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Abstract: A methodology to enhance the sensitivity of long-period fiber gratings (LPFGs) based on
the combination of three different enhancement approaches is presented; the methods here adopted
are the working near mode transition (MT) of a cladding mode (CM), working near the turn-around
point of a CM and the enhancement of the evanescent field of CMs by reducing the cladding diameter
or by increasing the order number of CMs. In order to combine these enhancement methodologies,
an electrostatic self-assembly (ESA) process was used to deposit a polymeric overlay, with a chosen
thickness, onto the etched fiber. The add-layer sensitivity of the sensor was theoretically calculated,
and the demonstration of the real applicability of the developed LPFG as a biosensor was performed
by means of an IgG/anti-IgG immunoassay in human serum in a thermostated microfluidic sys-
tem. The limits of detection (LODs) calculated by following different procedures (three times the
standard deviation of the blank and the mean value of the residuals) were 6.9 × 10−8 µg/mL and
4.5 × 10−6 µg/mL, respectively. The calculated LODs demonstrate the effectiveness of the applied
methodology for sensitivity enhancement.

Keywords: long-period fiber grating; label-free biosensing; etching; cladding mode; sensitivity
enhancement

1. Introduction

Long-period fiber gratings (LPFGs) have been widely used to develop chemo- and
biosensors throughout the last decade, thanks to their ability to sense surrounding refractive
index (SRI) variations [1–4]. Despite their success in the field, meeting the sensitivity
requirements to detect biomolecules in real samples is still a challenge to be addressed
due to the LPFG lower sensitivity around SRI 1.333 [3], which is the proper RI of solutions
and samples commonly involved in biosensing applications (e.g., RI of buffers) [5–7]. To
this purpose, different methodologies have been applied by researchers to enhance the SRI
sensitivity of the sensor in this range; these methods can be broadly classified into three
main categories:

(a) Working near mode transition (MT) of a cladding mode (CM) [5,8–10].
(b) Working near the turn-around point (TAP) of a CM [11,12].
(c) Enhancement of the evanescent field of CMs by reducing the cladding diameter or by

increasing the order number of CMs [11,13,14].

Sometimes, a combination of these methodologies has been used to enhance the SRI
sensitivity [15–19]. It has been theoretically shown that by combining all these methodolo-
gies, an SRI sensitivity of 1.43 × 105 nm/SRIU (SRI units) is achievable [20].
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However, it is worth mentioning here that characterizing an LPFG sensor in terms of
its sensitivity to bulk SRI variations is not fully appropriate for biosensing applications in
which the sensing mechanism is usually based on the binding of the analytes of interest
directly onto the functionalized surface of the fiber. It is apparent that an increase in the
penetration depth of the evanescent wave of the cladding modes in the surrounding envi-
ronment does not lead automatically to an improvement of the biosensing performances.
The key parameter is the ratio between the penetration depth of the evanescent wave and
the thickness of the region where the chemical/biochemical interaction takes place. The
larger the value of this ratio, the smaller the fraction of the evanescent wave, which is
modulated by the analyte to be measured, and this leads to a worsening of the sensor
performance, notwithstanding an increase in the bulk SRI sensitivity. For this reason, it
is usually more significant to characterize LPFG sensors in terms of add-layer sensitivity.
In Bandyopadhyay et al. [21], a theoretical study on the optimization of LPFG sensor
add-layer sensitivity is reported, while the design and experimental validation of an LPFG
sensor working near TAP of a CM and working near MT of a CM is described in Dey et al.,
2021 [22] and 2022 [23], respectively.

In this work, for the first time and to the best of our knowledge, we theoretically
designed and practically realized an LPFG biosensor by combining all three sensitivity
enhancement methodologies. The period of the grating is optimized in such a way that
the left peak of the resonant CM of our interest could be positioned in the C+L band
(1530–1625 nm) by combining, at the same time, the enhancement conditions of the evanes-
cent field, working near TAP and working near MT. To work near MT, a layer-by-layer
method employing an electrostatic self-assembly (ESA) process is used to deposit a poly-
meric overlay (RI~1.53) constituted by multiple layers of poly(allylamine hydrochloride)
and poly(sodium 4-styrenesulfonate) onto the sensor surface. The add-layer sensitivity
of the sensor was theoretically calculated; then, an IgG/anti-IgG immunoassay was per-
formed in serum inside a thermally stabilized closed-flow cell. A calibration curve of the
immunosensor was achieved in order to evaluate the real effectiveness and feasibility of the
sensor, and this result was compared with other LPFG-based sensors with application in
IgG/anti-IgG detection to prove the effectiveness of the sensitivity enhancement technique.

