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Abstract: Precision medicine, particularly therapeutic drug monitoring (TDM), is essential for op-
timizing drug dosage and minimizing toxicity. However, current TDM methods have limitations,
including the need for skilled operators, patient discomfort, and the inability to monitor dynamic
drug level changes. In recent years, wearable sensors have emerged as a promising solution for drug
monitoring. These sensors offer real-time and continuous measurement of drug concentrations in
biofluids, enabling personalized medicine and reducing the risk of toxicity. This review provides
an overview of drugs detectable by wearable sensors and explores biosensing technologies that can
enable drug monitoring in the future. It presents a comparative analysis of multiple biosensing
technologies and evaluates their strengths and limitations for integration into wearable detection
systems. The promising capabilities of wearable sensors for real-time and continuous drug mon-
itoring offer revolutionary advancements in diagnostic tools, supporting personalized medicine
and optimal therapeutic effects. Wearable sensors are poised to become essential components of
healthcare systems, catering to the diverse needs of patients and reducing healthcare costs.
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1. Introduction

Throughout the ongoing battle against illnesses, humans have gradually accumulated
substantial experience in drug usage, resulting in a constant enrichment of our pharmaco-
logical practice. The use of drugs has become deeply ingrained in our society, assuming
a pivotal role in disease treatment and physical regulation [1–4]. However, due to the
physiologically-based pharmacokinetics, it is imperative for each p-atient to determine
the appropriate dosage based on factors such as absorption, distribution, metabolism,
and elimination rates in order to achieve optimal therapeutic effects [5]. Therefore, the
development of precision medicine holds immense significance in mitigating drug toxicity.

Therapeutic drug monitoring (TDM) serves as a valuable approach within precision
medicine, effectively minimizing drug side effects arising from individual differences. TDM
involves the modern analytical techniques guided by pharmacokinetic (PK) principles
to quantitatively determine drug and metabolite concentrations in patients’ biofluids
post-treatment. TDM enables the design or adjustment of personalized drug delivery
plans, thereby enhancing treatment efficacy, minimizing drug side effects, and facilitating
personalized medicine [6,7]. To date, various techniques such as chromatography [8,9],
immunoassay [10], nuclear magnetic resonance [11], isotope tracing [12], and capillary
electrophoresis [13] have been employed to measure drug concentrations in biofluids
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for TDM purposes. TDM also aims to facilitate the development of precision drugs and
personalized medicine with its high accuracy and low detection limits [14].

However, several limitations associated with TDM warrant attention. Firstly, TDM
requires skilled operators to maintain complex instruments, and frequent blood sampling
may cause discomfort for patients. Additionally, the specific storage requirements for
biofluid samples could compromise the detecting accuracy by inducing drug degradation
and transformation within the samples [15]. Furthermore, most TDM methods capture
drug concentrations at a specific time, lacking the ability to monitor dynamic changes in
drug levels continuously. Consequently, developing novel techniques for real-time in vivo
monitoring of therapeutic drugs becomes imperative to overcome these limitations and
enhance drug monitoring efficiency [16].

In recent years, the potential of wearable sensors for biomedical applications and
health monitoring has drawn increasing attention [17]. These sensors have achieved
significant advancements in miniaturization, multifunction, and algorithm, owing to the
development of integrated devices and artificial intelligence. By enabling non-invasive or
minimally invasive sample collection, wearable sensors possess the capability to monitor
physiological signals, facilitate early disease diagnosis, and enable remote monitoring
of various conditions. Furthermore, wearable sensors can play a crucial role in drug
concentration monitoring within the blood and other biofluids, providing real-time signal
transmission to assist patients in regulating drug dosage and minimizing the risk of drug
toxicity. Additionally, these sensors can continuously monitor dynamic changes in drug
levels over extended periods, supplying vital data necessary for optimal therapeutic effects.
As a result, wearable multifunctional sensors are poised to become an essential component
of healthcare systems, effectively catering to the personalized medicine requirements of
diverse patients while reducing resource waste and associated healthcare costs.

This review offered an overview of wearable sensors for drug detection and ex-
plored emerging biosensing technologies that hold potential for future drug monitoring
applications, including disease prevention, early diagnostic, therapeutic drug monitor-
ing, auxiliary treatment, evaluation of treatment effects, and long-term management of
chronic diseases [18,19] (Figure 1). The second section presented a concise summary of
the four primary drug categories currently detectable by wearable sensors, emphasizing
their clinical significance. When employed in drug monitoring applications, we conducted
a comparative analysis of multiple biosensing technologies, considering their linear con-
centration range, operating range, interference resistance, and detection lifespan. In the
third section, we provided a comprehensive overview of current biosensing technologies,
evaluating their strengths and limitations as well as their potential to be integrated into
wearable detection systems. Through this review, we aimed to highlight the most promis-
ing wearable drug monitoring technologies. In therapeutic drug monitoring, the real-time
and continuous measurement capabilities offered by these technologies will undoubtedly
catalyze the revolutionary advancement of diagnostic tools and provide robust support for
personalized medicine.
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Figure 1. The schematic illustration depicting the four groups of drugs that can currently be wear-
able for monitoring, some biofluids for monitoring, and various available wearable monitoring
sensing technologies.

2. Wearable Monitoring of Drugs

Therapeutic drug monitoring is an increasingly vital area with significant potential
for enhancing patient outcomes. Nevertheless, several challenges, such as non-linear
pharmacokinetics, low therapeutic indices, narrow safety ranges, and the potential for life-
threatening side effects, have limited the successful implementation of wearable monitoring
systems for drug monitoring. Conventional analytical methods for measuring in vivo drug
concentrations require precise timing of blood sampling to accurately determine steady-
state concentrations. Table 1 summarizes therapeutic and toxic concentrations for a number
of representative drugs. In contrast, wearable technology has the capacity to revolutionize
drug therapy by enabling real-time monitoring of drug concentration changes, thereby
enhancing detection accuracy. In this section, we present a comprehensive overview of
sensing technologies for drug molecules and the corresponding wearable sensors developed
for monitoring anti-Parkinson’s drugs, antibiotics, analgesics, and neuroleptics based on
the current research literature.

Table 1. The concentration of drugs that require treatment monitoring in biofluids.

Type of Drugs Compound Martrix Biofluid Level Ref

Immunosuppressants
Tacrolimus Serum 0.01–0.015 µg mL−1 [20]

Cyclosporin Serum 80–1000 µg mL−1 [21,22]

Antiepileptic

Carbamazepine Serum 6000–8000 µg mL−1 [23]

Phenytoin sodium Serum 10–20 µg mL−1 [24,25]

Phenobarbital Serum 10–40 µg mL−1 [26]

Valproic acid Serum 50–100 µg mL−1 [27]

Lamotrigine Serum 2.5–15 µg mL−1 [28]

Levetiracetam Serum 12–46 µg mL−1 [28]
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Table 1. Cont.

