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Abstract: This work reports the development of a fluorescence method for the detection of poly(ADP-
ribose) polymerase-1 (PARP1), in which a phenylboronic acid-modified fluorescein isothiocyanate dye
(FITC-PBA) was used to recognize the formed poly(ADP-ribose) (PAR) polymer. The detection system
was designed by conjugating recombinant streptavidin (rSA) with PARP1-specific double-stranded
DNA (dsDNA) through streptavidin–biotin interaction. Capture of PARP1 via rSA–biotin–dsDNA
allowed for the poly-ADP-ribosylation (PARylation) of both rSA and PARP1 in a homogeneous
solution. The resulting rSA–biotin–dsDNA/PAR conjugates were then captured and separated via
the commercialized nitrilotriacetic acid–nickel ion-modified magnetic bead (MB-NTA-Ni) through the
interaction between NTA–Ni on MB surface and oligohistidine (His6) tag in rSA. The PAR polymer
could capture the dye of FITC-PBA through the borate ester interaction between the boronic acid
moiety in PBA and the cis-diol group in ribose, thus causing a decrease in fluorescence signal. The
PARylation of streptavidin and the influence of steric hindrance on PARylation efficiency were
confirmed using reasonable detection strategies. The method showed a wide linear range (0.01~20 U)
and a low detection limit (0.01 U). This work should be valuable for the development of novel
biosensors for the detection of poly(ADP-ribose) polymerases and diol-containing species.

Keywords: streptavidin; nitrilotriacetic acid; magnetic bead; poly(ADP-ribose) polymerase; boronic
acid; immobilization-free

1. Introduction

Poly(ADP-ribose) polymerase-1 (PARP1) is a mammalian enzyme that ensures an
essential function in maintaining genomic stability by regulating DNA repair and tran-
scription [1]. The enzyme can be activated by binding to DNA with the structures of
single- and double-strand breaks, hairpins, cruciforms or stably unpaired regions [2–4].
The activated PARP1 can trigger the poly-ADP-ribosylation (PARylation) of target proteins
at the amino acid residues of serine, glutamate, aspartate, lysine and tyrosine, including
histone, transcription factor and PARP1 itself. PARP1 is of interest for the diagnosis of
ovarian, breast and oral cancers, as well as diseases caused by oxidative damage, ischemic
diseases, cardiac hypertrophy, diabetes, inflammation or neuronaldeath [5]. The highly
expressed PARP1 has been regarded as a potential biomarker and a therapeutic target for
some diseases [5–7]. Therefore, it is of great importance to develop sensitive and selective
methods for the detection of PARP1 activity.

The PARylation of PARP1 from nicotinamide adenine dinucleotide (NAD+) can cause
the formation of poly(ADP-ribose) (PAR) polymers with linear and branched chains com-
prising up to 200 ADP-ribose units. The early methods for the assays of PARP1 activity
are usually conducted with the use of biotin- or radio-labeled NAD+ analogues [8–10].
These methods are feasible but have the shortcomings of high cost and complex synthe-
sis of substrate. By monitoring the consumption of NAD+ substrates, the commercial
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NAD/NADH-Glo™ kit can be used for probing into PARP1 activity; however, this method
involves the use of additional enzymes, and endogenous NAD/NADH in biological sam-
ples will interfere with the activity assays. For this reason, a series of novel methods have
been developed for PARP1 detection by monitoring the produced PAR polymers through
electrostatic interactions between the negatively charged ribose units and the positively
charged signal molecules [11–24]. For example, Dai and co-workers designed a reusable
electrochemical biosensor with positively charged hexaammineruthenium(III) chloride
(RuHex) to recognize the resulting PAR polymers [25]. Wei’s group reported a series
of electrochemical, colorimetric and fluorescent biosensors for PARP1 detection through
electrostatic interactions [11,13,14,18–24]. The resulting PAR polymers could also be de-
termined viaquartz crystal microbalance (QCM) with positively charged gold nanorods
for signal amplification [12]. All of the heterogeneous methods are sensitive and do not
require the use of labeled NAD+ analogues. However, they have the disadvantages of false
positive signals caused by the electrostatic interactions between signal reporters and DNA
probes, the tedious process for sensor fabrication, and the low PARylation efficiency due to
steric hindrance [26,27]. In addition, the sensitivity of such heterogeneous methods may be
disputed because the auto-modified PARP1 can be dissociated from the DNA-modified
sensing interface by steric and electrostatic repulsion [28,29].

