, and gangliosides. The density of exosomes varies in the range
of 1.08 to 1.22 g/mL [51,52]. The lipid bilayer of the exosomes is specifically known to
provide them with strength, firmness, and an armored internal environment acting as a
barrier, thwarting their enzymatic degradation and providing them higher stability as a
carrier molecule [25]. Comparing the lipid profile of the exosome’s membrane with their
parent cells, there appear to be some minor differences, as the newly synthesized ones carry
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elevated levels of lipids, like cholesterol, phosphatidylserine, and sphingomyelin and a
fewer lyso(bis)phosphatidic acids and phosphatidylcholine [53].

Exosomes are originated from the endocytic compartment of the producer cell and
are secreted from almost all the types of cells in the body fluid, including saliva, sputum,
tear, urine, bile, blood, bronchoalveolar lavage fluid, semen, alveolar fluid, pleural fluid,
bronchial fluid, cerebrospinal fluid, vitreous, ascites, and breast milk [54–56]. Being endoso-
mal in origin, these are explicitly embellished with the endosomal components as “specific
biomarkers” (CD63, CD9, and CD81), diverse proteins like the transcription factors, and
oncogenic regulators. The protein constituents of EVs act as a fine indicator reflecting
the subtype of EV, giving information about the course of biogenesis, the way of release,
and the original cell form [57]. There exist some common proteins existing in all forms of
exosomes (regardless of the cell type they originate from), including heat shock protein
(HSP84, HSC70, and HSP90β), tumor susceptibility gene 101, and Alix [58]. Exosomes also
carry genes from their parental cells like microRNAs, long non-coding RNAs, and circular
RNAs [59,60].

3. Isolation Methods for Exosomes

The first thing to be done for exploring exosomes is to find an efficient and productive
way of extracting and purifying exosomes, as they carry an immense potential to be
used as diagnostic markers for various diseases and as drug therapy carriers. Bearing
diversified size ranges and varying contents of protein and nucleic acid, exosomes can be
extracted from multiple sources of cell cultures or body fluids using different methods
of separation [61]. But due to the smaller size of exosomes and lesser availability in live
samples, their isolation and purification process become a considerable challenge. The
following sections illustrate various isolation techniques used for the isolation of exosomes.

3.1. Ultracentrifugation

The basic principle underlying the ultracentrifugation (UC) step is owing to the diverse
sedimentation coefficients of the particles present in a sample, which leads them to settle
down in different layers that can be collected separately [62]. For instance, exosomes form
a distinct fraction of the zone, floating on the top of a sucrose gradient and attaining an
equilibrium density (1.10 to 1.21 g/mL), providing their easy recovery [48]. UC can be
classified as differential centrifugation and density gradient centrifugation. Differential
centrifugation is performed at gradually rising speeds, which has been most widely used
for the isolation of exosomes [63], as shown in Figure 3 [64]. Bigger cells and their wastes
are separated at 300 to 2000× g; further increasing spin speed to 10,000× g removes bigger
EV molecules and remaining cellular by-products, and ultimately, ultracentrifugation at a
spin speed of 100,000× g segregates exosomes [65].
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Furthermore, the purity of the process is affected by the centrifugation time and using
sucrose as density gradient centrifugation. Density gradient centrifugation distinguishes
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samples as per their densities, with exosomes lying in a 30% sucrose base material. This
isolates them from other non-exosomal substances, which could otherwise be precipitated
during ultracentrifugation [66]. Various studies have reported the use of iodixanol over
the sucrose method for performing density gradient centrifugation. Iodixanol enables
the production of an isosmotic solution with varying densities to preserve the shape and
size of vesicles while moving along the gradient [67]. The iodixanol-based approach
also overcomes the limitations procured with sucrose as a gradient substance due to its
large viscosity and hyperosmotic properties, harming the exosomes and taking longer
durations to be sedimented [68,69]. Generally, an extra UC step is also carried out in
phosphate-buffered saline for washing exosome pellets and reducing the chances of protein
contamination for better purity [70]. The UC method is known to be of high throughput,
being widely used these days for exosome extraction, and hence allowing it to be a “gold
standard” for exosome isolation [62]. Though the method possesses several advantages
over others, it also involves a few limitations. One of the common issues is related to the
high viscosity of biofluids, which requires multiple UC steps for longer durations, thereby
compromising the integrity of exosomes [33,71].

3.2. Precipitation

In the precipitation method, the solubility of exosomes is altered by adding them into
a solvent, which results in their precipitation out of the solution. Usually, water-excluding
polymers are used that cause aggregation of water droplets with each other and force
the insoluble molecules from water to pop out of the solution [72,73]. Precipitation with
polyethylene glycol (PEG), having a molecular weight of 8 kDa, is commonly used for
this purpose. The PEG surrounds the exosomes, causing their aggregation, followed by
precipitation of exosomes under low-speed centrifugation [72]. Nowadays, commercially
available isolation kits, like Mini and RNeasy MinElute Cleanup kits (Qiagen; Valencia,
CA, USA), ExoQuick ULTRA isolation kit for Serum and Plasma (Cat #EQULTRA-20A-1)
(System Biosciences, Palo Alto, CA, USA), and MagCapture™ Exosome Isolation Kit PS
Ver.2 (FUJIFILM Wako Pure Chemical Corporation, Chuo-ku, Osaka 540-8675, Japan), are
also widely used to separate exosomes from other biological samples (protein, miRNA,
and mRNA) via the precipitation method [74,75]. Figure 4A shows the average diameter
of exosomes (120–150 nm) isolated from urine samples using the precipitation approach.
Standard ExoQuick-TC™ (SEQ), modified ExoQuick-TC™ (MEQ), and PEG6000 (PE6)-
based precipitations were used in the study [76]. Figure 4B,C depict the concentrations and
purity of isolated exosomes, respectively. The concentrations of isolated exosomes varied in
the range of 0.8 to 5.4 × 109 particles/mL [76]. MEQ resulted in the highest concentration
and better purity, highlighting the role of polymers in this method.
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Figure 4. (A) The average size of exosomes isolated from urine samples comparing three different
modes of precipitation strategies. (B) Concentrations of isolated exosomes from urine (exosomes/mL).
(C) Purity of the isolated exosome particles (exosome particles/µg protein from the urine sample).
* p < 0.05, ** p < 0.01, *** p < 0.001, ns: no significance; n = 3. Adapted with permission from
Cho et al., 2020 [76]. Copyright 2020 Elsevier.
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Using the precipitation method, the mass separation of exosomes becomes possible
without affecting their biological activities. PEG-based precipitation was used by Weng et al.
to isolate exosomes from the floatable component of the cell culture, and the morphology
of exosomes was clearly observed using an electron microscope [77]. The advantages of the
PEG-based isolation method include simplicity in operation, high efficiency, and low cost.
Talking about the drawbacks, the exosomes isolated using this method might carry a certain
amount of impurities, such as polymers. Protein-organic solvent precipitation (PROSPR)
is one of the other efficiently used precipitation-based methods to isolate exosomes using
organic solvents (acetone, trichloroacetic acid, and chloroform). The organic solvents cause
precipitation of the soluble proteins, leaving behind exosomes in the supernatants, which
are then concentrated by vacuum concentrators or filtration methods [78].

3.3. Immunoaffinity-Based Capture (IAC)

The immunoaffinity technique for isolating exosomes is attained via labelling specific
membrane proteins, which are available in abundance, like CD9, CD63, CD81, ALIX,
EPCAM, RAB5, and ANNEXIN [79]. The schematic illustration of the immunoaffinity-
based isolation of exosomes is presented in Figure 5A.