Type of Drugs Compound Martrix Biofluid Level Ref

Antimicrobial drugs

Vancomycin Serum 0.005–0.04 µg mL−1 [29]
Sweat 8.7–50.7 µg mL−1 [30]

Meropenem Serum 8–32 µg mL−1 [31]

Linezolid
Serum 2–7 µg mL−1 [32]

ISF 0.101–1.2 µg mL−1 [33]

Tobramycin Serum 4–6 µg mL−1 [34]

Voricnazole Serum 0.5–5 µg mL−1 [32]

Cardioactive drugs Digoxin Serum 0.001–0.0025 µg mL−1 [35]

Antidepressants Lithium Serum 44.4–66.6 µg mL−1 [36]

Analgesics drugs

Fentanyl Serum 1–3 µg mL−1 [37]
Sweat 0.17–1.02 µg mL−1 [38]

Methadone
Serum 0.08–0.7 µg mL−1 [39]

Sweat 120–2160 ng patch−1 [40]

Anti-asthmatic drugs Theophylline Serum 5–15 µg mL−1 [41]

Antipsychotic drugs

Clozapine Serum 0.35–0.5 µg mL−1 [42]
Risperidone Serum 0.02–0.06 µg mL−1 [42]

Perphenazine Plasma 0.0012–0.0024 µg mL−1 [43]
Fluphenazine Plasma 0.0002–0.002 µg mL−1 [43]
Thiothixene Plasma 0.002–0.015 µg mL−1 [43]
Olanzapine Serum 0.002–0.004 µg mL−1 [42]

2.1. Anti-Parkinson’s Drugs

Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting middle-
aged and elderly individuals, with a prevalence second only to Alzheimer’s disease [44].
PD patients have fewer nigrostriatal dopaminergic neurons in their brains, leading to
motor symptoms, including resting tremor, bradykinesia, rigidity, postural instability,
and impaired self-care [45–47]. The current gold standard for improving early disease
symptoms is levodopa (L-Dopa), which serves as a dopamine precursor but lacks inherent
pharmacological activity. After being catalyzed by dopamine decarboxylase, L-Dopa is
converted to dopamine, a vital neurotransmitter that enhances nociceptor function and
regulates motor neuron pathways [48]. Despite its effectiveness in early-stage PD treatment,
L-Dopa’s pharmacokinetics can be significantly influenced by factors such as dietary intake,
age, gender, and prior dosing history [49].

L-Dopa overdose may cause depression by elevating malondialdehyde levels. There-
fore, wearable sensors for continuous L-Dopa monitoring have potential clinical appli-
cations by enabling accurate identification of individual drug metabolism differences
and dosage adjustments [50]. In wearable sensors, sweat-based detection of L-Dopa is a
promising approach. Researchers have used high-performance liquid chromatography
to simultaneously measure blood drug concentrations, which validates the accuracy of
the sweat detection process. One study reported a correlation of 0.678 between sweat and
blood L-Dopa concentrations [51]. Dopamine in sweat can be detected by electrochemical
methods, including enzyme-based chronoamperometry methods or cyclic voltammetry
based on inorganic materials.

Moon et al. developed a wearable enzyme-based electrochemical biosensor for the
real-time detection of L-Dopa in sweat [52]. The sensor utilized a screen-printed carbon
paste substrate and immobilized tyrosinase on the surface to create a specific working
electrode. By collecting sweat with a hydrogel covering the finger, the electrode detected
L-Dopa through oxidation by tyrosinase, generating an electrochemical signal (Figure 2A).
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The sensors showed a minimum detection limit of 300 nM L-Dopa and exhibited similar
pharmacokinetic profiles to blood samples. The wearable sensor also exhibited high
selectivity for L-Dopa, with a signal response to C-Dopa that is only 5% of that of L-Dopa.
This non-invasive approach holds potential for monitoring drug pharmacokinetics and can
be extended to other important drugs.

The real-time detection of L-Dopa through wearable enzyme-based sensors has shown
promising promising results. However, long-term enzyme stability has remained a sig-
nificant concern for researchers [53,54]. To address this challenge, Xiao et al. reported a
noninvasive and wearable enzyme-based electrochemical sensor for detecting L-Dopa in
sweat based on metal-organic frameworks (MOFs) [55]. Zeolite imidazolate framework
(ZIF-8) and tyrosinase were co-precipitated on the surface of graphene oxide (GO), resulting
in ZIF-8/GO composites with a wide linear response range of 1 to 95 µM and a lower
detection limit of 0.45 µM, indicating high sensitivity and stability (Figure 2B).
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Figure 2. Wearable sensor for detecting L-Dopa and β-Lactam antimicrobial drugs: (A,B) Wear-
able electrochemical sensor based on tyrosinase catalysis to monitor L-Dopa in sweat (adapted
from [52,55]); (C) Wearable electrochemical sensor based on voltammetry-based sensing modalities
to monitor L-Dopa in interstitial fluid (adapted from [56]); (D) Wearable microneedle sensor based
on β-Lactam enzyme catalysis to monitor β-Lactam antimicrobial drugs in interstitial fluid (adapted
from [57]).

A novel sensing paradigm has emerged in the pursuit of achieving accurate signal
measurements of L-Dopa. Goud et al. reported a minimally invasive microneedle sensing
platform for orthogonal electrochemical monitoring of L-Dopa [56]. This platform utilized
two sensing modes, redox and enzyme-catalyzed, simultaneously on both unmodified and
tyrosinase-modified carbon paste microneedle electrodes. These parallel and independent
modes enabled non-enzymatic voltammetry and enzyme-catalyzed amperometric detection
of L-Dopa, resulting in an impressive L-Dopa detection limit of approximately 0.5 µM
(Figure 2C).

In summary, wearable detection of levodopa primarily relies on the use of specific
enzymes to enhance electrode functionality, thereby improving selectivity and sensitivity.
However, the practical application of these methods is limited by the inherent instability of
enzymes. As a result, current detection methods have primarily emphasized the sensitiv-
ity of individual measurements, while long-term sensor sensitivity remains an area that
requires further exploration.

2.2. Antimicrobial Drugs

Antibiotics play a vital role in treating infectious diseases, such as sepsis, burns, or-
gan transplants, and obesity, by interfering with the growth and development of bacteria.
In the early stages of the disease, antibiotics exhibit promising therapeutic effects, and
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timely administration can save patients’ lives. However, in the clinical use of antibiotics,
the pharmacokinetics of individual patients greatly varied, making it difficult to assess
the appropriate dose. Although several biosensing technologies are available for antibi-
otic detection in vitro, wearable detection has only been implemented for vancomycin,
kanamycin, tobramycin, and phenoxymethylpenicillin, utilizing interstitial fluid and blood
as test samples, where the drug concentration quickly equilibrates to reflect blood drug
concentration levels (Figure 2D).

Vancomycin is a crucial antibiotic used to treat infections caused by penicillin-resistant
staphylococci and can serve as an alternative medication for patients with severe β-lactam
antibiotic allergy [58]. However, it has a very narrow therapeutic window (5–40 µg mL−1)
and if inappropriately dosed for a period, it may result in adverse reactions such as
ototoxicity, nephrotoxicity, peripheral venous complications, and allergies [59]. Due to
its non-linear pharmacokinetics, indirect measurement of vancomycin’s peak and trough
concentrations may have limited practicality. The current wearable detection technologies
for vancomycin have primarily focused on electrochemical, aptamer-based (E-AB) sensors.
In a recent study by Dauphin-Ducharme et al. [30], an E-AB sensor was placed in the vein of
a rat through a catheter to enable real-time detection of vancomycin concentration in plasma.
Aptamers were immobilized onto the working electrode surface, with methylene blue
serving as the redox reporter. Upon binding of vancomycin to the aptamers, the distance
between the methylene blue and the electrode increases, or the transfer of electrolyte is
hindered, resulting in a decrease in the electrochemical signal. By analyzing the change
in electron transfer rate, the concentration of vancomycin can be derived. The sensor
exhibited a stable response signal 9 s after injection of 10 µM vancomycin, with a linear
detection range of approximately 6–35 µM. These results successfully demonstrated the
high signal accuracy of the E-AB sensor. Moreover, under controlled administration, the
E-AB sensor maintained a therapeutic window concentration of ±2 µM for several hours
(<6 h), significantly improving the therapeutic effect.

Tobramycin is a commonly used drug to treat cystic fibrosis (CF) caused by
Pseudomonas aeruginosa. Its therapeutic window is relatively narrow, typically requir-
ing concentrations of 4–6 µg mL−1 in the blood [34]. Unfortunately, a common side effect
is hearing loss, which can fluctuate [60]. To address this challenge, researchers have de-
veloped an electrochemical aptamer-based detection technology using microneedles. 3D
printing was utilized to fabricate poly(methyl methacrylate) microneedle arrays, which
were coated with conductive layers and sensitive elements. Tobramycin aptamers were
then bonded to the microneedle electrodes to enable the detection of tobramycin in inter-
stitial fluids. The elimination half-life of tobramycin was 23 ± 2 min, consistent with the
results measured in blood [61]. This approach offers a potential solution to monitor the
tobramycin concentration in real-time, enabling more precise and effective treatments for
CF patients (Figure 3A).