In addition to the phosphate groups, many cis-diol groups are included in the ri-
bose units of PAR polymers. Phenylboronic acid (PBA) can react with cis-diol group
through the formation of cyclic borate ester covalent bond. Such an interaction has allowed
for the recognition and separation of cis-diol-containing biomolecules [30–34]. More in-
terestingly, several groups have achieved the detection of cis-diol-containing biological
macromolecules using boronic acid-functionalized derivatives or nanomaterials as the
recognition elements [33,35–51]. For example, our group employed PBA-modified gold
nanoparticles as the linkers to recognize glycoproteins and microRNAs and to conjugate
electroactive signal reporters through the formation of borate ester covalent bonds [35,36].
Hu and co-workers reported the electrochemical detection of glycoproteins (mucin 1 and
α-fetoprotein) and lipopolysaccharide with (4-(ferrocenylacetamido)-phenyl)boronic acid
(FcPBA) as the signal probe to recognize the target attached on the sensor electrode [37–39].
Meanwhile, they achieved the detection of a BRCA1 breast cancer gene-derived DNA target
using Zr(IV) ions as the linkers to decorate polysaccharide chains for coupling of FcPBA
probes [40]. Tang’s group achieved the detection of live bacteria through the complexation
of boronic acid-derived aggregation-induced emission fluorogens with cis-diols on the bac-
terial surface [46]. Wang’s group reported the fluorescent identification of glycoproteins and
cancer cells using boronic acid-decorated carbon dots and carbon nitride nanosheets [44,45].
In this work, we attempted to investigate the PARylation and achieve the detection of
PARP1 through the interaction between boronic acid and cis-diol in PAR polymer.

Streptavidin (SA) is an extremely stable protein which can bind with biotin or biotiny-
lated molecules with high binding affinity (Kd = ~1015 M). Biotinylated antibodies/antigens
and SA-modified plates, columns, nanomaterials and magnetic beads are commercially
available in a variety of fields [52–55]. Recent studies reveal that SA conjugated with DNA
can serve as a noncanonical substrate of PARylation due to the close proximity between
PARP1 and SA [28], in which the PARylation of DNA-conjugated SA and the formation of
PAR polymers were confirmed via ATR-FTIR. Herein, a PBA-modified dye of fluorescein
isothiocyanate (FITC-PBA) was used to monitor the formation of PAR polymers. In contrast
to the electrostatic interactions with positively charged signal molecules, the borate ester
interaction can eliminate false positive signals since the FITC-PBA probe shows no inter-
action with DNA. In addition, SA molecules conjugated with DNA probes could also be
poly(ADP-ribosyl)ated (PARated) by the activated PARP1. This can avoid the deficiencies
of heterogeneous assays induced by steric hindrance on the PARylation efficiency and the
dissociation of auto-modified PARP1 from DNA, thus improving the detection sensitivity.
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2. Materials and Methods
2.1. Chemicals and Reagents

Nitrilotriacetic acid–nickel ion-modified magnetic bead (MB-NTA-Ni) was obtained
from Thermo Fisher Scientific (Shanghai, China). FITC-PBA and SGHDEVDK-dansyl were
synthesized and purified by ChinaPeptide Co., Ltd. (Shanghai, China). Triethylene glycol
mono-11-mercaptoundecyl ether (HSC11PEG3-OH), bovine serum albumin (BSA), throm-
bin, NAD+ and NADP+ were purchased from Sigma-Aldrich Co., Ltd. (Shanghai, China).
Hexaethylene glycol mono-11-mercaptoundecyl acid (HSC11PEG6-COOH) was obtained
from Sensopath Technologies (Bozeman, MT, USA). PARP1 was ordered from AmyJet
Scientific Inc. (Wuhan, China). PARP1 ELISA kit was obtained from KeboruiBiotech. Co.,
Ltd. (Shanghai, China). Avidin, glucose, DNA, SA and rSA were provided by Sangon
Biotech. Co., Ltd. (Shanghai, China). Cetyltrimethylammonium bromide (CTAB)-coated
gold nanorods (GNRs) were ordered from XFNANO Materials Tech. Co., Ltd. (Nan-
jing, China). Other reagents were ordered from Aladdin Reagent Co., Ltd. (Shanghai,
China). All solutions were prepared with ultrapure water treated using a Millipore Milli-Q
water system.

Biotin–dsDNA stock solution was prepared by mixing 20 µM biotinylated ssDNA
(biotin-ssDNA, biotin-5′-CGA GTC TAC AGG GTT GCG GCC GCT TGG G-3′) and 25 µM
complementary sequence (ssDNA, 5′-CCC AAG CGG CCG CAA CCC TGT AGA CTC
G-3′) at 37 ◦C for 1 h in a TNE buffer (pH 7.4, 20 mM Tris-HCl and 0.1 M NaCl). To ensure
that the amount of free biotin-ssDNA is negligible, the concentration of ssDNA was slightly
higher than that of biotin-ssDNA.

