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Abstract: Recent advances in molecular technologies have provided various assay strategies for
monitoring biomarkers, such as miRNAs for early detection of various diseases and cancers. However,
there is still an urgent unmet need to develop practical and accurate miRNA analytical tools that could
facilitate the incorporation of miRNA biomarkers into clinical practice and management. In this study,
we demonstrate the feasibility of using a cascade amplification method, referred to as the “Cascade
Amplification by Recycling Trigger Probe” (CARTP) strategy, to improve the detection sensitivity
of the inverse Molecular Sentinel (iMS) nanobiosensor. The iMS nanobiosensor developed in our
laboratory is a unique homogeneous multiplex bioassay technique based on surface-enhanced Raman
scattering (SERS) detection, and was used to successfully detect miRNAs from clinical samples. The
CARTP strategy based on the toehold-mediated strand displacement reaction is triggered by a linear
DNA strand, called the “Recycling Trigger Probe” (RTP) strand, to amplify the iMS SERS signal.
Herein, by using the CARTP strategy, we show a significantly improved detection sensitivity with
the limit of detection (LOD) of 45 fM, which is 100-fold more sensitive than the non-amplified iMS
assay used in our previous report. We envision that the further development and optimization of this
strategy ultimately will allow multiplexed detection of miRNA biomarkers with ultra-high sensitivity
for clinical translation and application.

Keywords: surface-enhanced Raman scattering; SERS; plasmonics; nanobiosensors; nanoprobes;
microRNA detection; nucleic acid detection; signal amplification; molecular diagnostics

1. Introduction

In recent years, it has been demonstrated that microRNAs (miRNAs) are essential regu-
lators in various biological processes, including oncogenesis and cancer progression [1–7].
These small noncoding endogenous RNAs can function as oncogenes and tumor suppres-
sors [8,9]. For example, overexpressed miRNAs can downregulate the expression of tumor
suppressor genes by binding to the 3′ untranslated regions (UTRs) of their target mRNAs
leading to tumorigenesis. Recent studies have shown that miRNA expression is dysregulated
in many diseases, including cancer, infectious diseases, cardiovascular diseases, etc. [10–12].
In particular, miR-21, one of the most intensively studied miRNAs, has been described as an
oncomiR, which is overexpressed in many cancers, including the aggressive triple-negative
breast cancer, esophageal adenocarcinoma and colorectal cancer [13–19]. Moreover, it has
been shown that miR-21, together with other miRNAs, can not only be used as a signature
to distinguish cancer and healthy samples, but can also serve as a predictor for overall and
relapse-free survival [20–22]. Therefore, miRNAs have been recognized as an important class
of diagnostic biomarkers for early cancer diagnosis, prognosis, and treatment [23]. Rapid and
accurate measurement of miRNA expression levels is of critical importance for the evaluation
of cancer risk, early detection, and the assessment of treatment efficacy.

Advances in nucleic acid-based detection have provided important tools in molecu-
lar diagnostics because of their high specificity and sensitivity. The traditional methods
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for miRNA detection include northern blotting, reverse-transcription quantitative PCR
(RT-qPCR) and microarray [24–27]. However, these techniques require expensive reagents,
sophisticated laboratory equipment and time-consuming processes that could limit the
incorporation of miRNA-based diagnostics into routine clinical practice or at point-of-care.
In recent years, a variety of alternative miRNA detection strategies, including isothermal
amplification-based assays, electrochemical-based methods and nanomaterial-based sens-
ing systems, have been developed [26–30]. However, the sensitivity and specificity of these
novel techniques for miRNA detection remain challenging due to the analytical difficulties
arising from the intrinsic characteristics of miRNAs, such as the short sequences, high
sequence similarity and a wide range of expression levels [31–33].

Surface-enhanced Raman scattering (SERS) has recently attracted increasing interest
for use in molecular diagnostics due to its ultra-high sensitivity and selectivity [34]. For
over three decades, our laboratory has been developing a wide variety of SERS-active
platforms for sensitive detection in chemical sensing and biomedical diagnostics [35–38].
Raman scattering is an inelastic scattering process where the frequency of the incident light
is shifted by the vibrational energy of a molecule. This process provides unique structural
fingerprints with narrow spectral bandwidths, thus allowing for selective and multiplexed
detection of molecules of interest. The SERS effect occurs mainly from the electromagnetic
enhancement mechanism. When shining a laser onto the surface of a metallic (such as gold
or silver) nanostructure, a strong localized electromagnetic field around the nanostructure
is induced by the surface plasmon, resulting in a dramatic enhancement of the Raman
signal of the molecule located on or near the metallic surface. With recent advances in
nanotechnology, the Raman signal of analytes can be enhanced by factors of 106–107, or
even up to 1012–1014 at the gap (“hot spot”) between two or more adjacent nanoparticles
to achieve single-molecule detection limits. For this reason, SERS is considered a power-
ful molecular diagnostic tool for sensitive, specific and multiplexed detection of nucleic
acid biomarkers.