2. Materials and Methods
2.1. Materials

Reagents for sensor modification and assay implementation—hydrofluoric acid (HF),
goat anti-mouse IgG, bovine serum albumin (BSA), reagent for polymer coating
poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS)—and the
reagents for phosphate buffer saline (PBS, 0.01 M pH 7.4) preparation were all from Merck
Life Science (Milan, Italy). Mouse IgG, 1 ethyl—3(3- dimethyl amino propyl) carbodiimide
HCl (EDC) and N- hydroxy succinimide (NHS) were purchased from Thermo Fisher Scien-
tific (Milan, Italy). Pooled normal human serum was from HyTest Ltd. (Turku, Finland).

2.2. Inscription of LPFG Sensor

The LPFG was written on B/Ge co-doped photosensitive fiber Fibercore PS 1250/1500
(cutoff wavelength at 1209 nm) using a KrF excimer laser (Compex 110, Lambda Physics
GmbH, Gottingen, Germany). The acrylate coating of the fiber was removed along a 40 mm
section before the inscription. A micrometric slit was used for the shaping of the laser beam
in order to obtain a 50% duty cycle of the induced RI change profile. A cylindrical lens of
focal length 100 mm was used for increasing the laser fluence (the fiber was placed 1 cm
away from the lens focus). The total pulses per grating plane were 250 and the total fluence
per grating plane was 70 J/cm2. The LPFG was placed in the central part of the stripped
region of the fiber.
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2.3. Etching Process

A chemical etching process was used for the reduction of the cladding diameter by
using 10% and 1% HF. The fiber was kept straight during the etching process to remove
the bend-induced noise by fixing it in a U-shaped holder by using small magnetic blocks.
During the whole process, the fiber was never touched. The details of the etching setup
can be found in Dey et al., 2021 [24]. After etching, the fiber was examined under a micro-
scope (Inverted fluorescence microscope, Zeiss Axio Observer.Z1, Zeiss, Jena, Germany) to
measure the actual diameter.

2.4. Polymer-Coating Process

The electrostatic self-assembly (ESA) technique was used to deposit the polymer
overlay on the fiber surface. The process was described in detail in Dey et al. 2022 [22].
During the coating, the fiber was kept straight by using the same U-shaped holder of the
etching setup. The fiber surface was cleaned using deionized water followed by methanol.
Then, the surface was treated with a 1 M sodium hydroxide (NaOH) solution to form a
silanol group and was rinsed with a copious amount of water. After surface preparation,
the fiber was alternatively dipped in poly-cation and poly-anion solutions to obtain the
desired amount of polymer thickness. In this experiment, PAH and PSS were used as
poly-electrolytes. One combined layer of PAH/PSS was denoted as a bilayer, and the
thickness of each bilayer was ~28 nm [23]. The thickness of the polymeric bilayer depends
on the salt concentration of the polyelectrolyte solution [24], the rinsing procedure after
polyelectrolyte deposition [25], the pH of the polyelectrolyte solution [26], etc. It also
depends on the considered polyelectrolytes. In [26], it was shown that a bilayer thickness
of ~28 nm can be obtained with PAH/PSS with the controlled pH of a PSS solution. The
outer surface of the polymeric layer was of PAH as it contains amine (-NH2) groups, which
are needed for the covalent binding of the biomolecule on the fiber surface. The RI of the
polymeric layer is ~1.53 [23].