The immune separation method can be further divided into three types depending
on the variation in coated antibody substrates, such as chromatographic stationary phase
separation, magnetic bead immune separation, and enzyme-linked immunosorbent separa-
tion. Enzyme-linked immunosorbent assay (ELISA) is one common method to isolate and
quantify exosomes using IAC, with the help of biomarkers available on the surface [80].
These membrane peptides can acquire precise binding with similar antibodies on distinc-
tive cargo substrates, thus aiding the isolation of exosomes [81]. This method is further
being extended to use noncovalent interactions, allowing a more detailed dismantling
of exosomes from the magnetic beads, rendering purer exosomes. In a study, melanoma
cell-derived exosomes (MTEXs) were isolated using a monoclonal anti-chondroitin sulfate
peptidoglycan (CSPG4) antibody 763.74 aided by streptavidin-attached magnetic beads,
providing an efficiency of 98% exosome capture [82]. Figure 5B shows the capture and
isolation of exosomes using the IAC approach with a monoclonal antibody specific to
CSPG4 [82].
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The separation efficacy of the IAC process is small, and the activity of exosomes is
prone to the change in pH and salt concentration [83].

3.4. Size-Based Isolation Method

Based on differences in the particle size of analytes, exosomes are commonly known
to be separated using two methods, i.e., ultrafiltration and size exclusion chromatography
(SEC) [84].

3.4.1. Ultrafiltration

For the ultrafiltration method, the separation efficacy of exosomes relies mainly on the
size and molecular weight of the suspended particle in a sample [85]. Membrane filters
with a pore size of 0.22 µm are usually utilized for isolating exosomes from the filtrate [86].
Before starting the filtration step, membrane filters having pore sizes of 0.80 µm are used to
remove the cells, debris, and larger vesicles from retentate fluid containing exosomes [87].
The sample pre-treatment process is simple, and exosomes can be separated effectively
from impurities (proteins and lipids), maintaining their probity and biological activity.
But it requires a relatively superior quality of chromatographic column for separation,
making it a costlier approach. The separated exosomes are prone to being damaged by
the application of external pressure and are also prone to pore blocking, hampering the
separation performance [88,89]. One of the other downsides of this technique involves its
lower performance efficiency, as filter units are highly prone to clogging. To combat this
issue, tangential flow filtration (TFF) or cross-flow approach is applied, where pressure
is provided in a perpendicular direction, altering the hydrodynamic flow forces, unlike
the normal or the dead-end ultrafiltration method (where flow is directed in the direction
of pressure drop). In TFF, the pressure drop is engineered in such a way that there is a
component of flow tangential to the filter rather than through it, allowing the system to
run continuously and with less clogging. Thus, this enables the isolation of exosomes from
active biological samples without leading to vesicle deformation or lysis [90,91].
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Sometimes, these two types of ultrafiltration methods are combined, known as a hybrid
approach, where the sample is first introduced along one side of a membrane, followed
by injecting the sample from the opposite side of the membrane and further repeating the
cycle for a higher recovery of exosomes and lower fouling [92]. Parimon et al. [93] used the
ultrafiltration method for isolating exosomes from bronchoalveolar lavage fluid using a
100 kDa molecular weight nano-membrane filter. The system was proved to be efficient in
isolating exosome particles with a limit of detection (LOD) value of 7.69 ± 2.6 × 108/µL. In
another study, an approach using ultrafiltration combined with sequential centrifugation
was utilized for the isolation of exosomes from human colon cancer samples, which was
found to be capable of performing impartial isolation of exosomes from the conditioned
media having uniform vesicle size [94]. Figure 6 shows transmission electron microscopy
(TEM) images of exosome particles isolated successfully from different cell lines, i.e., H3,
BxPC3, and E10, using ultrafiltration with three molecular weight cut-off values of 30,
50, and 100 kDa. The exosomes were spherical with a diameter of 60–140 nm. Molecular
weight cut-off values of the membrane did not show any significant impact on particle size
and morphology [95].
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Figure 6. TEM images of exosomes isolated from three different cell lines (H3, BxPC3, and E10) using
the ultrafiltration method, having molecular weight cut-off values of 30, 50, and 100 kDa. Scale bar:
200 nm. Adapted from Eduarda et al., 2018 [95].

A comparative study of different techniques was performed to isolate exosomes (parti-
cles/mL) from equine mesenchymal stem cells, as shown in Figure 7. The exosome concentra-
tion in control, i.e., cell culture supernatant, was 2.32 × 109 particles/mL. Among the three tech-
niques, the highest mean concentration of exosomes was acquired for the ultrafiltration tech-
nique, i.e., 52.5 × 109 exosomes/mL, followed by precipitation (6.06 × 109 exosomes/mL),
and the lowest for ultracentrifugation (9.6 × 108 exosomes/mL) [96]. This indicated that
ultrafiltration and precipitation concentrated the control sample, while ultracentrifugation
resulted in a loss of exosomes.
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3.4.2. Size Exclusion Chromatography

As a mixture of molecules is passed through a column of polymeric beads having mul-
tiple pores, individual molecules pass down the pores depending on their size. Molecules
like exosomes possessing larger hydrodynamic radii are not able to enter the small pores
and pass through the column quicker, whereas molecules with a smaller radius get stuck
within the pore and migrate via the channels of the column, eluting out later from the
column [84]. In a study carried out by Hong et al. [97], exosomes were isolated from acute
myeloid leukemia (AML) plasma using mini-sized SEC columns, having a packing of
sepharose 2B. This method was found to be efficient in isolating clear and non-aggregated
exosomes having a size range of 50 to 200 nm [97]. In another study, a single-step SEC was
performed for isolating exosomes from body fluids using a sepharose CL-2B column. The
method effectively separated the vesicles having a diameter of more than 75 nm [98].

It is also practical and wise to combine the two methods (ultrafiltration and size
exclusion chromatography) for better separation, more efficient purification, and improved
yield of exosomes [61]. Here, firstly ultracentrifugation is used to separate EV particles
from the sample, followed by the SEC for the enrichment of exosome particles [99]. Figure 8
represents exosome concentrations (particles/mL) in different fractions. Proteins were
eluted after the exosomes. The average concentration of isolated exosomes was found to be
8.1 × 109 particles/mL in fractions 8 to 11 with a diameter of 120 to 150 nm [76].
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3.5. Microfluidic Separation

A microfluidic separation system analyzes and manipulates small volumes of fluids,
having a range from µL to mL using channels with micro-dimensions on a single chip.
A microfluidic system enables immunocapture, characterization, as well as quantifica-
tion of exosomes from a cell culture medium or a biological sample [100]. The different
components of a microfluidic device include micromixers, valves, microchannels, and
pumps [101]. The various approaches used within the microfluidic separation method have
gained popularity lately for the separation and purification of exosomes bearing differ-
ences in their physical and biochemical properties [102]. Some of the common approaches
used within the microfluidic devices include inertial lift force, viscoelastic flow, filtration,
deterministic lateral displacement (DLD), acoustic waves, dielectrophoretic forces (DEPs),
and immunoaffinity-based methods for the isolation of exosomes [103].