To detect the short miRNA sequences, we developed a sensitive and multiplexed
SERS-based detection scheme referred to as the “inverse Molecular Sentinel” (iMS) [39].
The iMS sensing technique is a unique one-step homogeneous plasmonic nanobiosensor
that uses a unique type of SERS-active silver-coated gold nanostars (AuNS@Ag) as the sens-
ing platform. Gold nanostars (AuNS) developed in our laboratory can produce strong SERS
at the tips of their multiple sharp branches, each with a strongly enhanced electromagnetic
field. By coating them with silver, the silver-coated nanostars (AuNS@Ag) were demon-
strated to offer over an order of magnitude of signal enhancement compared to uncoated
AuNS. The iMS sensing mechanism is based on a non-enzymatic DNA strand-displacement
process and the conformational change in stem–loop (hairpin) DNA probes for specific
target identification and signal switch. As shown in Figure 1, the iMS-OFF nanoprobe is
composed of a plasmonic-active nanostar (AuNS@Ag), a Raman-labeled stem–loop DNA
probe and a placeholder strand. The Raman-labeled probe is functionalized on a nanostar
surface via a metal–thiol bond. The placeholder strand hybridizes to the stem–loop probe
keeping the Raman dye away from the nanostar surface, thus turning the SERS signal
“OFF” (iMS-OFF). In the presence of targets, the miRNA target binds to the placeholder and
displaces the stem–loop probe through a non-enzymatic toehold-mediated DNA strand
displacement reaction. The displacement reaction is initiated by the binding of the target
to the overhang region (called “toehold”) on the probe/placeholder duplex, followed by
a branch migration process to displace the stem–loop probe from the placeholder. This
process allows the placeholder to be released from the nanostar surface, leading to the
formation of a “closed” stem–loop structure and switch the SERS signal “ON” by moving
the Raman label onto the nanostar surface (iMS-ON). Using solution-based iMS assays,
miR-21 has been successfully detected in total small RNA extracted from clinical esophageal
samples and from breast cancer cell lines [39,40]. By using a glass SERS substrate coated
with AuNS@Ag, we also demonstrated the multiplexed detection of upregulated miR-21
and miR-221, from colorectal cancer patient plasma [41].
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In recent years, various signal amplification strategies have been developed for miRNA
detection instead of using target amplification schemes like PCR. To achieve high sensitivity,
many of the detection methods employ enzyme-assisted amplification strategies making it
possible to recycle and reuse the target [42–44]. Generally, in these methods, the enzyme,
such as Exonuclease III (Exo III), duplex-specific nuclease (DSN), or DNase I, is used to
cleave or degrade only the probe strand when the probe hybridizes to its target. The target
is then released to trigger a series of enzymatic cascade reactions for signal amplification.
While these enzymatic strategies can effectively improve the detection sensitivity, there are
still many limitations when using enzymes as they are expensive and their activities are
dependent on various reaction conditions (i.e., reaction temperature, ionic strength, pH,
reaction time, etc.). Thus, there has been an increasing interest in developing simple, but
highly sensitive non-enzymatic (enzyme-free) signal amplification strategies for miRNA
detection [27,44,45]. The most commonly used non-enzymatic signal amplification strategy
is toehold-mediated strand displacement (TMSD) amplification, which utilizes the target
strand as the trigger to initiate the amplification reaction [45,46]. In this strategy, the
target first hybridizes to a probe strand to create an overhang as the toehold. A third
strand, commonly referred to as the “fuel” strand, then binds to the probe at the toehold
to initiate the strand displacement reaction, leading to release of the target that can be
reused for the next amplification cycle. To date, substantial progress has been made on
combining SERS and TMSD for nucleic acid detection [47–52]. However, many of the
TMSD-based detection strategies still face several issues and challenges. One of the main
issues is the non-specific interaction between the probe and the fuel in the absence of
targets, which could increase the background signal, thus reducing the detection sensitivity.
To overcome this issue, hairpin-structured DNA fuels are commonly used to prevent the
non-specific interaction with the probe by hiding the complementary sequences inside the
hairpin structure. However, it requires a sophisticated hairpin design to ensure the hairpin
structure is sufficiently stable to prevent non-specific interaction with the probe, while not
affecting the target recycling process.