2.2. Mass Spectrometry

NADP+ was dissolved in ultrapure water and FITC-PBA was dissolved in methanol.
Then, 0.1 mL of 1 mM NADP+ was mixed with 0.1 mL of 1 mM FITC-PBA. After reaction
for 5 min, 0.2 mL of the mixture was diluted to 1 mL with ultrapure water, and the mass
spectrum was recorded on a LCT Premier XE mass spectrometer (Waters, Milford, MA,
USA) with a negative ion mode.

2.3. Procedures for PARP1 Detection

For Scheme 1A, 10 µL of biotin–dsDNA stock solution was added to 50 µL of reaction
buffer containing a certain concentration of PARP1 and 500 µM NAD+. After reaction
for 1 h at 37 ◦C, 40 µL of 0.5 mg/mL MB-NTA-Ni suspension containing 5 µM rSA was
added to the reaction solution after 10 min of incubation. After being washed twice
with the reaction buffer under magnetic separation, the resulting magnetic precipitates
were exposed to 200 µL of 1 µM FITC-PBA in phosphate buffer (pH 7.4, 10 mM). After
incubation for 5 min and treatment using a magnet, the supernatant solution was taken out
for fluorescence analysis.

For Scheme 1B, 10 µL of biotin–dsDNA stock solution was added to 50 µL of reaction
buffer containing a certain concentration of PARP1, 5 µM rSA and 500 µM NAD+. To
evaluate inhibition efficiency, AG014699 at a given concentration was pre-incubated with
PARP1 for 10 min. After reaction for 1 h at 37 ◦C, 40 µL of 0.5 mg/mL MB-NTA-Ni
suspension was added to the reaction solution for 10 min of incubation. Other treatment
and detection procedures were the same as those of Scheme 1A.

For Scheme 1C, 10 µL of biotin–dsDNA stock solution was mixed with 40 µL of
0.5 µg/mL MB-NTA-Ni suspension containing 5 µM rSA. After incubation for 10 min,
50 µL of reaction buffer containing a certain concentration of PARP1 and 500 µM NAD+

was added to the suspension. After reaction for 1 h at 37 ◦C and then washing twice under
magnetic separation, the resulting magnetic precipitates were exposed to the FITC-PBA
solution. The suspension was treated using a magnet and the supernatant liquid was
measured using the procedures as those shown in Scheme 1A.
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Scheme 1. Schematic illustration of the proposed strategies for PARP1 detection based on the borate
ester interaction: (A) immobilization-free PARylation of PAPR1, (B) immobilization-free PARylation
of both PAPR1 and rSA, and (C) heterogeneous PARylation of both PAPR1 and rSA.

2.4. Probing of PARP1Activity via Surface Plasmon Resonance (SPR)

Gold-coated glass slides were used as the SPR chips. The chips were modified with
HSC11PEG6-COOH and HSC11PEG3-OH by Au-S interaction for immobilization of SA
proteins via a standard amino coupling reaction [56]. The mixed PEG self-assembled
monolayer (SAM) was formed by incubation of gold chip with the mixture of 0.1 mM
HSC11PEG6-COOH and 0.9 mM HSC11PEG3-OH in the dark for 48 h. After being washed
with ethanol and purified water and then dried with nitrogen, the chips were incubated
with the mixture of 100 mM EDC with 50 mM NHS for 15 min. The activated chips were
then rinsed with water and incubated with 10 µM SA solution for 4 h. SA proteins were
conjugated on the SAM using the standard amine coupling reaction. The unreacted sites
were blocked by incubating the chips with 1 mM ethanolamine for 30 min.

To monitor the PARylation of both SA and PARP1 on the chip surface, SA-covered
chip was incubated with 1 µM biotin–dsDNA solution for 30 min. After being washed with
water, the chip was incubated with the reaction buffer containing 50 U PARP1 and 500 µM
NAD+. After reaction for 30 min again, the chip was rinsed with water and then mounted
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onto the BI-SPR 3000 system (Biosensing Instrument Inc., Tempe, AZ, USA). When a stable
baseline was obtained, the GNRs suspension was injected into the channel and the signal
was recorded. To verify the PARylation of SA in this process, the PARP1/NAD+-treated
sensor chip was incubated with 12.5% (v/v) phenol at room temperature for 30 min and
then rinsed with 10 mM NaOH. This step can release biotin–dsDNA and PARP1 from
the SA-covered chip [57]. Then, the chip was mounted onto the SPR instrument for the
injection of GNRs.