2.5. Immunoassay Protocol

For the immunoassay, the coated fiber was fixed into a thermally stabilized closed
flow cell [27] at a constant temperature of 25 ± 0.1 ◦C by means of a set of three Peltier
cells connected in series and a thermocouple for the temperature monitoring (LDC-3722B
thermoelectric cooler (TEC) controller, ILX Lightwave, MT, USA). A peristaltic pump was
used to flow the different solutions needed for the preparation of the biomolecular layer
and for the antigen interaction. A scheme of the experimental setup is shown in Figure 1A
together with the scheme of the immunoassay conducted on the LPFG sensor (Figure 1B).

The coated fiber fixed into the flow cell was then modified with mouse IgG, which
is used as a biorecognition element to bind the specific target antibody (anti-mouse IgG).
For the immobilization, the carboxylic groups of the antibody (mouse IgG) were first
activated by classical crosslinking chemistry (EDC and NHS); then, the activated antibody
(1000 µg/mL in PBS) was flowed into the cell at a flow rate of 0.9 µL/min for 1 h. After
washing with PBS to remove the unbound biomolecules from the surface, the surface was
passivated with BSA (3% in PBS, at a flow rate of 6.75 µL/min for 30 min) to prevent
nonspecific adsorption.

The assay was performed with increasing concentrations of goat anti-mouse IgG
ranging from 0.1 ng/mL to 100 µg/mL, spiked in human serum (at a final dilution of
1:10 (v/v) in PBS). Human serum was used as a complex matrix to demonstrate the possi-
bility of using the developed biosensors in real applications and as a negative control to
demonstrate the biosensor specificity.

The injection procedure was the following:

1. Fast injection at 45 µL/min for 3 min (fast filling of the flow cell).
2. Slow flow at 6.75 µL/min for ~20 min (binding phase at slow flow rate).
3. PBS washing after each step at a flow rate of 45 µL/min for 5 min.
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The acquisition of the resonant wavelength of a CM of LPFG (λres) for every anti-IgG
concentration was performed in stop-flow condition and in PBS medium for 5 min.
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Figure 1. (A) Scheme of the experimental setup. (B) Scheme of the immunoassay conducted on the
long-period fiber grating (LPFG) sensor.

2.6. Data Acquisition and Analysis

The optical source and detection system were the broadband SLED SLD-1310/1430/
1550/1690-10 (FiberLabs Inc., Saitama, Japan) and the optical spectrum analyzer (OSA)
MS9030A/9701C (Anritsu, Kanagawa, Japan), respectively. The measurement spectral
range ranged from 1300 nm up to 1750 nm. The interaction of the optical signal with the
grating is characterized by the presence of dips on the transmitted spectrum. The dips
were fitted with a Lorentzian function for the calculation of the minimum wavelength
(the resonance wavelength, indicated as λres in Section 3.1). Every experimental point was
calculated as the average of 25 samples (λres) acquired in stop-flow conditions.

3. Results and Discussion
3.1. Theory and Simulation

LPFG couples the fundamental core mode (LP0,1 mode) to copropagate higher-order
CMs (LP0,m modes where m = 2, 3, 4, . . . . . . .) at different wavelengths (λres), where the
following resonant condition is satisfied:

λres =
(

nco
e f f − ncl0,m

e f f

)
Λ (1)

where nco
e f f is the effective refractive index of the core mode, ncl0,m

e f f is the effective refractive

index of mth-order CM and Λ is the period of the grating [28].
It is known that LPFGs attain very high SRI sensitivity near the TAP of a CM [11], and,

in our previous work [23], we already showed that by reducing the cladding diameter, a
lower-order dispersed CM near TAP became more sensitive with respect to higher-order
CMs in a non-etched fiber because of the enhancement of the evanescent field of the CM as a
result of the reduction in the cladding diameter. Working near MT is another way to enhance
the SRI sensitivity: it consists of the deposition of an overlay layer of any dielectric, metal
or metal–dielectric composite having an RI higher than the core RI on the fiber surface
up to a certain thickness, known as optimum overlay thickness (OOT) [8]. It is worth
mentioning here that the MT of all CMs occurs for the same thickness variation of a certain
overlay material [8]. During the bioassay implementation, the bulk SRI remains constant
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(buffer of RI ~1.333), while the local surface RI and the thickness of the biomolecular layer
variation give rise to the resonant wavelength shift of the CMs. In order to determine the
add-layer thickness range for which the sensitivity is linear and maximum (the central
thickness value is the so-called OOT) [23], the sensor was here characterized in terms
of add-layer sensitivity (nmWL/nmTH = wavelength shift in nanometer per nanometer
thickness variation on sensor surface [21]).