The New Concept: Cascade Amplification Using the Recycling Trigger Probe
(CARTP) Strategy
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Herein, we describe a simplified non-enzymatic iMS signal amplification strategy,
referred to as “Cascade Amplification by Recycling Trigger Probe” (CARTP), to improve
the iMS detection sensitivity. This strategy is based on the cascade toehold-mediated
DNA strand displacement reaction triggered by a “linear” DNA strand called “Recycling
Trigger Probe” (RTP) strand. Figure 2 schematically shows the detection of miRNA targets
using the CARTP strategy for iMS SERS signal amplification. In this strategy, the iMS-OFF
nanoprobes are incubated with input targets and RTP strands. After turning on the first
nanoprobe, the input target undergoes a recycling process triggered by the RTP strands.
This process allows the target to turn on more iMS nanoprobes and provide an amplified
SERS signal.
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Figure 2. Schematic diagram showing the target recycling process for amplifying the SERS signal
using the iMS nanoprobes with the CARTP strategy.

Figure 3 depicts the amplified iMS detection strategy. In the presence of targets,
the miRNA target binds to toehold-1 to initiate the first strand displacement reaction
and turn the SERS signal “ON” (STEP 1) by releasing the target/placeholder duplex
(STEP 2). The released target/placeholder duplex then serves as a substrate for the RTP
strand. The “linear” RTP strand can bind to the single-stranded overhang (toehold-2) of
the target/placeholder duplex to trigger the second strand displacement reaction (STEP 3),
allowing the target to be released from the target/placeholder duplex (STEP 4). In this way,
the released target is recycled and reused to trigger the cascade DNA strand displacement
reaction (STEP 5).
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Probe (CARTP) strategy.

Figure 4 shows the cascade amplification scheme based on the CARTP method after
three cycles. After turning ON the first iMS-OFF nanoprobe, the input target is recycled
at the end of each cycle (STEPS 4, 9 and 14) and subsequently turns ON more iMS-OFF
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nanoprobes (e.g., the second iMS-OFF, the third iMS-OFF, and so on). In this report, we
demonstrate the proof-of-concept of our strategy for the first time to detect synthetic miR-21
targets with a significantly improved sensitivity and with a limit of detection (LOD) of
45 fM, which is 100-fold more sensitive than the non-amplified iMS assay used in our
previous report [40].
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2. Materials and Methods
2.1. Materials

Gold(III) chloride trihydrate (HAuCl4·3H2O), L(+)-ascorbic acid, silver nitrate (AgNO3),
sodium citrate dihydrate, 1 N HCl, 6-mercapto-1-hexanol (MCH) and Thiol PEG (mPEG-
SH, MW 5000) were purchased from Sigma-Aldrich (St. Louis, MO, USA). All chemicals
were of the highest purity grade available and used as received. Ammonium hydroxide
(NH4OH, 28–30%) and TCEP (Tris(2-carboxyethyl)phosphine hydrochloride) were obtained
through VWR (Radnor, PA, USA). All oligonucleotides were purchased from Integrated
DNA Technologies, Inc. (Coralville, IA, USA) and stored in Tris-EDTA (pH 8.0) buffer.

2.2. Synthesis of Silver-Coated Gold Nanostars

The silver-coated gold nanostars (AuNS@Ag) were prepared as described previ-
ously [39]. Briefly, a modified Turkevich method was used to prepare the 12 nm citrate gold
nanoparticles as the gold seeds. Gold nanostars (AuNS) were then synthesized by addition
of 50 µL of 6 mM AgNO3 to a solution containing 10 mL of 0.25 mM HAuCl4, 10 µL of
1 N HCl, and 100 µL of the 12 nm gold seeds under stirring at room temperature. After 5 s,
50 µL of 0.1 M ascorbic acid was added to the mixture. After stirring for 30 s, 50 µL of
0.1 M AgNO3 was added to the AuNS solution, followed by 10 µL of 28–30% NH4OH to
initiate the silver coating reaction. A color change from blue to dark brown was observed in
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5 min. The obtained solution was used for further functionalization with DNA probes. The
stock concentration of nanostars is approximately 0.1 nM, as determined by nanoparticle
tracking analysis (NTA). The characterization of the optical properties and TEM images of
AuNS@Ag has been reported elsewhere [40,53].