Wu et al. [104] used a mixture of acoustics and microfluidics, i.e., acoustofluidics, for
isolating exosomes from whole blood including a microscale cell removal module (for
separating bigger blood components) and an exosome isolation module (for removing
EV sub-parts). Kang et al. [105] carried out an efficient and satisfactory separation of
exosomes from plasma, based on the adjoining effect of phosphatidylserine-specific proteins
present on their surfaces associated with cancer. In another study, Ye et al. [100] used a
microfluidic platform with protein chips in order to facilitate the separation and detection
of exosomes [106,107]. Zeng et al. [108] utilized the microfluidic chip technique, combining
it with a self-assembled three-dimensional herpet-shaped nanoplatform to capture and
separate exosomes sourced from tumor cells, improving the separation efficiency of the
process by several fold. Ding et al. [109] prepared a novel magnetic nanowaxberry (MNWB)
microfluidic chip (EXoSIC) biosensor to efficiently isolate exosomes. The design of this
chip is such that an irregular serpentine channel of this chip increased the chaotic mixing
of exosomes containing fluid, hence improving exosomal capture efficiency. In comparison
to the conventional spherical magnetic nanomaterials, MNWB not only shows enhanced
capture efficiency but also has size exclusion impact, thereby improving the exosome
purity. This technique showed 24 times higher exosomal yield and higher specificity
than traditional centrifugation methods [109]. Summarily, microfluidic separation is a
microscale breakneck separation technique, showing a wide application potential in an
efficient recovery and higher sensitivity in performance, requiring lower sample volume
and briefer treatment time [110].
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3.6. Charge-Based Isolation

A few other techniques are being used efficiently to isolate exosomes, like ion (anion)
exchange chromatography and electrophoresis. These techniques have popularly arisen as
exosomes bear negative surface charges (due to membrane molecules like phosphatidylser-
ine) [84]. In electrophoresis, exosomes carrying charges can be separated when placed
under an electric field [111]. In the anion exchange chromatography (AIEX) technique,
negative charges on the membrane interact with their positive counter-ion charges, eluting
out EVs by providing additional buffers with high salt concentration and adjusting the
ionic strength of the mobile phase [89,112]. A study based on this approach was carried
out by Kim et al. [113] utilizing a centrifugal technique followed by performing an AEIX to
separate exosomes generated by mesenchymal stem cells. Further, a comparative study
was performed by Heath et al. [114] to compare the isolation efficiency of exosomes derived
from HEK293T cells through AEIX, tangential flow filtration, and ultracentrifugation. It
was found that the methods AIEX and ultracentrifugation provided almost equal yield and
purity of exosomes. Moreover, AIEX was reported to be a single-step method that could
be employed for scale-up studies having wide-scale clinical applications. Though these
charge-based methods protect the integrity of sample compounds (exosomes), sometimes
it is not suitable for certain biological samples, like blood bearing multiple charges [115].

Though there are various methods being employed for the isolation of exosomes,
none of them until now have been completely successful [61]. Each isolation technique
bears one downside or another. The major issue revolves around the compromised purity
and physicochemical properties of exosomes, affected by different isolation techniques.
To attain large-scale production of exosomes for clinical purposes remains another major
challenge to be addressed [89]. Table 1 briefly covers the upsides and downsides of all the
available major exosome isolation techniques as discussed in the previous sections.

Table 1. The advantages and disadvantages of techniques being used for the isolation of exosomes.

Isolation Techniques Advantages Disadvantages References

Ultracentrifugation

• Cheaper
• Simple steps
• Multiple samples can be

isolated in one go through
differential centrifugation

• Long treatment time
• Low recovery rate
• Low purity of extracted products
• Labor-intensive
• Additional steps for purity may

be required
• Isolated product prone

to degradation

[33]

Precipitation

• Highly efficient
• Cost-effective
• Easy to perform
• Suitable for both high and low

sample concentrations

• Exosomes are usually isolated
along with impurities

• Complicated cleaning steps
• Lengthy process

[77,116]

Immunoaffinity

• High specificity
• Simple operation
• Devoid of

chemical contamination

• Elution steps for exosomes needed
• The activity of exosomes prone to

salt concentration and pH
• Low yield
• Costly antibodies required

[79,117]

Ultrafiltration

• Simple operation
• Efficient in

removing impurities
• Fast procedure
• No special

equipment required
• Fine portability

• Time-demanding
• Expensive
• High chances of

protein contamination
• Possibility of exosome loss by

getting trapped in
membrane filters

[89]
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Table 1. Cont.

Isolation Techniques Advantages Disadvantages References

Size exclusion
chromatography

• Efficient in performance
• Maintains biological activity

and integrity of the sample

• High-quality chromatographic
column required

• Low reusability
• Sample dilution
• Time-demanding

[88]

Microfluidic separation

• Efficient recovery
• Very small sample volume
• Short treatment time (rapid)
• High-throughput analysis and

automated capacity
• Real-time process control
• Exosome isolation and

detection are
possible simultaneously

• High signal-to-noise ratio
• Low sample capacity
• Scaling up of process

is challenging
• Expensive device development

[100,110]

Charge-based isolation
• Maintains structural and

functional integrity of
the sample

• Not often used for biological
samples with multiple charges [103]

4. Detection Methods for Exosomes

As exosomes present a huge number of significant applications in health science and
medicine, identifying and detecting them appropriately becomes quite necessary in clinical
research. Various detection techniques take the aid of recognition biomolecules such as
nucleic acids, proteins, and lipids [118]. Nine and Llorente [119] and Rajput et al. [120]
enlist various lipids, protein molecules, and nucleic acids associated with the biogenesis
and release of exosomes, acting as a biomarker leading to their easy detection. Some of the
commonly used methods for the detection of exosomes include optical, electrochemical as-
says [121], immunoreaction assays [122], aptamer-based detection [123], fluorescence [124],
surface plasma resonance (SPR) [125], Surface-Enhanced Raman Scattering (SERS) [125],
chromatography [126], and microfluidic detection methods [127]. One or more detection
methods have also been combined to make the overall process more efficient.

4.1. Nucleic Acid-Based Detection of Exosomes

Nucleic acids reflect vital genetic information about the origin, function, physiological
changes, and fate of existing exosomes, in the form of RNA, DNA, and microRNA [128].
These nucleic acid substances are free to transmit and convey information between the
cells of the body, usually allied with disorders (particularly in the detection of tumors).
This makes it feasible for RNA-based cancer drug therapy applications [129]. Typically,
electrochemical assays and next-generation sequencing are used to detect nucleic acids. As
the genetic materials (DNA/RNA) are predominantly allocated inside the exosome, they
remain surrounded by the lipid bilayer, building a challenge of nucleic acid recognition
during the diagnostic procedures. To overcome this, nucleic acids are first released, followed
by identification. In a study, Zhang et al. [130] developed a method involving an adaptor
magnetic bead as a bioconjugate, which induced the release of several mitochondrial DNAs
(mDNAs) from LNCaP cells. The released mDNAs hybridized with the probe DNAs
immobilized on a gold electrode. These mDNAs, detected via electrochemical signals,
indicated the presence of tumor-associated exosomes.

In another study, Tan et al. [131] constructed an aptamer as electrochemiluminescence
(ECL) for detecting cancerous exosomes from the hepatocyte cells, which relied on analyz-
ing DNA nanostructure and nano-tetrahedron. The highest LOD of the used aptasensor
system was determined to be 3.96 × 105/mL [131]. In another study, Sun et al. [132]
explored next-generation sequencing as also used for the detection of nucleic acids. Bovine
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milk was investigated on the basis of miRNA expression profile via next-generation se-
quencing. An upregulation in the level of exosomal miRNA indicated bacterial infection,
highlighting the scope for early detection of bacterial infection in the mammary gland.