A theoretical simulation was carried out to optimize the design parameters of the LPFG
sensor and subsequently to enhance its add-layer sensitivity by exploiting the combined
effect of mode dispersion through fiber etching, operating the CM around the linear part of
the MT and also around the TAP. The concept of dispersing a cladding mode to its TAP has
already been described earlier, where the lowest order LP0,2 cladding mode was dispersed
to its TAP. Although the add-layer sensitivity could be significantly increased, the diameter
of the fiber after etching was found to be around 20 µm [27]. In real-world applications,
using a fiber of that size is difficult. It should be mentioned at this point that any mode order
can be dispersed through etching to their respective TAPs, but, considering that the higher
mode order needs a lower cladding reduction but exhibits a lower sensitivity after etching,
there is a need for a trade-off between the choice of a mode order to be dispersed through
etching and the final cladding diameter. There is another important factor to consider when
selecting a specific cladding mode, which is the final location of the dual resonant bands
of the cladding mode once it is dispersed to its TAP. The purpose of operating a cladding
mode around the TAP is to take advantage of the possibility of monitoring the shift of both
bands in order to improve measurement resolution. To achieve that, the dual bands should
be positioned within the available source bandwidth of commercial wideband optical
sources, which mostly covers the C and extended L bands and, in general, covers a band
from 1520 nm to 1750 nm. Taking the design constraints discussed above into account, the
LP0,7 cladding mode was considered in our simulation to realize the sensor. The parameters
used for the simulation are shown in Table 1.

Table 1. Fiber and grating parameters.

Parameters Values Used for Simulation

Core RI 1.44985
Cladding RI 1.44400

Core diameter 7.3 µm
Fiber diameter 124.6 µm

Index modulation (∆n) 1.6 × 10−4

Grating period (Λ) 220 µm
No. of grating planes 140

Grating length 30.58 mm

The resonant spectrum of the grating was simulated over a wide band (1050 nm to
1800 nm), considering water as the surrounding medium (RI = 1.334). With these grating
parameters, the left peak of the LP0,8, LP0,9 and LP0,10 cladding modes could be seen
within the considered bandwidth (Figure 2). The fiber diameter was then reduced in steps,
and spectra were computed for every step, up to a cladding diameter of 84.9 µm, where
the LP0,7 cladding mode could be dispersed near its TAP within the desired wavelength
band ranging from 1520 to 1750 nm (Figure 2). At this point, it can be said that the LP0,7
mode was positioned near its TAP in a water medium by dispersing the mode. It was
then required to compute the spectrum while it was positioned near the linear part of its
mode transition.

It is important to mention that while tailoring the spectral characteristics of a cladding
mode, either by etching the fiber or by deposition of overlay layers, it is necessary to
precisely position the phase matching curve (PMC) of that respective cladding mode [12,21].
It was observed earlier that positioning a cladding mode around the start of the linear
region of its MT curve needs a nearly 250 nm thick overlay (with RI ' 1.53 RIU) layer on