2.3. Synthesis of SERS-Active iMS Nanoprobes

The iMS nanoprobes were synthesized as described in our previous publications [39]
with slight modifications according to a pH-assisted method [54]. Figure 5 shows the
schematic diagram illustrating the preparation process for the synthesis of the iMS
nanoprobes. To adjust the pH of the prepared AuNS@Ag solution, a citrate buffer con-
taining 0.1 M sodium citrate dihydrate, and 0.3 N HCl was prepared. The stem–loop
probes were incubated with 100×molar excess of TCEP (Tris(2-carboxyethyl)phosphine
hydrochloride) at room temperature for 1.5 h to reduce disulfide bonds. The TCEP-treated
probe was added to the as-prepared AuNS@Ag (1×) at a final concentration of 0.2 µM
probe. The mixture (0.9 mL) was sonicated for 10 s followed by addition of 100 µL of the
prepared citrate–HCl buffer. The mixture was then allowed to react at room temperature
for 10 min followed by addition of 100 µL of 10 µM Thiol-PEG (mPEG-SH, MW 5000).
After standing at room temperature for 30 min, the solution was mixed with 10 µL of
1% Tween-20, followed by centrifugal washing (7500× g, 10 min), and resuspended in
10 mM Tris HCl buffer (pH 8.0) containing 0.01% Tween-20. The nanostar surface was
then passivated using 0.1 mM 6-mercapto-1-hexanol (MCH) for 10 min at 37 ◦C followed
by four additional centrifugal washing steps (7500× g, 10 min) using Tris HCl buffer
(10 mM, pH 8.0) containing 0.01% Tween-20. After the fourth centrifugation, the pellet was
resuspended in 200 µL of 10 mM sodium phosphate buffer containing 0.01% Tween-20.
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To prepare iMS-OFF nanoprobes, the iMS-AuNS@Ag solution was incubated with
2 µM placeholder DNA in 1xPBS buffer containing 0.01% Tween-20 at 37 ◦C for about 20 h.
The excess placeholder strands were removed by four centrifugal washing steps (7500× g,
10 min) and finally resuspended in 1xPBS buffer containing 0.01% Tween-20. The iMS
solution was then stored at 4 ◦C until further use.

2.4. iMS Assay Procedure and SERS Measurements

The iMS assay was carried out in triplicate using 5 pM iMS-OFF nanoprobes deter-
mined by nanoparticle tracking analysis (NTA 2.1, build 0342). For the CARTP assays,
the miR-21 synthetic targets were first mixed with the RTP strands in a Tris-EDTA (TE)
buffer. Then, aliquots of the mixture were 50 times diluted into 5 pM iMS-OFF nanoprobes
in 1xPBS buffer containing 0.01% Tween-20 and 5 mM MgCl2 to obtain the desired con-
centration of the targets and 100 nM final concentration of the RTP strands. The mixture
was allowed to react at room temperature for 3 or 24 h. Following the reaction, 100 µL or
5 µL of the mixture was transferred to a glass vial or a glass capillary tube, respectively,
for the SERS measurements using a Renishaw InVia confocal Raman microscope equipped
with a 632.8 nm HeNe laser. The light from the laser was focused into the sample solution
with a 10×microscope objective after passing through a laser line filter. All SERS spectra
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were background subtracted and smoothed in MATLAB using a Savitsky-Golay filter with
five-point window and first-order polynomial. Unless indicated otherwise, three SERS
measurements were performed per sample and averaged into a single spectrum.

2.5. Quantification of Cy5-Labeled DNA Probes Immobilized on Silver-Coated Gold Nanostars

The number of the Cy5-labeled oligonucleotides immobilized on AuNS@Ag was
determined by a dithiothreitol (DTT)-based ligand displacement assay described previ-
ously [55,56]. This DTT-based assay has been recognized as a “gold standard” for determin-
ing the surface coverage of thiolated oligonucleotides on gold nanoparticles. Briefly, 100 µL
of Cy5-labeled iMS-OFF nanoprobes (final concentration 0.1 nM) was incubated with DTT
(final concentration 0.5 M) in 10 mM Tris HCl buffer (pH 8.0) containing 0.01% Tween-20 for
20 h at room temperature with gentle shaking. This ligand exchange process makes it possi-
ble to displace Cy5-labeled probes from the nanostar surface completely. The solutions were
centrifuged at 7500× g for 10 min to separate the displaced oligonucleotides from nanostars.
After centrifugation, aliquots of the supernatant (50 µL) were collected and mixed with
50 µL of 10 mM Tris HCl buffer containing 0.01% Tween-20. The supernatant mixtures were
then transferred into a 96-well microplate to record the fluorescence using the FLUOstar
Omega microplate reader (BMG LABTECH GmbH, Ortenberg, Germany). The collected
supernatants were excited at 550 nm and the fluorescent emission was measured at 580 nm.
The concentrations of the released Cy5-labeled probes were determined according to a
standard curve. Standard curve samples were prepared with known concentrations of the
Cy5-labeled oligonucleotides using the same incubation and centrifugation procedures.
The average number of oligonucleotides per nanostar was then determined by dividing the
measured oligonucleotide concentration by the nanostar concentration in the sample.