Kanamycin, an aminoglycoside antibiotic isolated from Streptomyces kanamyceticus, is
mainly known for interfering with ribosomal RNA and the inhibiting of bacterial protein
synthesis. It also destroys the integrity of bacterial cell membranes and has been proven
effective against infections caused by Gram-negative bacteria. However, the effective con-
centration range of kanamycin is narrow, ranging from 15–30 µg mL−1. As kanamycin
cannot be metabolized in the body and is mainly excreted through glomerular filtration,
overdose can lead to severe renal toxicity, neuromuscular blockade, and allergic reactions.
Unfortunately, there is no specific antagonist to treat kanamycin overdose, and the only way
to remove it from the body is through large amounts of water supplementation, followed
by hemodialysis or peritoneal dialysis. To address this issue, wearable detection methods
of kanamycin have been developed, including electrochemical aptamer detection and
photoacoustic imaging. Chien et al. fabricated a chronoamperometry sensor implantable
in a vein to directly measure changes in electron transfer kinetics at the far end of the
aptamer [59]. During the measurement process, a sample-and-hold circuit was employed
to decrease the device power consumption from 5.2 mW to 0.22 mW and improve the
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molecular detection limitation from 57 to 12.3 µM. Kaefer et al. developed an optical
imaging method to detect kanamycin concentrations in real time [62]. Gold nanoparticles
were embedded into macro-porous hydrogel scaffolds and exhibited excellent biocompati-
bility. The hydrogels facilitated the growth of cells and blood vessels within their structure,
overcoming the obstructing physical exchange between the sensor and adjacent tissues. By
leveraging the plasmon effect, the gold nanoparticles absorbed and scattered near-infrared
light of specific wavelengths and utilized the plasmon effect to detect a variety of drug
molecules. Specifically, the concentration of kanamycin was determined by inducing a
change in the refractive index of the gold nanoparticles, resulting in a shift in the plasma
absorption wavelength. This implantable sensor demonstrated long-term stability and
enabled continuous monitoring of the pharmacokinetic process of kanamycin in vivo for
several weeks (Figure 3B).

Phenoxymethylpenicillin is a semi-synthetic penicillin with a similar antimicrobial
spectrum to penicillin that is effective against Gram-positive bacteria. Recently, microneedle
electrochemical sensors based on β-lactamases have been developed for the detection of
phenoxymethylpenicillin [63]. The polycarbonate microneedle surface was plated with
gold to enhance its conductivity, followed by iridium oxide coating as a pH-sensitive
layer, and a hydrogel layer containing β-lactamase was applied to the microneedle array.
When the sensor was inserted into the skin, phenoxymethylpenicillin in interstitial fluid
diffused through the hydrogel and was hydrolyzed by β-lactamase to penicillin thiazoles
and protons. This reaction caused a decrease in the local pH of the sensor, which disrupted
the oxidation equilibrium of iridium oxide and induced a change in the current (Figure 3C).

The importance of wearable detection of antibiotics in preserving human health cannot
be overstated, particularly in light of the widespread use of antibiotics to treat infectious
diseases and the growing prevalence of antibiotic-resistant bacteria [64]. While combination
therapy involving multiple antibiotics can enhance therapeutic efficacy, it also carries the in-
herent risk of adverse reactions, potentially resulting in severe consequences. Consequently,
the advancement of non-invasive sensing and wearable detection techniques holds great
promise for optimizing drug dosages and mitigating the emergence of drug resistance.
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electrochemical aptamer-based sensors to monitor tobramycin in interstitial fluid (adapted from [61]);
(B) A novel gold nanoparticle-based implanted sensor for kanamycin concentration monitoring
(adapted from [62]); (C) A wearable microneedle sensor based on β-Lactam enzyme catalysis to
monitor phenoxymethylpenicillin in interstitial fluid (adapted from [65]); (D) Wearable glove sensors
to monitor psychoactive drugs in sweat (adapted from [66]).
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2.3. Analgesic Drugs

Acetaminophen (APAP) is an analgesic and antipyretic drug prone to overdose during
acute fever, resulting in hepatic centrilobular necrosis [67]. Upon entry into the body, APAP
is metabolized by CYP-dependent cytochrome P450 to produce the highly cytotoxic n-
acetyl-p-benzoquinone imine (NAPQI). NAPQI initially binds with glutathione in the liver,
and after depletion of glutathione, it binds to the mitochondrial proteins, interfering with
their normal function and causing irreversible liver damage [68,69]. Due to the absence of
effective antidotes, preventing APAP overdose is the most efficient approach. Given APAP’s
relatively short half-life, timely detection of blood drug peaks by blood sampling may
be difficult, and APAP concentrations exceeding 1.1 µM may lead to hepatotoxicity [70].
Wearable APAP sensors have been developed, which employ differential pulse voltammetry
(DPV) to measure the concentration of APAP in sweat and saliva, capitalizing on its
electrochemical activity.

The presence of electrochemically active interferents in sweat can lead to the overlap-
ping of signal peaks between target molecules, resulting in distorted signals that reduce the
sensitivity of APAP detection. To address this challenge and effectively separate the redox
peaks of interferents from APAP, Lin et al. used Nafion-coated and hydrogen-terminated
boron-doped diamond electrodes (Nafion/H-BDDE) to construct the sensing interface [71].
Voltammetry was used to detect the redox peak of APAP, and the concentration change of
the target molecule could be reflected by analyzing the peak strength. The Nafion/H-BDDE
sensing interface utilized surface engineering strategies to reduce the adsorption of other
electrochemical active molecules, effectively preventing the signal peaks of target molecules
from being buried and generating distorted signals. The modified sensing interface could
separate the target molecule and the redox peak of the interfering substance, accurately
measured the electron transfer reaction rate constant and the concentration of APAP in
sweat and saliva, and its detection limit can reach 1 µM. There was a similar dynamic distri-
bution in the two matrices, indicating a similar distribution mechanism of analytes from the
blood. The sensing mechanisms could also inspire researchers to monitor electrochemical
active molecules and broaden the scope of drug monitoring.

A wearable sensor integrated onto plastic gloves has been developed for the detection
of APAP in sweat and saliva. This sensor utilizes screen-printed carbonaceous nanoma-
terials to facilitate the electrooxidation of APAP [66]. Notably, the wearable glove sensor
exhibits excellent stretching and bending capabilities, making it suitable for practical appli-
cations. The APAP detection limit reached 2.47 × 10−7 M (Figure 3D), which falls within
the clinically relevant concentration range for therapeutic drugs. Furthermore, the glove
sensor mitigates the risk of infection associated with prolonged wearing and is particularly
well-suited for individuals with fragile and sensitive skin [70]. By simply sliding the glove
sensor across the skin surface, real-time monitoring of drug molecule concentrations in
biofluids can be achieved, minimizing the potential for sample contamination and molecule
degradation [72].

Fentanyl, a synthetic opioid used for anesthesia and analgesia, possesses pharmaco-
logical effects similar to morphine [73,74]. However, due to its narrow safe concentration
range, it requires careful monitoring during its administration. The safe concentration
range for analgesia is 1–3 mg L−1, and concentrations above 5 mg L−1 can easily lead to
hypoxia, respiratory failure, and death [37,75,76]. Although fentanyl has a shorter onset
time compared to other analgesic drugs, its lipophilicity increases the risk of exceeding the
safe concentration range, leading to serious toxic reactions [77]. Mishra et al. developed
a wearable microneedle electrochemical sensor that analyzes the intensity of redox peaks
to detect fentanyl concentration [65]. Similar work was done by Joshi et al., who used
3D printed E-Shell 200 materials to fabricate a hollow microneedle platform for fentanyl
detection [78]. The platform responded linearly with a dynamic detection range between
6.4 and 51.2 µg L−1 and an LOD value of 9.2 µg L−1 (Figure 4A).