Biosensors 2023, 13, 731 6 of 15

the surface of the grating [22]. It was also observed that upon deposition of a high refractive
index overlay layer, the resonant cladding mode spectrum is redshifted if the PMC of that
CM has a negative slope and similarly experiences a blueshift if the slope of the PMC is
positive. Now, among the two resonant bands of a cladding mode positioned near the TAP,
the resonant band that is located on the right-hand side of the TAP (namely, the right peak)
moves on the section of the PMC, which has a negative slope, while the left peak moves on
the positive PMC section. It is therefore understandable that by deposition of a ~250 nm
overlay layer of a polymer (RI = 1.53), although the mode will be positioned near the MT,
the dual resonant bands of LP0,7 mode as computed and shown in Figure 2 will move away
from the TAP, and, consequently, the sensitivity will be significantly reduced. Therefore,
the PMC of the LP0,7 mode has to be pre-processed so that even though the overlay layer of
a desired material and thickness is deposited to position the cladding mode near the MT,
the condition of operating the same mode near the TAP does not get affected. To achieve
this optimal condition, the initial PMC was tailored by reducing the diameter of the fiber
from 84.9 µm in a step of 0.01 µm, and at each step, the spectrum of the LP0,7 mode was
recomputed after incorporating a layer of a thickness of 266 nm with RI = 1.53 RIU, which
is necessary to position the CM at MT. With the reduction in cladding diameter, the dual
resonant bands gradually come closer, then converge to a single band and, with a further
reduction in cladding diameter, finally vanish [12].
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Figure 3 describes the results for the present simulation, where, amongst all computed
spectra of LP0,7, only spectra at two different cladding diameters are plotted as an example.
When the cladding diameter is reduced to 84.73 µm, the two peaks merge into a single one
(black line in Figure 3), and at a diameter of 83.16 µm, the phase-matching condition for
the LP0,7 mode is not satisfied, and no resonant band can be observed (red dashed line).
The deposition of a 266 nm overlay layer (RI = 1.53) brings again the dual resonant bands
to have a peak-to-peak separation of 120 nm (blue dotted line in Figure 3).

It is worth mentioning here that a further reduction in the cladding diameter beyond
83.16 µm implies a deposition of a thicker polymer layer on the sensor surface to regain the
dual resonance of LP0,7 CM near TAP, with a decrease in the final sensitivity.
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The add-layer sensitivity of the sensor was calculated by increasing the layer thickness
on the optimized sensor surface with a sequence of layers of a material with RI = 1.53 (the
same RI used to bring the sensor to the MT region). Each wavelength shift was simulated
by the deposition of 5 layers one by one (each 28 nm thick). The theoretical response curve
is depicted in Figure 4. It was found that the wavelength shift of the left peak remains
constant for the first four layers and then decreases. This was because, after deposition of
112 nm thickness (28 nm × 4 layers), the LP0,7 CM exceeds the linear part of the MT curve.
The right peak after the deposition of three layers was not considered since it is beyond the
wavelength range of the OSA later used in the experiments. The calculated sensitivity in
the linear part was −2.7 nmWL/nmTH for the left peak and 2.1 nmWL/nmTH for the right
peak, and the dual peak sensitivity became 4.8 nmWL/nmTH.
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3.2. Fabrication of the LPFG Sensor

The LPFG was fabricated by following the results derived from the simulation, as
described in Section 2.2. After inscription, the cladding diameter was reduced by the
chemical etching process described in Section 2.3, until the dual peak resonance of the LP0,7
CM appeared near the TAP in a water medium. The experimental transmission spectra
before and after the etching process are depicted in Figure 5. The left peak of the mode
appeared at '1570 nm with a peak-to-peak separation of '155 nm, which matches the
simulation results described in the previous section well.
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The diameter of the fiber measured by using the microscope was 85.01 µm (Figure 6),
which was in accordance with the simulation results.
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As derived from the simulation, to introduce the MT condition along with the TAP
condition and mode dispersion, the fiber diameter must be further reduced by 1.74 µm so
that, after polymeric layer deposition of a thickness of 250 nm, the dual resonance of LP0,7
CM can appear again near the TAP. In order to find the correct protocol (etching time and
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HF dilution) for this subtle thickness reduction, a dummy Fibercore PS 1250/1500 fiber was
etched in 1% HF solution. After every 30 min, the fiber was taken out of the HF solution,
and the diameter was measured using the microscope. The total etching duration was
120 min, and the etching rate, calculated from corresponding data, was 0.021 µm/min, as
shown in Figure 7. Considering these results, the LPFG sensor of diameter ~85.01 µm was
immersed in the 1% HF solution for 83 min for a further reduction in the fiber diameter by
~1.74 µm. The corresponding spectrum is shown in red in Figure 8.
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After this further etching step, the polymer layer was deposited on the LPFG surface
by using the ESA method as described in Section 2.4. Nine bilayers and a final monolayer
of PAH were deposited on the sensor for a total polymer thickness of '266 nm, with the
thickness of a single PAH/PSS bilayer being equal to '28 nm (well matched with the value
considered during simulation) and assuming the thickness of the PAH monolayer to be
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equal to 14 nm. As a result, the dual peak of the LP0,7 CM appeared again near the TAP
in a water medium as shown in Figure 8 (blue line). The wavelength of the left peak of
the dual resonance was '1619 nm with a peak-to-peak separation of '50 nm. The slight
mismatch with simulation results, which led to a left peak at 1565 nm and a peak-to-peak
separation of 130 nm, can be ascribed to a slight discrepancy between the experimental and
calculated final diameter of the etched fiber. In any case, the LP0,7 CM of the sensor is near
the TAP, along with the MT condition and with the enhanced evanescent field obtained
due to mode dispersion in the water medium.