4.2. Protein-Based Detection of Exosomes

The literature review carried out so far suggests the presence of specific proteins on
the surface of exosomes (also discussed in Section 2), providing their distinction from
other vesicles and making them potent for use as markers in diagnostics [133]. Either a
single type of protein can be utilized causing specific capture and detection of exosomes,
or multiple distinct proteins can also be exploited for analyses of exosomes. Of the many
proteins present on the exosome’s surface, tetraspanins are found in abundance, causing
them to be absolute biomarkers for the quantitative analysis of exosomes. Similarly, exoso-
mal protein CD24 and urinary exosomes with biomarkers (like fetuin-A and aquaporin-1)
are associated with faster detection of autoimmune diseases and kidney injuries, respec-
tively [134,135]. The proteins are commonly identified using immunoreaction, aptamers,
and surface plasmon resonance-based methods.

4.2.1. Aptamer-Based Detection

The word “Aptamers” has been taken from the Latin word aptus, which means “to
fit”. They are synthetic ligands, emerging as an alternative to biorecognition elements,
and are selected via the systematic evolutionary process of exponential enrichment of
ligands (SELEX). Aptamers bear major properties of oligonucleotides or peptides with
spatial conformational diversity. Proteins possess high specificity and precision while
binding with aptamers, owing to a complementary shape and superposition, aided by
intermolecular interactions, i.e., hydrogen and electrostatic bonds [7]. While comparing
peptides (antibodies), nucleic acid aptamers possess a few added advantages, including
their simple chemical modification, cheaper, better long-stage stability, and easy preparation.
To date, several studies have reported the use of aptamers and a few other analytical
techniques in conjugation, for instance, click-chemistry [136], colorimetric analysis [137],
surface plasma resonance (SPR) [106], luminescent resonant energy transfer (LRET) [15],
and giant magnetoresistance biosensors. Furthermore, some studies also report the use of
combining antibodies (the immune proteins) with aptamers to avail an efficient and reliable
quantification and detection of exosomes [138].

The approach of recognizing exosomes with surface-specific protein aptamers conju-
gated with fluorescence detection becomes an efficient practice and various studies support
this technique through their research applications [139]. One such report was presented by
Sun et al. [140], who built a thermophoretic aptasensor using seven fluorescent aptamers,
which was dependent on the labelling of proteins present on the exosome’s surface. This ap-
proach was found to be efficient, highly sensitive, and cost-effective for detecting exosomes
from a sample of prostate cancer [140]. Zhang et al. [141] used a fluorescence polarization
approach, employing aptamers and the exosome’s membrane proteins (playing a key role)
for the effective quantification of exosomes from human plasma, with a limit of quantifica-
tion (LOQ) lying in the range of 5 × 105 to 5 × 108 particles/mL. Following a colorimetric
analysis approach, Tan et al. [142] achieved a satisfactory level of exosome detection by
allowing specific binding between the surface proteins (on the exosome’s surface) and the
aptamers, leading to a visual color change, which was detected with the naked eye after a
few minutes.

In line with this, Zhang et al. [123] used CD63 aptamer and modified AuNP (pro-
viding high electrocatalytic activity) with Ti3C2 to build a super perceptive ECL sensor
for recognizing exosomes from cell lines (HeLa cells). The developed ECL biosensor was
found to be a feasible, reliable, and highly sensitive detection system for clinical appli-
cations with an LOD value of 3 × 104 particles/mL. Figure 9 represents the recognition
process of exosomes using an ECL biosensor [123]. Moreover, Fang et al. [143] developed a
dual-mode biosensor with both photothermal and ECL signalling. The system caused a
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reliable detection of exosomes as a result of EpCAM proteins (on the exosome’s surface)
binding with the aptamers from the serum samples, giving the system an LOD value of
3.7 × 107 particles/mL [143].
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Figure 9. Schematic diagram representing exosome detection using ECL biosensor-based in situ
formation of AuNPs with Ti3C2 MXenes hybrid. (A) Shows the binding of aptamer (Apt) on MX-
enes hybrid surface. (B) The SA-PAM layer provides carboxyl groups for the immobilization of
CD63 Apt molecules, which enables an efficient capturing of exosome molecules, followed by
their detection using ECL biosensor. After the exosomes being captured, the exosomes/Apt/SA-
PAM/GCE surfaces were incubated with the MXenes-Apt solution based on high specific binding
between Apt and CD63 protein on exosomes surface. At last, the modified surfaces were immersed
in HAuCl4 solution (2 mg/mL) forming a AuNPs-MXenes-Apt/exosomes/Apt/SA-PAM/GCE
complex. The resulting ECL signal was recorded in luminol solution. [SA-PAM/GCE: Sodium
alginate-poly(acrylamide)/glassy carbon electrode; MXenes: 2D inorganic compounds consisting of
thin layers of transition metals]. Adapted with permission from Zhang et al., 2020 [123]. Copyright
2020 American Chemical Society.

4.2.2. Immunoreaction-Based Detection

The technique of using the immune response detected through the antigens and anti-
bodies for recognizing proteins has been growing rapidly and is widely used for analyzing
the diversity of exosomes [144]. Antibodies can be immobilized on surfaces via different
linker molecules, such as glutaraldehyde, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC)/N-hydroxysuccinimide (NHS), and self-assembled monolayers (SAMs) [145,146].
In a study performed by Yuand et al. [122], an antibody-modified reduced graphene oxide
was used to recognize the CD63 protein allocated on exosomes. The authors developed
a field-effect transistor biosensor for the quantitative analysis of exosomes, showing a
remarkable specificity and a low detection limit of 33 particles/µL. Moura et al. [147] used
modified magnetic particles with bound CD81 antibodies and labelled exosomes with
CD24 as enzyme-linked secondary antibodies, causing the immunomagnetic separation
of exosomes through optical reading using a standard microplate reader. Immune assays
can be combined with other detection techniques. In a study, Wang et al. [148] integrated
immune assays with a surface acoustic wave (SAW) sensor. Gold nanoparticles (Au-NPs)
were used in the SAW sensor. A carboxyl group was created between gold and sulfur
via self-assembly of thioglycolic acid, leading to a better sensitivity for the detection of
exosomes from the blood sample of cancer patients. For the further amplification of the
detection signal, anti-CD63 was attached to the chip, and the corresponding EpCAM was
taken as secondary antibodies to ensure specific rooting of exosomes with an LOD value of
1.1 × 103 particles/mL.
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4.2.3. Surface Plasmon Resonance Imaging (SPRi)-Based Detection

The SPRi technique provides a real-time and label-free method for detecting exosomes.
In this method, antibodies are attached to the sensor chips. Fan et al. [149] reported the
use of SPRi biosensors bearing multiple recognition sites, each with diversified biological
affinity of antibodies for multiple identifications of exosomes with higher sensitivity. The
sample was taken from non-small cell lung cancer (NSCLC) cells. The performance of the
SPRi biosensor system was enhanced with AuNPs. Figure 10 shows the working principle
of the AuNP-enhanced SPRi biosensor for multiplex detection of exosomes derived from
NSCLC cells [149]. The figure explains the exosome isolation using ultracentrifugation, fol-
lowed by their detection using SPRi. Antibodies (anti-CD63, anti-EGFR, and anti-EpCAM)
were attached to the sensor chip, and the supernatant containing exosomes flowed over it.
Au-NPs functionalized with antibodies were also passed to amplify the signals. Different
subtypes of exosomes having their corresponding conjugate antibodies on the SPRi chips
were captured and detected. The LOD value was found to be 107 particles/mL [149]. In
another study, Picciolini et al. [150] used the SPRi method to provide a direct read-out of
central nervous system status by detecting multiple neurogenic (brain-derived) exosomes
directly from the blood plasma samples. This method showed an LOD value of about
1 µg/mL [150].
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4.3. Lipid-Based Detection of Exosomes

As the outermost part of exosomes is composed of a lipid bilayer providing them
inclusion stability and rich in components like cholesterol, phospholipids, and polyglycerol,
a few approaches have been developed to target these lipid components to cause the
specific detection of exosomes using the aptamer-based approach. This has caused a
significant reduction in interference signals and ensured high specificity and sensitivity for
exosome detection. Following the common recognition and detection of exosomes, lipids
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sometimes also adjoin to the surface protein present on the exosomes, known as double
marker recognition. For instance, cholesterol is used as a probe for a target binding with
aptamers or surface proteins like CD63, sometimes conjugated with a magnetic separation
technique, enhancing the sensitivity of the method by several times [151].