The development of wearable sensors utilizing body fluids as detection samples
has successfully generated pharmacokinetic curves for analgesic drugs in various bodily
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fluids, showcasing their real-time and dependable quantitative capabilities. This holds
great promise for future medical monitoring applications, enabling timely intervention
and prevention of adverse events such as liver failure, respiratory failure, and even fatal
outcomes resulting from drug overdose.

2.4. Psychoactive Drugs

Abuse of psychoactive drugs has emerged as a major global concern because it poses a
serious threat to public health, social stability, and economic growth [79–81]. Psychoactive
drugs exert their effects by binding to specific receptors in the central nervous system,
resulting in euphoria and excitement [82]. Therefore, timely monitoring of the blood con-
centration of psychoactive drugs is necessary to ensure the safety and effectiveness of
treatment [83]. Existing testing technologies require collecting samples and subsequent
in vitro testing, which is relatively cumbersome and time-consuming [84]. Recently, wear-
able sensors that use sweat as a sample have been developed to detect psychoactive drugs.
These sensors employ electrochemical or surface-enhanced Raman spectroscopy sensing
technologies to achieve continuous and quantitative monitoring of different drugs based
on their unique chemical signatures.

Caffeine, the most widely consumed psychoactive substance in daily life, is considered
relatively safe in daily intake. However, the chronic overdose of caffeine can lead to several
health problems, including rhabdomyolysis and chronic kidney failure [85]. Toxicity
can occur at caffeine concentrations exceeding 15 mg L−1 in the blood [86]. Therefore,
researchers have studied wearable detection of caffeine. Researchers have thus explored
the potential of wearable devices for monitoring caffeine levels. Tai et al. developed a
flexible vinyl terephthalate substrate with a carbon nanotube-modified working electrode
to detect caffeine levels in sweat [87]. Caffeine can be oxidized on a working electrode with
a sensitivity of about 110 nA mm−1 at 1.4 V potential. During the measurement process, the
authors observed that the peak concentration of caffeine appeared 60 min after oral intake,
which is consistent with the previous literature reporting on caffeine metabolism [88–91].

Synthetic cathinone is a class of psychoactive substances that are obtained by modify-
ing natural cathinone and includes about 30 different compounds. These drugs primarily
promote sympathetic nerve stimulation and are commonly used for recreational purposes,
leading to restlessness, aggressive behavior, and violent tendencies [92,93]. Zhang et al.
reported on an E-AB sensor with two adapters (Apt1 and Apt2) capable of accurately
identifying six different types of synthetic cathinone in sweat. The researchers prepared
three working electrodes coated with Apt1, Apt2, and a mixture of both to verify the ability
of each to detect multiple psychoactive drugs. Mixed aptamers carried more negative
charges, resulting in diverse folded structures with higher sensitivity, recognition ability,
and anti-interference ability. The two adapters showed high specificity and low cross-target
reactivity, indicating their potential for the accurate detection of synthetic cathinone in
sweat [94] (Figure 4B).

Methamphetamine is a potent central nervous system stimulant and is the primary
component of methamphetamine. The abuse of methamphetamine is widespread, and
doses exceeding 50 mg can cause neurotoxicity, acute and chronic cardiovascular com-
plications [95–97]. In order to monitor and combat drug abuse, wearable sensors have
been developed using 2-Fluoromethamphetamine (2-FMA) as a substitute for metham-
phetamine. Koh et al. utilized surface-enhanced Raman spectroscopy (SERS) to detect
2-FMA in sweat [98]. To improve detection accuracy, silk fibroin film (SFF) was employed
to prepare sweat absorption pads, which not only possessed blocking properties but also
facilitated the long-term retention of drug molecules in the patch. The incorporation of
silver nanowires (AgNWs) into the silk fibroin film (SFF) further enhanced the intensity
of the Raman signals. During the detection process, a portable Raman spectrometer was
used to irradiate the patch, generating SERS signals that were subsequently processed and
converted into the corresponding drug concentration. In addition, the researchers verified
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the drug concentrations using 2-FMA as a fluorescent probe, which yielded consistent
results with the SERS patch (Figure 4C).
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The diverse range of psychoactive drugs and the concurrent use of multiple substances
by users to pursue excitement presents significant challenges for wearable drug detection.
It necessitates the development of highly selective sensing technologies capable of detecting
multiple drugs simultaneously. However, the majority of existing sensing technologies
fall short in meeting these detection requirements. Therefore, it is crucial to optimize
existing sensing technologies or develop new ones to broaden the scope of drug monitoring,
especially for the monitoring of psychoactive ionic drugs (Figure 4D), which will greatly
contribute to health and law enforcement monitoring work.

3. The Source of Biofluids and Continuous Sensing Technologies

In the past decade, wearable sensors have undergone rapid growth in the fields of
health and drug monitoring, evolving intelligent sampling, analysis, and diagnosis [100].
By continuously monitoring changes in various physiological signals, wearable sensors
can aid patients in taking more reasonable and effective measures to meet the demand for
personalized treatment. There are three main categories of sensing technologies based on
their location on the body: non-contact sensing, non-invasive contact sensing, and invasive
sensing (which includes sensor tags in the blood circulatory system). In this chapter, we
will discuss the technical characteristics, development status, and prospective development
directions of wearable sensors. With the endeavors directed towards sensor advancements,
personalized and precise medicine will soon become a reality.

3.1. Non-Contact Sensing Technology

Wearable non-contact sensing technology has gained attention as a promising ap-
proach for continuous drug monitoring without direct contact with biofluids. It can be
divided into various types based on the physical parameters analyzed such as morphology,
spectrum, and heat distribution. Non-contact sensing avoids the issues of sweat evapo-
ration and contamination during collection and enables the detection of multiple drug
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molecules simultaneously. Consequently, it has a high potential for market acceptance and
adoption by patients who take multiple drugs simultaneously. Researchers have developed
various non-contact sensing methods, including optical and electromagnetic sensing, which
provide results by measuring and analyzing changes in optical signals or electromagnetic
fields when interacting with biological material. Compared with other detection technolo-
gies, non-contact sensing devices are more user-friendly and easily operated, rendering
them an attractive option for drug monitoring in personalized medicine.

3.1.1. Optical Sensing Technology

Non-contact optical sensing technology is a vital tool in drug monitoring due to its high
sensitivity, accuracy, and resistance to electromagnetic interference. It has been widely used
to monitor various physiological signals, such as respiration, heart rate, blood pressure,
and blood glucose. In this technology, the incident light interacts with the target molecules,
generating reflected or refracted light. The differences in intensity and wavelength between
the refracted and incident light are used to identify characteristic absorption peaks. In
wearable optical sensing technology, surface-enhanced Raman spectroscopy and infrared
spectroscopy have been utilized to analyze the drug molecules in vivo, although most
studies focus on body metabolites rather than drug monitoring.

Surface-enhanced Raman spectroscopy (SERS) is a molecular vibration spectrum that
utilizes Raman scattering signals for compound molecule detection, and the concentra-
tion of target molecules can be analyzed through chemical fingerprints (Figure 5A). The
Raman scattering signal is relatively low in intensity, only 10−10 of incident light. There-
fore, researchers have endeavored to enhance the Raman signal by electromagnetic or
chemical enhancement, with a maximum gain of 1014, greatly improving detection res-
olution and accuracy [101–103]. Electromagnetic enhancement is mainly contributed by
surface plasmon resonance in metal nanostructures, which is usually found in materials
such as gold, silver and copper, and the nanoparticle diameter and spacing also affect
the enhancement effect. Chemical enhancement relies on the charge transfer between
the target molecule and the photon, which enhancement amplitude is much lower than
electromagnetic enhancement [104,105].