3.3. Immunoassay to Evaluate the Sensor Performance

With the final aim of demonstrating the real applicability of the developed LPFG
as a biosensor, an immunoassay was implemented on its surface in order to investigate
the analytical improvements of the new sensor amplification strategy. In order to be able
to perform a correct comparison with previous works based on modified LPFG-based
biosensors for the detection of immunoglobulins G [29–38], an IgG/anti-IgG immunoassay
was accomplished, and the results were used to evaluate the sensitivity in terms of the limit
of detection (LOD).

The immunoassay was performed as described in Section 2.5. The real-time sensor-
gram of the left peak of the LP0,7 CM is shown in Figure 9. The shaded region in Figure 8
represents the PBS washing and the stop-flow phase. The corresponding spectra of the left
peak of the LP0,7 CM at the stop-flow phase are shown in Figure 10.
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The dual peak resonance wavelength shifts in correspondence with the different
concentrations of goat anti-mouse IgG are reported in Figure 11. The error bars shown here
are calculated as the standard deviation on 25 acquired wavelengths. The experimental
data were fitted by means of a logistic sigmoidal model [39] described by the following
model equation (Equation (2)):

y =
A1 − A2

1 +
(x/x0

)p + A2 (2)
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Figure 11. Dual peak resonant wavelength shifts of the LP0,7 CM at different concentrations of
antigen. Dashed blue line: limit of detection (LOD) calculated by using three times the standard
deviation of the blank. Green dashed-dotted line: LOD calculated by using the maximum of the
residuals. Magenta line: LOD calculated by using mean value of the residuals.

The parameters obtained by means of the fitting procedure and the data of Figure 11
are summarized in Table 2.

Table 2. Parameters of the Logistic curve fitting.

Value Error

A1 −0.14 0.25
A2 296 2790
x0 6.81 × 1010 4.27 × 1012

p 0.166 0.038
Adjusted R-Square 0.996
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Despite the fact that the correlation between experimental data and the fit is very good
(R-square = 0.996), the parameters A2 (the asymptote) and x0 (middle point between A1
and A2) of the logistic function are affected by big errors. This can be explained considering
that the logistic curve identified by Equation (2) is a sigmoidal curve with a horizontal
asymptote A2, which represents the saturation of the biochemical capture layer onto the
fiber surface, and a flex, close to the x0 middle point. In this case, the fiber surface is far
from being saturated, as demonstrated by the fact that the flex point has not yet been
reached in the fit curve reported in Figure 9, with the consequence that a little variation in
the experimental points can also induce a large variation in the fitting curve parameters
(large errors on x0 and A2). However, this model function was chosen here because it has
been reported to be well correlated with biochemical phenomena [39]. Moreover, it can
be confidently used for the estimation of the LOD because of the optimal correlation with
the experimental data: by following the formal definition of the LOD of three times the
standard deviation of the blank [40], which, in this case, is the anti-IgG zero concentration,
we obtain a LOD of 6.9 × 10−8 µg/mL (dashed blue lines in Figure 9). However, after
a critical analysis of the data and, in particular, of the residuals (the distance of the data
from the fitted curve, which is, in turn, the difference between the measured value and the
predicted value), it is evident that two points deviate from the fitting curve. For this reason,
different protocols were also followed to calculate the LOD by considering the maximum
of the residuals (LOD = 5.1 × 10−4 µg/mL, green dashed-dotted line in Figure 11) and the
mean value of the residuals (LOD = 4.5 × 10−6 µg/mL, magenta line in Figure 11) to take
into consideration these deviations.