3. Results and Discussion
3.1. Probe Design of CARTP Strategy for Amplification

The cascade iMS amplification is achieved through two toehold-mediated strand
displacement reactions. To initiate the amplification process, the target strand first needs
to bind to the toehold-1 domain on the probe/placeholder duplex for the first strand dis-
placement reaction. To release the target, the RTP strand needs to bind to the toehold-2
domain on the placeholder/target duplex for the second strand displacement reaction.
Table 1 shows the sequences of the oligonucleotides used in this study, including the
thiolated Cy5-labeled stem–loop probe, placeholders, RTP strand and target. In our pre-
vious publications [39,40], a nine-base toehold-1 domain was successfully used for the
iMS assay without amplification. In this study, three placeholders were tested for the
signal amplification strategy. Free energy (∆G) values of the toehold domains were also
calculated using the Two-State Melting Hybridization tool on the DINA Melt web server
(http://www.unafold.org, accessed on 13 July 2021). To initiate the first displacement
reaction, the toehold-1 domain was designed to be eight bases with ∆G = −8.8 kcal/mol for
Placeholder-1 and Placeholder-2. For Placeholder-3, the toehold-1 domain was designed
to be seven bases with ∆G = −7.0 kcal/mol (Figure 6A). To trigger the second strand
displacement reaction, a seven-base toehold-2 domain with a moderate binding strength
(∆G = −7.0 kcal/mol) was used for all placeholders (Figure 6B) [57]. Accordingly, the
stem–loop probe was modified to have two guanine (C) bases in the internal spacer in-
stead of two adenine (A) bases in the original design from our previous publications. The
Placeholder-2 was designed to have one additional base at the 3′ end to increase the stability
of the probe/placeholder duplex.

http://www.unafold.org
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Table 1. Oligonucleotide sequences used in this study.

Name Sequence (5′ → 3′)

Stem–loop probe * thiol-AAAAAGTCTGTATACCAAAATAGCTTATCAGAC-Cy5
Placeholder-1 ** CAACATCAGTCTGATAAGCTATTTTGGT
Placeholder-2 ** CAACATCAGTCTGATAAGCTATTTTGGTA
Placeholder-3 ** AACATCAGTCTGATAAGCTATTTTGGT
RTP strand ACCAAAATAGCTTATCAGAC
Target TAGCTTATCAGACTGATGTTGA

* Sequences in red represent the modified bases compared to the original design in previous publications [39,40].
** Underlined sequences represent the toehold-1 domain for the target strand at the 5′ end and the toehold-2
domain for the RTP strand at the 3′ end.
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Figure 6. Sequence structures of (A) probe/placeholder duplex and (B) placeholder/target duplex
showing the sequences of toehold-1 and toehold-2, respectively.