In a study by Skotland et al. [152], various lipid molecules (present in exosomes)
were detected and isolated from urine samples of patients suffering from prostate cancer.
Further, using methods like mass spectrometry (MS) and lipidomics, quantification of
different lipids was carried out. Figure 11 shows a pie chart comparing the types of lipid
molecules (A) and phospholipids (B) associated with exosomes in a urine sample and
prostate cancer cell line (PC-3) [152]. Phospholipid contents were higher in PC-3 cells. This
indicated the diagnostic significance of exosomal lipids.
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In one of the studies carried out by Zhang et al. [153], a cholesterol-modified DNA
probe was developed to bind with CD63 aptamer, aided by magnetic bead marker sep-
aration to capture exosomes. The method was found to be easy and simple to perform.
For better sensitivity and magnification of signals, hybrid chain reaction (HCR) of alkaline
phosphatase was performed to analyze exosomes quantitatively through visual identifi-
cation or via UV-vis spectrophotometer. The LOD for the developed detection technique
was found to be as low as 1.6 × 102 particles/mL, proving it to be an efficient and reliable
exosomal detection and quantification system [153].

4.4. Label-Free Exosome Imaging Methods

Exosomes can be detected, and their size can be analyzed based on an optical imaging
approach. It is performed in a label-free manner with the help of interferometric plasmonic
microscopy (iPM) or plasmonic scattering microscopy (PSM) [154,155]. Though labeling
methods like fluorescence microscopy, it possesses high sensitivity and is a powerful tech-
nique, but in some cases, the labelling of target molecules becomes challenging and may
lead to some dubious changes [156]. Therefore, there is a high demand for label-free meth-
ods with improved sensitivity and a wide visual range to clearly envision nanoparticles
associated with various biological events [157]. PSM has proven to be an incredible tool in
analyzing exosomes, as it can easily distinguish the samples (with a size range of 200 nm),
rejecting noise and disturbances from the out-of-focus medium. iPM is constructed in the
Kreschmenn configuration and is akin to a surface plasmon resonance microscope (SPRM),
with certain added advantages like higher sensitivity, lack of distortion, and better spatial
resolution [158]. In a study by Yang et al. [159], the surface was chemically modified using
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gold, and a real-time adsorption study of exosomes was conducted on the modified surface.
Figure 12 represents the snapshots of distinguishable bright spots of exosomes adsorbed
over gold-modified surfaces through iPM images, bearing positive charges (as exosomal
particles carry negative surface charges). Further, the image intensity and size distribution
of exosomal particles were determined. The method also allowed quantitative measure-
ment of the membrane fusion activity between exosomes and liposomes as well as the
monitoring of the driving interaction between exosomes and antibodies. In another study
by Zhang et al. [154], PSM was used to determine the size distribution of exosome particles
and quantify their binding kinetics without labels by flowing two EV solutions, providing
high-resolution images. The size (mean diameter) of exosomal particles was found to be
nearly 115.8 nm for the 5 × 107/mL EV solution and 116.6 nm for the 5 × 1010/mL EV
solution [154].
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4.5. Nanoplatforms and Nano-Biosensors for the Detection of Exosomes

Nanoparticles provide a large specific surface area for the efficient binding of exo-
somes. Nowadays, more emphasis is given to magnetic nanoplatforms and nano-biosensors
to detect and capture exosomes, as they can be easily separated under magnetic fields.
Furthermore, these nanomaterials can be conjugated to target specific ligands in order to
impart target specificity. However, nanoparticles may not possess surface functional groups
to which the other entities (i.e., antibodies, aptamer) can be conjugated. For this purpose,
surface functionalization/modification of nanoparticles is performed [160–165]. Different
self-assembled monolayers (SAMs) are formed on the surfaces, which provides functional
groups and also alters surface energy [116,166]. Silane or thoil reagents are used for this
purpose. For example, 3-aminopropyltriethoxysilane (APTES) and octadecyltriethoxysilane
(OTES) provide -NH2 and -COOH groups, respectively, on surfaces [166–168]. Ligands can
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be directly attached to surfaces with SAMs. However, linker molecules like glutaraldehyde
or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)
are exploited to conjugate target-specific entities for the efficient detection of exosomes.

The designed nanoplatforms exploit the biomacromolecules present in exosomes
for detection. Protein and lipid-based detections are commonly integrated. In a study,
Back et al. [169] developed a simple, rapid, and efficient strategy for the isolation and
detection of exosomes via a multifunctional nanocomposite of CaTiO3:Eu3+@Fe3O4. The
nanocomposite was synthesized using a high-energy ball milling process. Exosomes
were captured by the binding of the hydrophilic phosphate head group of exosomal
phospholipids to CaTiO3:Eu3+@Fe3O4. Further, a SERS-based immune assay was used
to detect the target antigen (CD81). The schematic of the exosome capture and magnetic
separation is shown in Figure 13a and the SERS-based detection process is shown in
Figure 13b. This study proposed a multifunctional nanocomposite for the capture and
rapid detection of exosomes [169]. In another study, Wang et al. [170] synthesized a
guanidine-functionalized (GF)-covalent organic framework (COF) nanocomposite with a
layer-by-layer approach to capture exosomes and phosphopeptides. Fe3O4@COF provided
a large number of binding sites for AuNPs, which were functionalized with amine groups
using polyethyleneimine (PEI). The composite was further grafted with guanidine and
designated as Fe3O4@COF@Au@PEI-GF. The exosomes were captured from a human
serum sample, and their size was found to be in the range of 30–150 nm, as analyzed using
TEM. Nanoparticle tracking analysis (NTA) [5] was used to track the real-time dynamic
Brownian motion of the nanoparticles in order to estimate the concentration of the captured
exosomes. The captured exosome concentration was found to be ~1.2 × 109 particles/mL.
The exosomal capture can be described by the interactions between the guanidyl groups of
Fe3O4@COF@Au@PEI-GF and the phospholipid layer of exosomes [170].
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Jang et al. [171] explored the protein-based detection method. Transferrin-combined
magnetic nanoparticles (MTNs) were used to isolate brain blood-derived exosomes in
neurological diseases. Silica-coated Fe3O4 (Fe3O4@SiO2-NH2) nanoparticles were syn-
thesized and further conjugated to transferrin. Transferrin here acted like a ligand as it
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can bind the transferrin receptor present on the surface of exosomes. The study envi-
sioned the potential of MTNs to not only isolate blood-derived exosomes but also for other
exosome-related theranostic applications [171]. In a similar study by Farsani et al. [172],
silica shell-coated magnetic nanoparticles (MSNPs) with a diameter of ~140 nm were
used to isolate exosomes. These MSNPs were conjugated to Anti-CD9 antibody and to
carboxylated (CMSNPs) or aminated MSNPs (AMSNPs). The results showed >90% recov-
ery of exosomes using both AntiCD9-CMSNPs and AntiCD9-AMSNPs [172]. In another
study, Singh et al. [173] designed a co-capture-based approach for the enrichment and
detection of lung cancer-derived exosomes. It used a sandwich technique, which involved
a CD151 antibody coupled to magnetic nanoparticles for immune-magnetic selection of
target exosomes and CD81 as a secondary antibody conjugated with HRP for the am-
plification of the signal. This approach isolated 105–108 exosomes/mL with an LOD
value of 6 × 104 exosomes/mL [173]. The researchers then studied plasma samples of
18 healthy people and lung cancer patients. This nanoassembly could differentiate
between healthy individuals and lung cancer patients by quantifying CD151+/CD81+
lung-derived exosomes [173].