Wearable detection using SERS has been reported, such as those Zhao et al. developed:
core-shell structured Au nanorods (AuNRs@Au) as SERS tags [106]. These SERS tags were
deposited in textiles to be used as a kind of wearable sensor. When the textile came into
contact with the skin, the lactic acid and glucose molecules in sweat were collected by
the SERS tags. The SERS signal to be measured and the standard SERS signal were fitted
to a numerical value to obtain the functional equation, and the concentration of glucose
and lactate contained in human sweat can be accurately calculated. Despite the promising
potential of SERS in molecular concentration analysis, its susceptibility to interference
poses a significant challenge in accurately identifying target molecular signals in complex
biological fluids. As evidenced by the limited number of publications on using SERS for
wearable detection, this technology is still in its nascent stage [107].

3.1.2. Electromagnetic Sensing Technology

The electromagnetic sensing technology measure target molecules concentration based
on the dielectric permittivity and its specificity with target concentration (Figure 5B).
Resonant and non-resonant methods are commonly employed by researchers to measure
dielectric permittivity. Non-resonant methods rely on the transmission characteristics
of electromagnetic waves to estimate changes in dielectric permittivity, while resonant
methods employ the interaction strength between the electromagnetic wave and the target
molecule to characterize dielectric permittivity. Among the broad range of electromagnetic
waves, terahertz waves (THz), which range from 0.1 to 10 THz, offer a unique fingerprint
spectrum, high transmission, and low energy, and have been utilized for non-invasive
detection of metabolites [108].
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Baghelani et al. performed non-invasive analysis of lactate concentrations in inter-
stitial fluid based on electromagnetic waves. The chip-less tag resonator and the reader
communicate via electromagnetic coupling. The resonant frequency of the chip-less tag
fluctuates in proportion to the concentration of lactate in the interstitial fluid, facilitating
accurate measurement of lactate concentrations ranging from 1 to 10 mM and evaluation of
the aerobic exercise [109]. In addition to lactate, electromagnetic wave sensing is widely
applied in glucose monitoring [110–112]. However, continuous monitoring of related drug
molecules has yet to be reported.
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3.2. Epidermal Sensing Technology

Bodily fluids, such as sweat, tears, saliva, urine, and exhaled breath condensate,
offer valuable insights into health monitoring due to their ability to carry various com-
pounds and establish linear correlations with blood levels, as demonstrated by numer-
ous researchers [116]. Epidermal sensing technologies provide direct detection of target
molecules by integrating sensitive components onto the skin or mucosal surface [117].
Sweat, tears, saliva, urine, and exhaled breath condensate are the main biofluids used for
detection, as they contain abundant biomarker information. Electrochemical and optical
sensing are the most commonly used epidermal sensing technologies due to their high
sensitivity and accuracy. Additionally, researchers often employ sensors in the form of skin
patches, skin tattoos, wristbands, gloves, glasses, and clothing. These wearable devices
not only enable timely contact with secreted bodily fluids but also eliminate the need for
additional wearing steps, making them more convenient to use.

3.2.1. The Source of Biofluids

Sweat is primarily produced by sweat glands located in various areas of the body
surface, including eccrine, apocrine, and apocrine glands [118]. Sweat secretion is regulated
by the central nervous system to maintain thermal homeostasis [119]. An average healthy
adult produces around 500–700 mL of sweat per day, making sweat the most accessible
biofluid [99]. Sweat is predominantly composed of water (99%), with the remaining 1%
containing metabolic waste, micronutrients, and toxicants, specifically including sodium
chloride, urea, uric acid, lactic acid, glucose, protein, lipids, cortisol, and more [120,121].
However, obtaining sufficient amounts of sweat can be challenging for patients with
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chronic diseases, nerve damage, skin disorders, and congenital dysplasia of sweat glands.
Researchers have employed several methods to stimulate sweat secretion, including ex-
ercise, heat, stress, and ionic stimulation. For instance, Basu et al. used ionophoresis to
introduce the agonist pilocarpine, which activates muscarinic receptors to induce sweat
production [122]. However, the sweat rates from pilocarpine are transient, so Simmers
et al. used the ionotropic agent carbachol, which could maintain sweat rates for over 24 h
at a lower dose (<5.25–42 mC cm−2) [123]. Other drugs, such as acetylcholine [124] and
catecholamines [125], have similar effects. Nonetheless, the ionic composition of the sweat
stimulated by these drugs may differ from naturally secreted sweat [126]. To address the
challenge of insufficient sweat secretion in patients, it is essential to develop alternative
biofluids that contain similar metabolites and drugs for detection.

Tears are a hypotonic ultrafiltrate of blood and thus have a high correlation with
biomarker concentrations [127,128]. Compared to sweat, tears are notably rich in proteins,
including lactoferrin, lysozyme, albumin, and thousands of other proteins. Alongside
these, tears contain various metabolites such as ascorbic acid, glucose, cholesterol, and uric
acid, which can provide researchers with personalized data on health monitoring [129].
Unlike sweat, tears are continuously secreted into the eye fundus at approximately 1.2 µL
per minute making them a convenient and less environmentally influenced option for
biomarker analysis [130]. Although current tear-based biomarker analysis primarily focuses
on glucose concentration, the potential for monitoring other biomarkers and drug molecules
is significant and promising.

Saliva is a clear, colorless liquid that is secreted by the salivary glands located in
the oral cavity. This biological fluid is a rich source of biomarkers, including enzymes,
vitamins, urea, uric acid, free amino acids, and drugs, which can be detected after their
administration [131,132]. Saliva is produced in substantial quantities, up to 1.5 L per
day, and is highly correlated with biomarker blood concentrations [133]. One of the most
significant advantages of saliva collection is its simplicity, painlessness, and safety. Due to
the mouth’s anatomical structure, saliva readily contacts the sensing element, eliminating
the need for microfluidic channels in sampling collection. Nevertheless, it should be noted
that many drugs are ingested orally, and saliva as a testing sample may be contaminated,
leading to measurement errors. As such, this factor must be taken into account during the
testing process.

Exhaled breath condensate (EBC) has emerged as a non-invasive substrate for biomarker
detection since the 1970s. Some biomarkers are excreted not only in solution but also in the
form of aerosols through normal breathing [134,135]. EBC is collected by condensing respi-
ratory aerosols and contains abundant salts, lipids, protein biomarkers, virus and pathogen
particles, and a biological matrix of over 250 volatile biomarkers. It offers the possibility of
continuous and non-invasively monitoring the drug related biomarkers [136,137]. How-
ever, the concentration of drug molecules in exhaled breath is often 1000 to 10,000 times
lower than in blood samples, making the use of highly sensitive detection devices nec-
essary [138,139]. Despite this limitation, EBC holds great promise as a non-invasive and
potentially informative biofluid for biomarker detection.

Correlation of Compound Concentration between Biofluids and Blood

Sampling biofluids is a non-invasive procedure that does not cause wounds. However,
the biomarker concentration correlation between these fluids and blood is a crucial factor
that must be considered. For instance, methylphenidate is a stimulant used for treating
ADHD in children. Overdose of methylphenidate can cause various adverse effects, includ-
ing mental anxiety, behavioral disturbances, and visual disturbances. In order to address
the lack of appropriate biological matrices for drug therapy monitoring, researchers investi-
gated the correlation of methylphenidate concentration between saliva and blood. They
found a concentration ratio of one-tenth and a consistent range of changes maintained
within four weeks, demonstrating the feasibility of saliva testing of methylphenidate [140].
Vasudev et al. also established the correlation between carbamazepine levels in blood and
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saliva using high-performance liquid chromatography, with a correlation coefficient of
0.659 (p < 0.001) [141]. Similar correlations were observed for oxazepam [142], lefluno-
mide [143], dolutegravir [144], and valproic acid [145]. However, the blood–biofluids
correlation investigated drugs are limited in few types, and researchers continue to expand
drug monitoring and lay the groundwork for subsequent contact wearable sensing.