3.2. Experimental Results

To demonstrate the iMS amplification strategy, we first evaluated the amplification
efficiency using the miR-21 iMS nanoprobes hybridized with three difference placeholders
(Placeholder-1, Placeholder-2 and Placeholder-3). The average number of the Cy5-labeled
probes immobilized on a AuNS@Ag was estimated to be 680 oligonucleotides per particle,
which is 3.4 nM probes in 5 pM iMS-OFF nanostars used in this study. These iMS-OFF
nanoprobes were then incubated with 1 nM synthetic DNA targets (denoted as Target(+))
in the presence (denoted as RTP(+)) or absence (denoted as RTP(−)) of 100 nM RTP
strands at room temperature for 3 or 24 h. Figure 7 presents an example of representative
SERS spectrum within the spectral region of the major peak of the iMS nanoprobes with
Placeholder-1 in the presence of the RTP strands. The arrow indicates the main Cy5
Raman peak at 557 cm−1 that was used for the peak-height intensity analysis in this
study. As shown in Figure 7A, the SERS intensity at 557 cm−1 was significantly increased
after incubation with miR-21 targets, indicating that a “closed” stem–loop probe structure
was formed, and the SERS signal was turned ON upon the binding of the targets. This
response can be clearly seen in Figure 7B, which shows the increased SERS intensity after
blank subtraction.
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In Figure 8, it can be seen that the blank-subtracted SERS peak-height intensities at
557 cm−1 for all three iMS-OFF nanoprobes after 24 h incubation with both targets and RTP
strands (Target(+) and RTP(+)) were significantly higher than those incubated with targets
but in the absence of the RTP strands (Target(+) and RTP(−)). The increased intensity (blank-
subtracted intensity) was greater when Placeholder-1 was used (Figure 8A), compared to
Placeholder-2 (Figure 8B) and Placeholder-3 (Figure 8C). In addition, after 3 h incubation
with targets, a better amplification efficiency (i.e., a greater difference between the RTP(+)
and RTP(−) samples in the presence of targets) was also found when Placeholder-1 was
used, while the sample with Placeholder-3 only showed a slight difference with or without
RTP strands.

The different amplification efficiencies for these three placeholders are affected by
the difference in the free energy (∆G) of the toehold-1 domain; this free energy has been
shown to affect the kinetics of the strand displacement [57]. The lower ∆G (−8.8 kcal/mol)
observed for Placeholder-1 and Placeholder-2 demonstrates a better binding strength
compared to the ∆G (−7.0 kcal/mol) for Placeholder-3. To determine the operating ionic
strength for the CARTP assay, the iMS sensor response after 3 h incubation with 1 nM
targets and 100 nM RTP strands in a PBS buffer containing 5 mM MgCl2 was compared
to that in the buffer containing 2 mM MgCl2 (Figure S1 in Supplementary Material). A
better sensor response was observed in the case of 5 mM MgCl2. As Placerhoder-1 and
Placeholder-2 yielded the best results, they were selected for further quantification studies
using the PBS buffer containing 5 mM MgCl2 as the reaction buffer.
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Figure 8. Blank-subtracted SERS peak-height intensity at 557 cm−1 of the miR-21 iMS nanoprobes
with (A) Placeholder-1, (B) Placeholder-2, and (C) Placeholder-3, in the presence (denoted as RTP(+))
or absence (denoted as RTP(−)) of 100 nM RTP strands. The SERS signal was measured after 3 or 24 h
incubation at room temperature with 1 nM targets (denoted as Target(+)). After incubation, 100 µL of
the samples were transferred to a glass vial for SERS measurements. The spectra were taken using
4.8 mW laser power, 10 s exposure time and 5 accumulations.

To prevent or minimize the non-specific interaction between the RTP strand and
probe/placeholder duplex, the RTP strand used in this proof-of-concept study does not
contain the complementary sequences to the toehold-1 domain. However, an increased
signal was observed for all three placeholders in the blank samples incubated only with
the RTP strands (in the absence of targets), indicating the occurrence of a moderate non-
specific interaction between the RTP strand and probe/placeholder duplex (Figure S2).
Our results successfully demonstrated the feasibility of using the CARTP strategy for iMS
signal amplification.

We next investigated the detection sensitivity using the CARTP-mediated amplifica-
tion strategy. The miR-21 iMS-OFF nanoprobes hybridized with either Placeholder-1 or
Placerholder-2 were incubated with 0.05, 0.1, 1 and 10 pM miR-21 synthetic targets in the
presence of 100 nM RTP strands for 24 h at room temperature. Figure 9 shows that the blank-
subtracted SERS intensity at 557 cm−1 increased when increasing the target concentration
from 50 fM to 10 pM for both Placeholder-1 (Figure 9A) and Placeholder-2 (Figure 9B).
However, the increased SERS intensity for Placeholder-1 at each target concentration was
found to be greater than that for Placeholder-2. This is caused by the one additional base at
the 3′ end of Placeholder-2, which can affect the dissociation of the placeholders from the
DNA probes upon target binding.