The proposed biosensor has the potential of reaching a LOD of 6.9× 10−8 µg/mL, after
understanding the source of noise that caused the data to deviate from the theoretical ideal
trend. However, for a more unbiased comparison with previous works (Table 3) based on
the same measurement principle and applied to the detection of the same biomolecules, the
two LODs calculated from the residuals are considered. Moreover, these LOD values can
be deemed as more reliable since they are within or near the range of tested concentrations.

Table 3. Comparison among different LPFG-based biosensors for IgG/anti-IgG detection.

Kind of Sensor Immobilized Receptor
(Concentration) Antigen Measurement Setup LOD Ref.

LPFG Anti-IgG
(0.5 mg/mL) IgG Flow cell Not given [29]

Reflection mode LPFG IgG
(0.050 mg/mL) Anti-IgG Dip coating Not given [30]

LPFG in MT + overlay
(polystyrene)

IgG
(0.1 mg/mL) Anti-IgG Dip coating Not given [31]

LPFG at TAP IgG
(1 mg/mL) Anti-IgG Flow cell 7 × 10−2 µg/mL [32]

Graphene oxide nanosheets
functionalized dual-peak LPFG

IgG
(1 mg/mL) Anti-IgG Dip coating 7 × 10−3 µg/mL [33]

LPFG by laser ablation +
overlay (tin dioxide)

IgG
(2.4 mg/mL) Anti-IgG Dip coating

Not given
Sensitivity:

1.1 nm/(mg/L)
[34]

Graphene-oxide-coated U-bent
LPFG in a two-mode fiber Anti-IgG IgG Dip coating 2 × 10−2 µg/mL [35]

LPFG at the lowest-order CM
and near TAP

IgG
(1 mg/mL) Anti-IgG Flow cell 2 × 10−4 µg/mL [36]

LPFG coated with PAH, SiO2
nanoparticles and gold

nanoparticles

Anti-IgG
(1 mg/mL) IgG Dip coating

Minimum detected
concentration

10 µg/ml
[37]

LPFG coated with PAH, SiO2
nanoparticles and gold

nanoparticles
Peptide IgG Flow cell

16.8 pg/mm2

(lowest conc. tested
1 × 10−4 µg/mL

[38]

LPFG near MT and near TAP +
overlay (poly-cation and the
poly-anion multiple layers)

IgG
(1 mg/mL) Anti-IgG Flow cell 5 × 10−4 µg/mL

4.5 × 10−6 µg/mL
This work
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As evidenced in Table 3, the reached LOD calculated with the stricter method (the
maximum value of the residuals) is of the same order as the one found in Ref. [36] and
still one of the best, despite the severity of the calculation procedure. On the other hand,
with the less harsh method (based on the average of the residuals), an improvement of two
orders of magnitude was obtained in the LOD, still at a reasonable distance from the lowest
tested concentration. It should be noted that these excellent performances were reached
in the detection of the target antibody spiked in serum, which is a very complex matrix
and also proves the specificity of the developed LPFG biosensor. Further advantages are
provided by the use of a temperature-controlled flow cell, which makes the biosensor more
user-friendly and less prone to interferences from environmental external factors such as
temperature and strain.

Summarizing, we can affirm that the combination of the three sensitivity enhancement
techniques, together with proper control of the working conditions by the use of the
temperature-controlled flow cell, can lead to a very good improvement in the detection
limits in immunoassays by LPFGs even when not considering the more advantageous
calculation method based on three times the standard deviation of the blank.

4. Conclusions

An LPFG sensor was theoretically designed and practically realized by combining
three sensitivity enhancement methodologies:

- The mode transition of a cladding mode by the deposition of an overlay with an RI
greater than the fiber core RI;

- The turn-around point of a cladding mode;
- The enhancement of the evanescent field by reducing the fiber cladding diameter

through chemical etching.