Inspired by the hedgehog burr-like structure, Yang et al. [174] synthesized magnetic
nanoparticles having their surface covered with nano-needles to capture and detect ex-
osomes. Magnetite (Fe3O4) nanoparticles were synthesized by a hydrothermal method,
and then surface coating was carried out using tetraethylorthosilicate (TEOS) to obtain
Fe3O4@SiO2. The obtained nanoformulation was heated with magnesium salt in a hy-
drothermal chamber to obtain Fe3O4@MgSiO3. Further, a CD63 antibody was conjugated
to Fe3O4@MgSiO3 through co-valent modification in an EDC/NHS reaction solution.
The synthesis and surface functionalization approaches are shown in Figure 14a. The
clinical samples were collected from patients with liver cancer and healthy individu-
als. It was found that with an increasing concentration of CD63 antibody (from 0.001 to
10 µg/mL), exosomal capture was increased. HepG2-derived exosomes can thus be used
as biomarkers for disease diagnosis owing to the excellent exosome capture efficiency
of the designed nanoplatform. The schematic of exosome detection and capture using
Fe3O4@MgSiO3@CD63 is shown in Figure 14b.

In another study, a silicon (Si) wafer coated with AuNPs and functionalized with
polyethylene glycol (PEG) was used to isolate exosomes from a serum sample. PEG was
used to further conjugate anti-CD63 antibody on the surface of the nanocomposite via
EDC/NHS reaction. The Si wafer was then incubated with the serum to immobilize ex-
osomes on its surface by binding anti-CD63. Western blotting was carried out, and the
presence of heat shock protein (HSP70) and calnexin confirmed exosome elution/isolation.
The elaborated schematic representation of the fabrication of Si wafer surface for immobi-
lizing exosomes is depicted in Figure 15. The advantage of the proposed technique could
be the reusability of the Si wafer, and it also allows for the isolation of other sub-ranges
of exosomes by altering the size of NPs [175]. Microfluidic technology is a powerful tool
to design and develop lab-on-chip biosensors for the efficient detection and isolation of
exosomes. In recent years, there have been attempts to design such biosensors [127]. In a
study by Ding et al. [109], as discussed in Section 3.5 above, a novel magnetic nanowaxberry
(MNWB) microfluidic chip biosensor was designed to efficiently isolate exosomes with an
LOD value of 2.4 × 107 particles/mL [109].
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AuNPs are coated (yellow moieties). Further, PEG conjugation is done, represented by purple color.
EDC/NHS reaction was carried out to activate PEG, as shown by green color. Exosomes from patient
serum sample were immobilized onto the nanocomposite, as shown by oval shaped moieties. The
schematic of the process depicts: (a) AuNP-coated Si- wafer. (b) PEG conjugation on AuNP-coated
Si wafer. (c) EDC/NHS reaction for the activation of PEG. (d) Anti-CD63 antibody conjugation to
Si wafer via PEG. (e) Immobilization of exosomes on the surface of Si wafer after incubation with
patient serum sample. (f) Eluting exosomes from the surface of Si wafer. Adapted from Pammi et al.,
2023 [175].



Biosensors 2023, 13, 802 22 of 36

5. Applications of Exosomes

Exosomes are present in many bodily fluids, such as serum, saliva, urine, cerebrospinal
fluid, and breast milk, and are also found in various cells, such as immune cells (B cells
and T cells), dendritic cells, mast cells, and platelets. Several reports on exosomes have
revealed their potential as biomarkers for the detection of several diseases, drug delivery,
and therapeutic agents. The molecular contents of exosomes, such as proteins, lipids, and
nucleic acids, remain in a stable state and thus can be used as therapeutic agents as well as
biomarkers for diseases, such as neurodegenerative disorders, viral infections, diabetes,
autoimmune syndromes, and cancer, as shown in Figure 16. A few selected applications of
exosomes for diagnostics and therapeutics are discussed in the following sections.
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5.1. Exosomes for Early Detection of Diseases
5.1.1. Neurodegenerative Diseases
Parkinson’s Disease

Parkinson’s disease (PD), being a neurodegenerative disorder, is associated with
synaptic dysregulation and neuronal death. Conversely, there is no effective diagnostic
biomarker available for the early detection of PD. Recently, Bhattacharyya et al. [176]
reported the presence of brain-enriched microRNAs (miRNAs) in circulating exosomes.
The researchers isolated exosomes from the blood sample of PD patients and found that
miR-128 was found circulating in synaptic vesicles of PD patients. The study showed
that over-expression of miR-128 can control mitochondrial superoxide production and
can also prevent downregulation of pre-synaptic terminal protein (Synaptophysin) in PD
pathogenesis. Altering the expression of exosomal miR-128 can thus play an essential
role in the pathogenesis and detection of PD [176]. There are a few other reports on a
range of miRNAs present in circulating exosomes in PD patients. These miRNAs could
be explored as biomarkers for the early detection of PD [177–180]. On the other hand,
Tomlinson et al. [181] explored the immuno-typing of the circulating exosomes. It was
found that among 1033 proteins identified in the sera of PD patients, 23 exosomal proteins
are abundantly present in PD. The researchers studied the changes in distinct proteins,
while there was no significant change in microvesicles. This suggested that there exists a
subpopulation of exosomal protein-enriched microvesicles in PD. This study gave in-depth
insight into the proteomic analysis or profiling of some specific exosomal subpopulations
that could be useful biomarkers for neurodegenerative diseases [181].
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Alzheimer’s Disease

Yang et al. [15] reported the differential expression and cut-off values for miRNAs
(miR-135a, miR-193b, and miR-384) for the diagnosis of Alzheimer’s disease (AD). The
expressions of miR-135a and miR-384 were upregulated in the serum of AD patients, while
the expression of miR-193b was downregulated [15]. In addition to nucleic acids, AD is
characterized by the aggregation of Aβ peptide and tau protein [182–184]. In a study, blood
samples from healthy people and AD patients were collected to capture exosomes [12].
The study revealed that the expression of AD-related proteins (Aβ1–42 and P-S96-tau)
was found to be higher in the samples of AD patients as compared to healthy people.
Fe3O4@Au@aptamer was used to detect the exosomes possessing CD63 markers on their
surface [12]. These findings indicated that the differences observed in the exosome analysis
of healthy people and AD patients could thus act as biomarkers for the early detection of
AD [12].