To determine the LOD, a quantitative analysis was then performed using the iMS-OFF
nanoprobes with the optimal placeholder, i.e., Placeholder-1, for target concentrations
between 0 and 200 fM. The experiments were carried out in triplicate with five SERS
measurements per sample on different 5 µL aliquots to minimize the variance between
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experiments. As shown in Figure 10, a linear trend line was fitted to the data (normalized
blank-subtracted SERS intensity at 557 cm−1) for target concentrations at 0, 25, 50, 100, and
200 fM with R2 value of 0.9871. The LOD was then determined to be 45 fM based on the
3σ-rule by using the best-fit linear equation and the standard deviation of the normalized
intensity from the blank. This result shows that the CARTP amplification strategy provides
a significantly improved detection sensitivity, which is 100-fold more sensitive than the
non-amplified iMS assay used in our previous work [40].

Biosensors 2023, 13, x FOR PEER REVIEW 11 of 15 
 

Placerholder-2 were incubated with 0.05, 0.1, 1 and 10 pM miR-21 synthetic targets in the 
presence of 100 nM RTP strands for 24 h at room temperature. Figure 9 shows that the 
blank-subtracted SERS intensity at 557 cm−1 increased when increasing the target concen-
tration from 50 fM to 10 pM for both Placeholder-1 (Figure 9A) and Placeholder-2 (Figure 
9B). However, the increased SERS intensity for Placeholder-1 at each target concentration 
was found to be greater than that for Placeholder-2. This is caused by the one additional 
base at the 3′ end of Placeholder-2, which can affect the dissociation of the placeholders 
from the DNA probes upon target binding. 

To determine the LOD, a quantitative analysis was then performed using the iMS-
OFF nanoprobes with the optimal placeholder, i.e., Placeholder-1, for target concentra-
tions between 0 and 200 fM. The experiments were carried out in triplicate with five SERS 
measurements per sample on different 5 µL aliquots to minimize the variance between 
experiments. As shown in Figure 10, a linear trend line was fitted to the data (normalized 
blank-subtracted SERS intensity at 557 cm−1) for target concentrations at 0, 25, 50, 100, and 
200 fM with R2 value of 0.9871. The LOD was then determined to be 45 fM based on the 
3σ-rule by using the best-fit linear equation and the standard deviation of the normalized 
intensity from the blank. This result shows that the CARTP amplification strategy pro-
vides a significantly improved detection sensitivity, which is 100-fold more sensitive than 
the non-amplified iMS assay used in our previous work [40]. 

 
Figure 9. Blank-subtracted SERS peak-height intensity at 557 cm−1 of the miR-21 iMS nanoprobes 
with (A) Placeholder-1, and (B) Placeholder-2, incubated with 0.05, 0.1, 1 and 10 pM synthetic targets 
for 24 h at room temperature in the presence of 100 nM RTP strands for SERS signal amplification. 
After incubation, 5 µL of the samples were transferred to a glass capillary tube for SERS measure-
ments. The spectra were taken using 7.3 mW laser power, 10 s exposure time and 3 accumulations. 

Figure 9. Blank-subtracted SERS peak-height intensity at 557 cm−1 of the miR-21 iMS nanoprobes
with (A) Placeholder-1, and (B) Placeholder-2, incubated with 0.05, 0.1, 1 and 10 pM synthetic targets
for 24 h at room temperature in the presence of 100 nM RTP strands for SERS signal amplification.
After incubation, 5 µL of the samples were transferred to a glass capillary tube for SERS measurements.
The spectra were taken using 7.3 mW laser power, 10 s exposure time and 3 accumulations.
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Figure 10. Normalized standard curves for the evaluation of the miR-21 detection sensitivity using the
iMS nanoprobes with the CARTP strategy. The iMS nanoprobes with Placeholder-1 were incubated
with 0 (blank), 25, 50, 100 and 200 fM synthetic targets for 24 h at room temperature in the presence
of 100 nM RTP strands. After incubation, 5 µL of the samples were transferred to a glass capillary
tube for SERS measurements. The spectra were taken using 7.3 mW laser power, 10 s exposure time
and 3 accumulations. The SERS intensities were then blank subtracted with the average blank signal
and normalized to the highest signal from the measurements.
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4. Conclusions

In conclusion, we demonstrated, for the first time, the feasibility of the CARTP strat-
egy for cascade iMS amplification catalyzed by a “linear” RTP strand. We show that our
simplified iMS amplification assay with a LOD of 45 fM provides a 100-fold improved
sensitivity compared with the non-amplified iMS assay in our previous work. Further
optimization of the approach will be performed in future studies in order to address
various aspects. For example, various RTP strand configurations could be further inves-
tigated in order to minimize the possible non-specifically interaction with the iMS-OFF
nanoprobe or the interaction between the recycled target and the toehold-1 domain on the
placeholder/RTP duplex. To address these aspects, future studies will focus on designing
and optimizing the RTP strands and assay conditions, including, but not limited to, the
RTP length or different configurations, reaction buffer, assay time, reaction temperature,
etc. The probe/placeholder loading capacity and the concentrations of the RTP strands
and nanoprobes will be further optimized to increase the dynamic range. Additionally,
placeholders with a range of binding strength for the toehold-1 and toehold-2 domains will
be systematically investigated for different target sequences in future studies.