The theoretical simulation was used for the determination of the LPFG sensor’s ideal
parameters: fiber diameter after etching, thickness of the higher index overlay and grating
pitch. The sensor was consequently realized, with very good agreement between the
experimental and theoretical spectral characteristics. The etched LPFG sensor was finally
tested as a biosensor by performing a standard IgG/Anti-IgG immunoassay in a closed
thermostated microfluidic flow cell.

After fitting the experimental data with a logistic curve, the LOD was calculated
with three different protocols based on three times the standard deviation of the blank,
on the maximum value of the residuals and on the average of the residuals. The cal-
culated LODs, even if not considering the best one due to some deviations of the data
from the theoretical curve, demonstrate the effectiveness of the applied methodology for
sensitivity enhancement.

The developed sensitive LPFG biosensor, integrated into the temperature-controlled
flow cell, has been demonstrated to be applicable to the detection of real samples, such as
human serum: this compact and robust system was tested with a model assay (IgG/anti-
IgG immunoassay), but a transfer to other real applications for the detection of other
biomolecules can be envisaged. The future vision of the proposed sensor is the further
development of the sensing system for a multiplexed application for the detection of
multiple target molecules by writing, for example, different gratings in the same fiber.
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19. Śmietana, M.; Koba, M.; Mikulic, P.; Bock, W.J. Combined plasma-based fiber etching and diamond-like carbon nanooverlay
deposition for enhancing sensitivity of long-period grating. J. Light. Technol. 2016, 34, 4615–4619. [CrossRef]

20. Del Villar, I. Ultrahigh-sensitivity sensors based on thin-film coated long period grating with reduced diameter, in transition
mode and near the dispersion turning point. Opt. Exp. 2015, 23, 8389–8398. [CrossRef]

21. Bandyopadhyay, S.; Del Villar, I.; Basumallick, N.; Biswas, P.; Dey, T.K.; Bandyopadhyay, S. Long period fiber grating for
biosensing: An improved design methodology to enhance add-layer sensitivity. J. Light. Technol. 2018, 36, 1178–1184. [CrossRef]

22. Dey, T.K.; Biswas, P.; Basumallick, N.; Bandyopadhyay, S. Long Period Fiber Grating Near Turn Around Point: Suitable Design
for Bio-Sensing. IEEE Sens. J. 2021, 21, 18800–18805. [CrossRef]

23. Dey, T.K.; Roy, A.; Biswas, P.; Basumallick, N.; Bandyopadhyay, S. Investigations on the add-layer sensitivity near mode transition
of a stretched mode long period fiber grating. Opt. Fiber Technol. 2022, 72, 102969. [CrossRef]

https://doi.org/10.3390/bios11090305
https://doi.org/10.1016/j.optlastec.2022.108936
https://doi.org/10.1109/JSEN.2020.3033153
https://doi.org/10.1016/j.bios.2019.03.024
https://doi.org/10.1016/j.snb.2018.08.002
https://doi.org/10.1016/j.snb.2018.10.001
https://doi.org/10.1364/OPEX.13.000056
https://doi.org/10.1364/OE.17.020039
https://doi.org/10.1364/OE.19.000512
https://www.ncbi.nlm.nih.gov/pubmed/21263591
https://doi.org/10.1109/JSEN.2014.2361166
https://doi.org/10.1049/el:20000701
https://doi.org/10.1364/OE.22.005986
https://doi.org/10.1109/JLT.2019.2949373
https://doi.org/10.1364/OE.24.017680
https://doi.org/10.1016/j.bios.2019.03.006
https://doi.org/10.1364/OE.24.011897
https://www.ncbi.nlm.nih.gov/pubmed/27410112
https://doi.org/10.1109/JLT.2016.2528411
https://doi.org/10.1364/OE.23.008389
https://doi.org/10.1109/JLT.2017.2754549
https://doi.org/10.1109/JSEN.2021.3086899
https://doi.org/10.1016/j.yofte.2022.102969


Biosensors 2023, 13, 731 15 of 15
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