3.2.2. Optical Sensing Technology

Wearable optical sensors are based on color change mechanisms between chromophores
or fluorophores and target molecules in biofluids, allowing direct quantitative analysis
through image analysis software [146]. Current colorimetric sensing methods primar-
ily rely on the redox reactions between enzymes and their substrates (Figure 5C). For
example, glucose can be measured through the cascade catalysis by enzymes resulting in o-
dianisidine turning blue and iodine turning brown [147]. In the presence of cofactor NAD+

(nicotinamide adenine dinucleotide), lactate can be catalyzed by lactate dehydrogenase to
generate electrons, yielding formazan dyes of yellow color [148]. The creatinine enzyme
and peroxidase-catalyzed creatinine acid convert 4-aminophenanthrene-4-aminophenazone
to a purple-red complex [149]. The resulting color changes of chromogenic agents are often
translated into RGB values to quantify the intensity of the color. However, it is important to
note that RGB values may be susceptible to ambient light when capturing images, causing
measurement deviations.

The development of colorimetric sensing technology is hindered by the poor stability
and high cost of native enzymes used in the sensor. To address this issue, some researchers
have explored the use of nanomaterials with natural enzyme-like properties. For example,
Li et al. immobilized Prussian blue nanoparticles on Au nanowires to develop a tape for
detecting uric acid in sweat [150]. While such nanoparticles offer improved stability, they
do not alter the colorimetric sensing mechanism. Additionally, the limited availability
of commercial chromogenic reagents further restricts the detection range of colorimetric
sensors. Therefore, the development of colorimetric sensors for continuous TDM requires
further exploration and development.

Wearable fluorescence sensing is considered more sensitive and has lower detection
limits than colorimetric sensing (Figure 5D). Unlike most colorimetric sensing methods
that rely on enzymatic reaction catalysis, fluorescent sensors can be covalently bound to
biomarkers without intermediaries, making them suitable for detecting various molecules
and ions in tears and sweat. For instance, Deng et al. developed boronic acid-modified
anthracene derivatives that specifically bind glucose and emit blue fluorescence, achieving
a detection limit of up to 85 µM [115]. Badugu et al. prepared wearable fluorescent
sensors by depositing water-soluble fluorescent probes to silicon hydrogel (SiHG) contact
lenses, successfully measuring six ions in tears, including pH (H3O+/OH−), Na+, K+,
Ca2+, Mg2+, and Cl− to investigate the pathogenesis of dry eye disease [151]. Additionally,
lanthanides, which have a high quantum yield and long emission lifetime, can also serve
as fluorescent probes. Xu et al. used them to detect Cl− [152]. However, fluorescent probes
are susceptible to interference from their own fluorescence emission, leading researchers to
explore up-conversion technology. Hu et al. embedded up-conversion nanoparticles into
polyacrylamide hydrogel to fabricate wearable fluorescent sensors for detecting sweat urea,
achieving highly sensitive fluorescence detection due to its high tissue transmittance [153].

Compared with colorimetric sensing technology, although fluorescent sensing technol-
ogy has more advantages in sensitivity, its disadvantages are also obvious. For example,
most fluorescent materials need to be measured in a dark environment to obtain more
accurate results. If they are exposed to strong light for a long time, photobleaching is likely
to occur. Fluorescence analysis often requires complex light sources, which brings some
inconvenience to the measurement.
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3.2.3. Electrochemical Sensing Technology

Among the various wearable sensing technologies currently developed, electrochemi-
cal technology stands out due to its numerous advantages, including high sensitivity, rapid
reaction speed, and excellent linearity [154–156]. Consequently, it has become the most
commonly employed sensing technology in many applications. In electrochemical sensing
technology for wearable monitoring, researchers typically immobilize a bio-sensitive ele-
ment onto a transducer and analyze the resulting signal change in current or potential to
determine the concentration variation of the target molecule. These bio-sensitive elements
often comprise enzymes, aptamers, antibodies, and other similar entities. The utilization of
electrochemical technology in wearable sensing systems holds great promise for diverse
applications, providing reliable and accurate monitoring capabilities while maintaining
compatibility with the skin.

Conventional Electrodes without Recognition Element Sensing Technology

Conventional electrodes without recognition elements directly quantify the electro-
chemical activity of target molecules without relying on recognition elements. They often
improve detection sensitivity by doping electrocatalysts with rich redox sites. Sun et al.
deposited nitrogen-doped NiCoO2 nanosheets on a carbon-fiber substrate to prepare a
wearable enzyme-free sensor, which exhibits excellent electrocatalytic properties and high
stability towards glucose with a sensitivity of 592 µA mM−1 [157]. Similarly, Wang et al.
immobilized boron-doped graphene quantum on carbon nanotubes as additional redox
reaction sites, achieving a sensitivity of up to 8.92 µA µM−1 cm−2 for uric acid detec-
tion [158]. Notably, previous studies have mainly focused on endogenous metabolites
in the body, but some researchers are now exploring the possibility of continuous drug
monitoring using electrochemical electrodes. Several electrochemically active drugs, such
as sulphadiazine [159], sulfasalazine [160], and ornidazole [161], can be directly detected
by electrodes, allowing for the determination of their concentrations. These pioneering
studies have set the stage for the future development of wearable sensors for continuous
drug monitoring.

Ion-Selective Electrodes Sensing Technology

Ion-selective electrodes rely on the membrane potential to selectively determine the
activity or concentration of ions in solution [162] (Figure 6A). The potential difference
generated by the selective transport of ions through the membrane can be quantitatively
measured using the Nernst equation. Various ion-exchange carriers, such as conductive
polymers, carbon-based materials, and nanomaterials, have been employed to prepare
ion-selective electrodes [163]. Current research on ion-selective electrodes has mainly
focused on health monitoring parameters, such as Na+, K+, and Pb2+ [99]. For instance,
Lim et al. employed ion carriers including sodium tetrakis3,5-bis(trifluoromethyl)phenyl
borate (NaTFPB) and sodium tetrakis3,5-bis(trifluoromethyl)phenylborate (KTClPB) to
prepare sodium ion-selective electrodes with a detection range of 6.5–11.8 mM [164]. In
drug monitoring, only lithium ions for bipolar affective treatment have been successfully
developed. Platinum nanostructures were deposited on a PI film, and a lithium-selective
membrane was dropwise added to the working electrode, enabling the detection of lithium
ions in artificial sweat with a sensitivity reaching 56.8 mV decade−1 [165]. Although ion-
selective electrodes hold great potential for continuous drug monitoring, developing novel
ion exchange carriers remains crucial for further advancement in drug administration.

Enzyme-Based Electrochemical Sensing Technology

Enzyme-based electrochemical sensing is a widely used method for detecting target
molecules by modifying enzymes on working electrodes to specifically recognize target
molecules and generate corresponding electrical signals (Figure 6B). The sensitivity of
enzyme-based sensing depends on the stability of the enzyme, the immobilization ef-
ficiency, and the electron transfer rate to the working electrode [166]. Enzyme-based
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electrochemical amperometric and potentiostat sensors have been developed to measure
many metabolites [167], and glucose oxidase (GOx) electrochemical sensing technology
is currently the most developed and commercialized [168,169]. In addition, lactate oxi-
dase, uricase, and β-hydroxybutyrate dehydrogenase have been developed for lactate,
uric acid, and ketone monitoring. For continuous drug monitoring, β-lactamase enzymes
and tyrosinase enzymes have been developed to monitor β-lactam antibiotics and L-Dopa,
respectively. Moreover, organophosphorus hydrolase (OPH) enzymes have been used in
organophosphorus pesticide assays to prevent irreversible damage caused by exposure to
high concentrations of organophosphorus pesticides.