Amyotrophic Lateral Sclerosis

Exosomal miRNAs have been studied by various research groups to reveal their po-
tential as biomarkers for another neurodegenerative disease, amyotrophic lateral sclerosis
(ALS) [185,186]. Lo et al. [187] observed the alternation in the expression levels of extracel-
lular vesicles or exosome-derived miRNAs in patients suffering from ALS as compared
to healthy individuals. The results show an increased level of miR-342-3p and a decrease
in the levels of miR-1254 in three tissues of ALS patients. Additionally, an overlap was
observed among miR-587, miR-298, miR-4443, and miR-450-2-3p across two tissues. This
dysregulation associated with neurodegeneration causing ALS could pave the way for
the identification of potential biomarkers of the disease [187]. Similarly, Kim et al. [188]
studied small RNA sequencing of 18 ALS patients and 15 healthy individuals. It was found
that five of the miRNAs are differentially expressed in the patients of ALS as compared to
the healthy individuals. Furthermore, the results showed that miR-23c was upregulated,
whereas miR-192-5p was downregulated in ALS patients. Bioinformatic analysis revealed
that these miRNAs interact with different sets of genes which are involved in pathogenies
in ALS. So, these two miRNAs can serve as potential biomarkers for detecting ALS [188].
In another study by Saucier et al. [189], it was found that miR-15a-5p could serve as a
biomarker for the diagnosis of ALS, as miR-193a-5p is linked to the progression of ALS.
Banack et al. [190] stated that miRNA sequences from neural-enriched extracellular vesicles
of ALS patients may give valuable insights into the mechanism of neurodegeneration and
can help in the early detection of ALS.

5.1.2. Cancer

For the detection of cancers, biopsy is commonly used, which is invasive and not
a patient-friendly approach. The post-surgery lesions and risk of infections are major
concerns. Moreover, accessing the suspected region can also be challenging. For that matter,
researchers are extensively working towards novel approaches for early detection [191,192].
In this regard, exosomes possess great potential for diagnosis by acting as biomarkers. Exo-
somes present in tumors contain tumor-specific proteins that are involved in tumorigenesis.
Thus, tumor-derived exosome isolation and detection can be a promising approach for
early detection of cancers.

Prostate Cancer

Prostate-specific membrane antigen (PSMA) can be used as a biomarker for prostate cancer
diagnosis. Li et al. [193] synthesized a dual-functionality nanocomposite of Fe3O4@SiO2@TiO2
with reversible conjugation and on–off signal response for exosome isolation. TiO2 binds
reversibly with the phosphate groups of the lipid bilayer of exosomes. The exosomes
were isolated from the serum sample of healthy donors and prostate cancer patients. NTA
analysis estimated the concentration of exosomes to be 3.21 × 1010 particles/mL with an
LOD value of 5 × 105 particles/mL. The study showed that PSMA was over-expressed
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in patients with prostate cancer, indicating the exosomes in serum as a useful biomarker
for the diagnosis [193]. In another study, an anti-prostate-specific antigen (tetraspanin)
was immobilized onto Ag/Fe3O4/graphene surface to isolate prostate cancer-specific
exosomes [194]. The antibody was conjugated to a dye, and depending on the exosomal
concentration, the fluorescence intensity varied. This system can be exploited as a potential
platform for the biosensing of prostate cancer.

Breast Cancer

Breast cancer is one of the major malignancies leading to deaths in women. It is very
important to detect it in the early stage. Li et al. [195] isolated exosomes and detected their
breast cancer-specific markers by SERS. The magnetic SERS nano-platform was conjugated
with anti-CD9. The designed SERS platform was able to bind specifically to targeted
exosomes and could distinguish exosomes isolated from different cancer cell lines (MCF-7
cells and MDA-MB-231) [195]. In another study, Qin et al. [196] designed an interesting
dual-cycling nanoprobe for the effective detection of miR-21 in blood plasma samples of
breast cancer patients [196].

The simultaneous detection of different types of cancers is also possible using exo-
somes. In a study, Shin et al. [197] collected plasma samples from 210 healthy people and
543 cancer patients. AuNPs aggregated on APTES-functionalized glass surface array chip
were prepared for SERS-based detection. Exosome markers such as CD9, CD63, CD81,
and TSG101 were identified from cancer patients. The various biomarkers targeted using
nanoplatform/nano-biosensor-conjugated aptamers/antibodies along with their capture
efficiency have been listed in Table 2 for the early detection of diseases.

Table 2. Various biomarkers targeted using nanoplatforms/nano-biosensors and their capture
efficiency for the early detection of diseases. Here, NA refers to “Not available.”

Disease Biomarker(s) Nanoplatform
Used Antibody/Aptamer Method of Detection

Isolated
Exosome

Concentration
(Particles/mL)

Capture
Efficiency (%) Ref.

Parkinson’s
disease miR-128 NA p-FoxO3a (Ser253) NA NA NA [176]

Parkinson’s
disease

23 exosomal
proteins NA

Rabbit anti-flotillin,
rabbit anti-Tsg101,

rabbit anti-syntenin 1
Immuno-typing NA NA [181]

Amyotrophic
lateral sclerosis

miR-23c and
miR-192-5p NA HRP-conjugated goat

anti-mouse antibody NA NA NA [188]

Amyotrophic
lateral sclerosis

miR-15a-5p and
miR-193a-5p NA NA NA NA NA [189]

Amyotrophic
lateral sclerosis

miR-342-3p and
miR-1254 NA anti-β-actin NA NA NA [187]

Alzheimer’s
disease

Aβ1-42 and
P-S96-tau Fe3O4@Au@aptamer Anti-CD63 antibody NA NA NA [12]

Alzheimer’s
disease

miR-135a,
miR-193b and

miR-384
NA NA NA NA NA [15]

Prostate cancer
Prostate specific

membrane
antigen (PSMA)

Fe3O4@SiO2@TiO2
Anti-PSMA,

anti-CD9, and CD63 Fluorescence 3.21 × 1010 91.5% [193]

Prostate cancer Tetraspanin Ag/IO/GRP Dye-tetraspanin
antibody

Magnetofluoro-
immunosensing NA NA [194]

Six different
cancers

CD9, CD63, CD81
and TSG101 NA NA SERS profiling

using AI 109–1010 ~90 [197]

Breast cancer CD9 MNPs@PEI@MUA Biotin SERS NA ~91 [195]

Breast cancer PD-L1 and miR-21 NA NA NA NA NA [196]

Colorectal cancer CD63
Magnetic beads

coated with carbon
nanomaterial

Anti-CD63 antibody
Aptamagnetic-
fluorescence

sensing
1457 NA [198]
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5.2. Therapeutic Potential of Exosomes

Stem cell-derived exosomes are very useful for pre-clinical and clinical studies for the
treatment of heart strokes, myocardial infarction, and acute kidney failures. Mesenchymal
stem cells (MSCs) are reported to secrete anti-inflammatory protein, namely TSG-6, which
plays an important role in myocardial infarction [199]. In a study, a reduction in infarct size
was observed in myocardial ischemic mice with the use of MSC-derived exosomes [200].
It has also been reported that MSC-derived exosomes help in increasing neurite branch
numbers and neurite lengths in the case of the cerebral artery occlusion model of stroke [13].
Cardiac cell-derived exosomes also play an essential role in restoring cardiac functions in
the case of myocardial infarction. These healing effects are mediated by the upregulation of
several miRNAs, for instance, miR-21, miR-4454, and miR-125b [201].

Exosomes have been exploited for other chronic diseases like cancer and diabetes.
Natural killer cell-derived exosomes could inhibit tumor progression by lysing tumor
cells and delivering cytotoxic molecules. Chimeric antigen receptor-presenting cell
(CAR-T cell)-derived exosomes are also reported to exert cytotoxic effects against cancer
cells [202,203]. Exosomal miRNAs, such as miR-223, miR-29, miR-103, miR-107, and let-7,
are reported to regulate diabetes via various molecular pathways, namely modulation of
lipid and/or glucose metabolism, regulation of insulin secretion, liver gluconeogenesis,
and autophagy [16,204].

Exosomes are also useful in wound healing and bone tissue engineering. MSC-derived
exosomes are also exploited for wound healing. It was observed that human umbilical
cord-derived MSC exosomes enhance skin cell proliferation, whereas apoptosis of skin
cells is found to be inhibited by these exosomes in the case of rat burn models. Upon
treatment of the burn wounds with MSC-derived exosomes, re-epithelization was found
to be accelerated with an increased expression of PCNA, CK19, and collagen 1 [14]. MSC-
derived exosomes are also reported to be useful in bone fracture healing, as they can
promote osteogenic differentiation of bone marrow stem cells [205,206].