In recent years, several alternative miRNA sensing strategies have been developed
in order to facilitate the translation of miRNA biomarkers from basic research to clinical
application. For example, when combining SERS and DNA strand displacement ampli-
fication, miRNA detection with LODs ranging from sub-fM to sub-pM can be achieved
in 30 min to several hours [47–51]. These SERS signal amplification assays provide wide
dynamic ranges spanning five to eight orders of magnitude. However, many of them
require a sophisticated design of hairpin structured strands to trigger the amplification
process. Additionally, some of these methods require multiple washing/rinsing steps or
magnetic separation. In other approaches, anti-DNA/RNA antibodies have been used
for the detection of miRNAs using other sensing methods, including Reflective Phantom
Interface (RPI) technology, surface plasmon resonance imaging (SPRi) and enzyme-based
amperometric sensing [58–60]. These antibody-based assays generally provide LODs at
sub-pM levels with dynamic ranges spanning three to four orders of magnitude. However,
like enzymes, antibodies are more expensive and are susceptible to various reaction and
storage conditions compared to DNA. Moreover, these substrate-based assays require either
rinsing steps or fabrication of different sensing spots to detect multiple targets.

In contrast, the iMS sensing technology developed in our laboratory is a unique
homogeneous bioassay, which does not require PCR, target labeling or any subsequent
washing steps. Our method can be used in both solution-based and substrate-based assays
for various applications. The multiplexed capability of the iMS sensing based on SERS
also offers significant advantages over other optical methods, such as fluorescence and
chemiluminescence. Multiplexed detection can be easily achieved in a one-pot format as
multiple targets can be detected in a single solution or in the same spot on a SERS substrate
by using different Raman labels. It is worth noting that our method can be performed using
a small sample volume (a few µL) in a capillary tube that could be advantageous for clinical
applications when limited quantities of samples can be collected. We anticipate that further
optimization of the CARTP assay will reduce the assay time, increase the dynamic range,
and improve the LOD for advanced applications, such as Point-of-Care (POC) testing.

In addition to focusing on assay optimization, future work will also involve using this
iMS amplification strategy for multiplexed detection of miRNAs from clinical specimens.
Our previous pilot studies successfully demonstrated the use of the iMS technique without
the amplification strategy to detect miR-21 from clinical esophageal samples [40] and miR-
21 and miR-221 from colorectal cancer patient plasma [41]. Future studies will expand
this work to include multiple miRNA biomarkers and large numbers of actual clinical
samples for improved diagnostic accuracy and capability; also, comparison of iMS data
with RT-qPCR results will help validate the reliability and robustness of this CARTP-based
iMS assay. We envision that this method will ultimately allow detection of multiple miRNA
biomarkers with ultra-high sensitivity for future clinical translation and application.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13080774/s1, Figure S1: Blank-subtracted SERS spectra
of the miR-21 iMS nanoprobes with (A) Placeholder-1, (B) Placeholder-2, and (C) Placeholder-3, in the
presence 100 nM RTP strands and 1 nM targets (denoted as Target(+) & RTP(+)). The reactions were
performed in 1xPBS buffer containing either 5 mM (blue spectrum) or 2 mM MgCl2 (red spectrum) for
3 hours at room temperature. After incubation, 100 µL of the samples were transferred to a glass vial
for SERS measurements. The spectra were taken using 4.8 mW laser power, 10 s exposure time and 5
accumulations.; Figure S2: SERS peak-height intensity at 557 cm−1 of the miR-21 iMS nanoprobes
with (A) Placeholder-1, (B) Placeholder-2, and (C) Placeholder-3, in the presence (denoted as RTP(+))
or absence (denoted as RTP(-)) of 100 nM RTP strands. The SERS signal was measured after 3- or
24-hour incubation at room temperature with 1 nM targets (denoted as Target(+)) or without targets
(denoted as Blank). After incubation, 100 µL of the samples were transferred to a glass vial for
SERS measurements. The spectra were taken using 4.8 mW laser power, 10 s exposure time and 5
accumulations.
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