Enzyme-based sensing technologies are highly promising for the detection of metabo-
lites, and the development of stable and efficient enzyme immobilization methods is a key
focus of current research [170]. One example of successful immobilization is the creation of
highly stable single-molecule enzyme nano-capsules by Dhanjai et al. [171]. In this method,
GOx was encapsulated within a thin, porous polymerizable vinyl/acryloyl shell, retaining
86% of its native enzyme activity. In addition, a wearable multiplexed biosensor has been
designed by Hiraka et al. which incorporates a fusion enzyme containing l-lactate oxidases
and b-type cytochrome proteins [172]. This fusion enzyme is immobilized on a gold elec-
trode, and direct electron transfer between the l-lactate oxidases and b-type cytochrome
proteins is used to measure lactate and glucose in sweat simultaneously. The glucose and
lactate sensing ranges were found to be 0.1–5 mM and 0.5–20 mM, respectively [173,174],
providing more accurate and scientific drug use guidance for diabetic patients.

Electrochemical Immunosensing Technology

Most antigens and antibodies are proteins that exhibit structural complementarity,
forming antigen-antibody complexes binding. Electrochemical immunosensing technology,
based on the specific interactions between antigens and antibodies, utilizes electrochemical
detection methods to analyze biomarkers and drugs in biofluids (Figure 6C). According to
the signal conversion scheme, they could be divided into two types: direct type and indirect
type. In the direct type, immune signals are directly converted into electrical signals during
antigen-antibody recognition. On the other hand, the indirect type involves converting the
combined antigen-antibody information into intermediate information, which is then fur-
ther converted into electrical signals. Existing electrochemical immunosensors are limited
to single-point measurements of target molecules in vitro. Among the molecules studied
extensively in this technology, cortisol and other metabolites have received significant
attention [175–177]. These studies lay the groundwork for future wearable sensors capable
of continuously monitoring drug molecules.

Anti-cortisol antibodies are immobilized on SnO2 nanoflake-integrated conductive
carbon fiber (SnO2/CCY) via non-covalent bonding interactions, providing more binding
sites for antibodies. This configuration offers a linear range of detection from 10 fg mL−1

to 1 µg mL−1 [178]. Recently, a disposable electrochemical immunesensor was used to
detect 25-hydroxyvitamin D3 (25(OH)D3), the metabolite of vitamin D, in saliva and serum.
The sensor employed tree-like gold dendrite nanostructures (AuDdrites) with a high
specific surface area and active sites. L-cysteine (L-cys) was adsorbed onto AuDdrites to
provide selective binding sites, while anti-25(OH)D3 antibodies served as the sensing units,
binding to L-cys. K4[Fe(CN)6] was utilized as an oxidative fluorescent probe to quantify
the concentration of 25(OH)D3, exhibiting a linear range from 0.1 to 900 ng mL−1 [179].
These studies will inspire researchers to develop wearable electrochemical immunosensors
with expanded detection ranges, providing potential monitoring methods for continuous
drug monitoring in vivo.
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Electrochemical Aptamer-Based (E-AB) Sensing Technology

Aptamers are single-stranded nucleic acids with programmable structures, high affin-
ity, and the ability to bind reversibly to various molecules [30]. E-AB sensing technology
involves the immobilization of aptamers onto the surface of an electrode. Upon binding to
the target molecule, the electron transfer rate or interfacial properties are altered, leading
to a measurable electrochemical signal (Figure 6D). E-AB sensors have become a popular
tool in drug analysis and biosensing due to their sensitivity and selectivity. While the E-AB
sensor has been successful in many assays, it is limited by a low response signal due to the
low number of electrons provided by the redox reporter and the limited contact area of
the sensing electrode. To address this, shrinkage-induced wrinkled gold films have been
used to increase the surface area of sensing electrodes, leading to a ten-fold increase in the
current signal and a two-order of magnitude improvement in the detection limit compared
to smooth gold films [182]. Additionally, nanoparticles [183] and multi-walled carbon
nanotubes [184] have been employed to increase the microscopic surface area of electrodes.
Researchers have also developed stronger covalent bonds to enhance the stability of the
signal output, including modifying carbon surfaces through grafting primary aliphatic
amine modification strategies, which form carbon-nitrogen bonds and increase the bond
strength by up to four times [185]. They modified carbon surfaces by grafting primary
aliphatic amine modification strategies, forming carbon-nitrogen bonds and increasing
the bond strength up to four times. Moreover, researchers have attempted to improve the
signal output of electrochemical aptamers by developing new redox probes [186], enhanc-
ing the ionic strength of buffers, and using organic electrochemical transistors [187,188].
Several aptamers for drugs have also been developed and tested in vitro, such as insulin
aptamer [189], vancomycin aptamer [190], and digoxin aptamer [191].

Compared to enzyme-based electrochemical sensors and electrochemical immunosen-
sors, E-AB sensors remain highly versatile and capable of screening a broad range of
markers and drugs, making them a promising technology for wearable drug monitoring.
To realize this potential, several issues must be overcome, including improving signal
sensitivity, optimizing aptamer screening, developing novel redox probes, and achieving
miniaturization. By addressing these challenges, E-AB sensors have the potential to rev-
olutionize the field of wearable drug monitoring, offering an accessible, convenient, and



Biosensors 2023, 13, 726 18 of 28

accurate method for monitoring a wide range of biomarkers and therapeutic agents in
real-time.

3.3. Invasive Sensing Technology

Invasive sensing technology offers direct access to the body’s tissues, enabling contact
with blood or interstitial fluid, containing a wide range of compounds. By monitoring these
biofluids, concentration changes of target molecules can be detected in real-time. The depth
of penetration varies depending on the type of test sample. When using interstitial fluid as
the test sample, the invasion depth is typically greater than 2.3 µm, which corresponds to
the thickness of the stratum corneum [192]. In the case of sampling blood, the sensor must
be implanted into a superficial vein, usually in the upper limb, requiring a deeper level of
invasion. Wearable invasive sensing technology was initially employed for blood glucose
detection and has since evolved to monitor drug metabolism within the body. It can also
be integrated with drug delivery systems, presenting novel opportunities for precision
medicine [193].

3.3.1. The Source of Biofluids

Blood is a vital component in the circulatory system, responsible for transporting
various nutrients and metabolites to maintain normal physiological function. When admin-
istering drugs, regardless of the administration method, they must be distributed through
the bloodstream to reach different tissues and organs, exert their therapeutic effects, and
eventually be excreted from the body. Therefore, blood is considered the most reliable
and convenient sample source for monitoring therapeutic drugs. In comparison to other
biofluids, using blood as a wearable detection sample offers the advantage of minimal
physiological time delay, enabling timely reflection of changes in drug concentration within
the body.

Interstitial fluid, as a crucial extracellular fluid surrounding cells, plays a significant
role in material exchange between blood and cells [194]. It serves as a valuable resource for
analyzing metabolites and drugs, facilitating the transfer of signaling molecules, antigens,
and cytokines between different compartments [195]. The continuous flow of interstitial
fluid without clotting, along with its real-time tracking capabilities for target molecule
concentrations, make it well-suited for personalized assessment and monitoring of the
body’s physiological functions. The collection of interstitial fluid is primarily achieved
through the use of microneedles, leveraging capillary forces between the fluid flow and
microneedles to obtain real-time information regarding marker molecules [196,197].

3.3.2. Optical and Electrochemical Sensing Technology

Both invasive sensing technology and contact sensing technology operate on the same
principle, utilizing electrochemical or optical technology to gather information about target
molecules. In the case of interstitial fluid as the detection sample and electrochemical
sensing technology as the detection method, microneedles serve as solid supports with
modifications of sensitive elements such as enzymes, antibodies, or aptamers at their tips
(Figure 6E). Typically, microneedles have dimensions of approximately 100−600 µm in
length and 50–200 µm in width, allowing them to penetrate the stratum corneum and
epidermis and reach the dermis to access the interstitial fluid. Since microneedles avoid
contact with nerves in the dermis, they minimize skin irritation and inflammation and
promote rapid wound healing [198]. Microneedles can be fabricated through various
methods, including 3D printing, soft lithography, and template modeling, resulting in
single or arrayed micro-structures [199]. Substrate materials for microneedles commonly
involve metals, silicon [200,201], and conducting polymers, which possess high electrical
conductivity and are amenable to biological material modifications.