5.3. Exosomes as Drug Delivery Vehicles

There are various polymeric materials, liposomes, and nanomaterials that are being
used as advanced drug delivery systems (DDSs). These DDSs are used to deliver antimi-
crobial, antiviral, and anticancer drugs to the target. However, the compatibility issues
with the host cells remain challenging for using these materials as DDSs. In this direction,
exosomes are emerging as novel nanoscale DDSs with the advantages of being biocompati-
ble, target-specific, and sustainable. Exosomes can cross the blood–brain barrier (BBB) and
mediate inter-cellular communication. Schematics of the drug loading, formulation, and
delivery processes using exosomes are depicted in Figure 17. The figure also represents
various cargo/drug molecules like small molecules, aptamer, RNAs, and proteins.

An overview of exosomes as DDSs for delivering biopharmaceuticals and their clinical
application has been discussed by Butreddy et al. [208]. Kim et al. [209] summarized
exosome application as DDSs for cancer therapy with a focus on delivering various types of
cargo to the target. Interestingly, exosomes possess a tendency to accumulate in cancerous
tissues more than normal cells, which makes them a preferable choice to be used as
anticancer drug carriers [120]. Gomari et al. [210] showed that exosomes labelled with
PKH67 are preferentially uptaken by breast cancer (HER2+) cells. The unlabelled exosomes,
on the other hand, showed negligible binding to HER2+ cells. Moreover, the authors
studied the effect of free doxorubicin (DOX) and DOX-loaded exosomes on BT-474 and
MDA-MB231 cell lines. The results showed no significant difference in the toxicity of free
and encapsulated DOX, while reducing the side effects in the case of the exosome-loaded
drug [210].
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The suitability of exosomes as DDSs for miRNA-based therapy was evaluated by
Lorena et al. [211]. Bovine milk-derived exosomes were used to deliver extracellular
miRNAs to the target. The exosomes were isolated from cow milk using a combined
isolation methodology including ultracentrifugation and SEC. Afterwards, the isolated
exosomes were loaded with hsa-miR148a-3p, an exogenous miRNA that is highly expressed
in milk exosomes. The absorption of loaded miRNA by hepatic and intestinal cell lines
(HepG2 and Caco-2) was evaluated to check the potential of possessed DDS for the delivery
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of miRNAs [211]. Interestingly, 20- and 30-fold increases in the concentration of miR-148a-
3p were observed at 2 h in HepG2 and Caco-2 cells, respectively [211].

Furthermore, surface functionalization of exosomes can be carried out to make them
highly target-specific. In a study by Tian et al. [212], (cRGDyK) peptide was conjugated
to exosomes to target ischemic brain lesions. The engineered exosomes (cRGD-Exo) were
further loaded with curcumin to suppress the inflammatory response and cellular apoptosis.
The study provided a strategy for designing engineered exosomes to treat lesion regions
in the ischemic brain [212]. Despite having ample literature on the therapeutic potential
of exosomes, their practice in clinics is still limited. The clinical trials of exosome-based
therapeutics are at the initial stages, as listed in Table 3. Major developments are in phase I
of the clinical trial.

Table 3. Current status of the clinical trials for use of exosomes in the treatment of various diseases.

Disease Exosome Mode of
Administration

Administration
Dosage and Duration Clinical Trial Phase Recruitment Status Ref. @

Knee Osteoarthritis MSC-derived exosomes Intra-articular 3–5 × 1011

particles/dose Phase I Not yet recruiting NCT05060107

Type I Diabetes
Mellitus (T1DM) Blood-derived exosomes Intravenous 120–160 mg/dL Phase I Unknown NCT02138331

Decompensated Liver
Cirrhosis

Umbilical cord-derived
MSC exosomes Not specified 40 mg in three weeks Phase II Recruiting NCT05871463

Skin Rejuvenation MSC-derived exosomes Intravenous Not specified Phase I/II Recruiting NCT05813379

Colon cancer Curcumin-conjugated
plant exosomes Oral 3.6 g (gm) taken daily

for 7 days Phase I Unknown NCT01294072

Pancreatic
Adenocarcinoma

MSC-derived Exosomes
with KRAS G12D siRNA Not specified 15–20 min on days 1,

4, and 10 Phase I Recruiting NCT01294072

Alzheimer’s Disease Allogenic Adipose MSC-
derived exosomes Nasal 5–20 µg for 12 weeks Phase I/II Unknown NCT04388982

Alzheimer’s Disease Blood neuro-exosomal
synaptic proteins Not specified Not specified Not specified Not yet recruiting NCT05163626

@ ClinicalTrials.gov (accessed on 29 June 2023) [213].

6. Conclusions and Future Outlook

Exosomes actively participate in cargo transportation and intercellular communication.
Owing to their bio-physiological properties, they are considered the best biomarkers for
several diseases, such as cancer, autoimmune syndromes, neurogenerative disorders, and
diabetes. Moreover, exosomes can serve as drug delivery agents and possess therapeutic
potential. Therefore, the analytical and isolation methods for exosomes have attracted a lot
of research. The traditional methods for the isolation and detection of exosomes include
centrifugation, immunoaffinity, size-based isolation, and cellular component-based identifi-
cation. However, highly efficient, rapid, and technically developed methods are desirable.
Despite the increasing interest of researchers in this field, a highly sensitive and reliable
isolation method remains a challenge. In this context, extensive research is being carried
out to develop and design multifunctional and highly efficient nanomaterials and nano-
biosensors. These nanoplatforms and biosensors are designed to target over-expressed
biomarkers on the surface of exosomes, for instance, CD63, CD9, and CD81, to name a
few, and cellular components, such as proteins and exosomal miRNAs. Working protocols,
limit of detection, and breakthroughs in designing highly efficient and multifunctional
nanoplatforms and nano-biosensors hold promise for the efficient isolation of exosomes
and early detection of diseases. Furthermore, a standard protocol needs to be established
for exosomes isolated from different sources to prevent batch-to-batch variations and
create reproducibility.

Exosomes isolated from diseases have the potential for clinical diagnosis and early
detection of the disease by identifying target molecules. Biomacromolecules like nucleic
acids, proteins, and lipids are being exploited for detection. Further, technical developments
in traditional isolation and detection methods are being carried out. Nanomaterials possess
the potential for fabricating highly sensitive, reliable, and robust biosensors for clinical
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application and commercialization. Novel approaches, such as microfluidics, are needed
to develop next-generation biosensors or lab-on-chips. Furthermore, future research in
this field should also focus on lipid profiling apart from proteomics and/or genomics of
exosomes to discover novel exosomal biomarkers for the early detection of diseases, as
lipids are readily available on the surface of the exosomes.

Interestingly, exosomes derived from various body cells hold therapeutic potential.
MSCs and cardiac cell-derived exosomes are useful in the treatment of heart ailments.
Various exosome-derived miRNAs are helpful in the treatment of bone fractures, skin
burns, and liver-related dysfunctions. Tumor cells could also be lysed by exosomes, thereby
inhibiting tumor progression. In-depth insight into the mechanism(s) is required to see how
exosomal machinery is involved in treating various diseases. Moreover, there is still a major
challenge to be addressed, i.e., cost-effective and reproducible large-scale production of
exosomes. As exosomes represent promising future nano-medicine for the cure of various
ailments, their production on a large scale is highly demanding.
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