Prior to their use in target molecular assays, microneedles need to be functionalized
with sensitive elements. For example, the immobilization of the β-Lactam enzyme onto
the microneedles enables the detection of penicillin in interstitial fluids. In this biosensor,
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a pH-sensitive iridium oxide layer is coated on the surface, allowing the detection of pH
changes resulting from the β-Lactam enzymatic hydrolysis of penicillin [57]. In optical
sensing technology, sensitive elements are implanted in the body to enable continuous
drug monitoring. In the case of doxorubicin, a chemotherapy drug known for its strong
affinity for DNA and its ability to disrupt cell proliferation, single-walled carbon nanotubes
functionalized with DNA were utilized to measure changes in the concentration of doxoru-
bicin in interstitial fluid. The measurement of doxorubicin concentration at specific body
tissues was achieved through the red-shifting of the emission and excitation wavelengths
of carbon nanotube photoluminescence [202].

In the case of using blood as a test sample, flexible electrodes are delivered to the blood
vessels through catheters with an outer diameter typically less than 0.6 mm [203]. These
electrodes come into contact with drug molecules in the blood. However, this technology
requires the implantation of sensors in the vein, which can induce inflammatory reactions.
To mitigate this issue, researchers have incorporated anti-inflammatory materials and
performed chemical surface modifications on the electrode surface to reduce inflammatory
responses. Furthermore, flexible materials have been employed to minimize the mismatch
between the rigid implantable surface and the soft living tissue [204]. Aside from the
aforementioned challenges, the complexity of blood composition, including sugars, lipids,
and proteins, can introduce interference during detection. Only a limited number of articles
have reported continuous detection of drug concentrations in blood [30,59], indicating that
sensing technology based on blood as a monitoring sample requires further development.

Overall, wearable electrochemical sensing technologies have been extensively studied
for non-invasive and invasive monitoring of drug concentration at the molecular level.
However, despite its advancements, electrochemical sensing technology still possesses
several limitations. The predominant detection methods, potentiometry and chronoamper-
ometry, often result in inadequate stability and repeatability of measurements. Therefore,
further advancements in electrochemical biosensor construction are necessary to diversify
detection methods, enhance detection sensitivity and selectivity, and progress towards
automation, miniaturization, and multifunctionality.

3.4. Emerging Sensing Technologies and Application Barriers

With the aging population, the rise of new diseases, and the spread of epidemics, there
has been a significant increase in drug usage. Wearable sensing technologies have been
employed in patient monitoring to minimize side-effect toxicity and maximize therapeutic
effectiveness. In hospitals, wearable sensors worn by acute critical patients can enhance the
safety and efficiency of emergency rooms, alleviating the pressure on medical staff [205].
Long-term treatment data collected from patients can aid doctors in assessing recovery and
optimizing medical resource allocation. At home, wearable sensors enable the convenient
and non-invasive capture of real-time drug concentration in the body, eliminating the need
for tedious hospital testing procedures and reducing patient discomfort. Additionally,
long-term data uploaded to the cloud allow remote assistance from doctors for timely
medication dosage optimization and treatment evaluation.

Despite the advancements in wearable sensor technologies, there are still practical
challenges to overcome. Achieving a balance between accuracy and non-invasiveness
remains difficult, requiring careful consideration for each technology’s application. Non-
contact sensing technology offers the advantage of minimizing sensor contamination by
biofluids, as it does not require direct contact with the body. However, it faces limitations
in capturing weak output signals due to external interferences such as environmental noise,
motion artifacts, and optical impedance [17]. Traditional colorimetric and fluorescence
sensing technologies, known for their simplicity and battery free capability, mainly rely on
enzyme catalysis or direct redox reactions to monitor a limited number of target molecules
through simple analyses. Nonetheless, these approaches encounter significant challenges
in terms of stability and reversibility, posing obstacles for successful implementation in
wearable drug monitoring. Electrochemical sensing methods, the most mature among
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the options, offer high detection sensitivity and fast reaction speeds. However, practical
measurements must account for factors such as electrical impedance, electrical noise on
the skin surface, and the lifespan of sensitive components. Researchers have explored
strategies to provide a stable working environment for electrodes, including the use of
flexible electrodes and conductive hydrogels to enhance electrode-skin adhesion [206,207].
Modifications with functional materials have been investigated to improve anti-interference
capabilities, and data algorithms have been developed to promptly correct electrode signals.

Therefore, continuous optimization of existing sensing technologies is essential, focus-
ing on improving both the accuracy and non-invasiveness in monitoring target molecules.
Regarding detection accuracy, the ultimate objective of drug monitoring is to achieve opti-
mal therapeutic effects by identifying pharmacokinetic biomarkers. In addition to directly
monitoring drug molecule concentrations, exploring stable metabolite molecules that in-
directly reflect changes in drug concentration can enhance detection accuracy. Utilizing
artificial intelligence technology to analyze drug pharmacokinetics and gather data from
a large number of test samples can address individual variations. Moreover, leveraging
high-precision industrial-scale manufacturing technology can multiply sensing channels,
enabling simultaneous multi-modal monitoring of target molecules and reducing detection
errors. Furthermore, non-invasive wearable sensing technology continues to advance,
utilizing biofluids such as sweat, tears, and saliva as test samples to analyze drug molecules
for non-invasive and continuous pharmacokinetic monitoring. Non-invasive monitoring
eliminates the invasive wounds and complications, reduces patient discomfort, and im-
proves patient satisfaction. Overall, wearable sensing technology is a thriving field in the
medical industry, facilitating real-time monitoring of patients’ pharmacokinetics through
intelligent devices. This advancement holds the potential for groundbreaking discoveries
in medicine, pharmaceuticals, and vaccine development.

4. Discussion

Challenge: This review offers a comprehensive overview of the advancements in
wearable sensors for drug monitoring, encompassing biofluids, sensing technologies, and
types of drugs suitable for wearable monitoring. Despite the immense potential of wearable
sensors in drug monitoring, several significant challenges persist that need to be addressed
in order to establish reliable and effective monitoring systems. Key challenges include
establishing correlations between drug concentrations in peripheral biofluids and blood,
as well as developing novel sensing materials and technologies. Although some drugs
have successfully correlated with peripheral biofluid concentrations, further investigations
are required, encompassing long-term and comparative measurements conducted under
diverse environmental conditions. Ensuring the safety and efficacy of therapeutic drug
monitoring necessitates wearable sensors that deliver highly accurate and reliable results
while maintaining stability, specificity, and flexibility over extended periods of use.

Prospects: Wearable sensors offer enormous possibilities for personalized medicine by
enabling continuous monitoring of drug content in biofluids and dynamic adjustment of
drug intake to achieve more effective therapeutic outcomes. Existing research has demon-
strated the immense potential of wearable sensors in drug monitoring. In the foreseeable
future, highly integrated multimodal wearable sensors can be utilized to simultaneously
monitor multiple drugs, expanding the scope of drug monitoring and enhancing detection
accuracy. Furthermore, these sensors can establish feedback pathways for drug detection
and delivery, facilitating integrated diagnosis and treatment approaches. In the era of
digital medicine, wearable sensors supported by the Internet of Things (IoT) can transmit
real-time monitoring data to cloud servers, thereby eliminating the risk of data loss. This
capability also proves invaluable in areas with limited medical resources, as it enables re-
mote diagnosis for patients and timely adjustments to medication plans. Overall, wearable
sensors hold the potential to innovate existing medical methods and revolutionize the field
of medicine in the era of digital healthcare.
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