2.5. Extraction of Cytoplasms

The cytoplasm samples were prepared using the procedures described in previous
reports [24,58]. Briefly, MCF-7 cells were incubated in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum under a humidified atmosphere containing 5%CO2
at 37 ◦C. To induce the apoptosis, the cells were incubated with STS for 8 h. After being
washed with phosphate buffer, living and apoptotic cells were collected and then treated
with the cytoplasmic protein extraction reagent under vigorous shaking. This was followed
by centrifugation at 11,000 rpm for 10 min at 4 ◦C. The supernatant cytoplasms were stored
at −80 ◦C for use. Before the assays, the cytoplasms were diluted different times and
the levels of PARP1 in the diluted cytoplasms were determined with the procedures as
mentioned above.

2.6. Detection of Caspase-3 Activity in Cytoplasm Samples

To verify the STS-induced apoptosis, a peptide probe with Cu2+ as the quencher and
dansyl as the fluorophore (Cu2+-SGHDEVDK-dansyl) was used to monitor the activity of
caspase-3. The probe was prepared as presented in our previous report [59]. For the assays
of caspase-3 in cytoplasm samples, 100 µL of probe in HEPES buffer was incubated with
100 µL of the diluted cytoplasm at 37 ◦C for 1 h. The fluorescence intensity was determined
with an emission wavelength at 552 nm.

3. Results and Discussion
3.1. Strategies for PARP1 Detection

To monitor the PARylation of DNA-conjugated SA, recombinant SA (rSA) was used
since it can be readily captured via commercialized MB-NTA-Ni through the NTA–Ni–
oligohistidine interaction [60]. In the first trial, PARP1 was activated by binding to biotin–
dsDNA and then PARated to form biotin–dsDNA/PAR conjugates (Scheme 1A). The
resulting conjugates were separated via rSA-captured MB-NTA-Ni (denoted as MB-NTA-
Ni-rSA) through the streptavidin–biotin interactions. The PAR polymers on the MB surface
could capture a large number of FITC-PBA dyes through the borate ester interactions
between the boracic acid groups in dyes and the cis-diol moieties in ribose units, thus
causing the decrease in the number of free FITC-PBA molecules and the fluorescence
intensity of solution. In the second trial, rSA-linked biotin–dsDNA (rSA–biotin–dsDNA)
was used to bind and activate PARP1 (Scheme 1B). In this strategy, both rSA and PARP1
would be PARated. The resulting rSA–biotin–dsDNA/PAR conjugates were then captured
and separated via MB-NTA-Ni through the interaction between the NTA–Ni complex on
the MB surface and the oligohistidine (His6) tag in rSA. By measuring the difference in the
fluorescence signal change of these two trials, the PARylation of rSA could be confirmed.
To evaluate the effect of steric hindrance on PARylation efficiency, rSA–biotin–dsDNA was
immobilized on the surface of MB-NTA-Ni and then PARP1 was captured and activated
by binding to the dsDNA (Scheme 1C). In the presence of NAD+, both rSA and PARP1
anchored on the MB surface would be PARated. The PARylation efficiency was evaluated by
comparing the fluorescence signal change with that achieved using the immobilization-free
strategy, as shown in Scheme 1B.
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3.2. Feasibility for PARP1 Detection

Mass spectrometry is a viable measure that can provide direct evidence for the binding
stoichiometry. In previous studies, boronic acids have been employed as derivatization
reagents to improve the selectivity and sensitivity of cis-diol-containing metabolites for
mass spectrometry analysis [58,61,62]. To explore the interaction between FITC-PBA probe
and ADP ribose unit in the PAR polymer, the formation of FITC–PBA–NADP+ complex
was first confirmed via mass spectrometry. As shown in Figure 1A,B, the dominant mass
peak for FITC-PBA and NADP+ with one negative charge is 682.2025 Da and 742.1042 Da,
respectively. The mixture of FITC-PBA and NADP+ shows a dominant mass peak at
1389.2513 Da, corresponding to that of FITC–PBA–NADP+ with one negative charge. The
m/z is consistent with the calculated value, indicating the formation of borate ester bond
between cis-diol in ADP ribose unit and boronic acid group in FITC-PBA.
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PARP1 can be captured and activated by binding to DNA with a given structure. The
activated PARP1 can trigger the PARylation of various proteins. Recent studies suggested
that SA in a close proximity to the activated PARP1 can serve as a noncanonical substrate
of PARylation [28]. Herein, PARylation of rSA was confirmed by monitoring the formation
of PAR polymers in rSA and PARP1 with FITC-PBA as the signal probe. The probe can
react with the cis-diol groups in the ribose units of PAR polymers through the borate ester
interactions. As shown in Figure 2, the solution of FITC-PBA shows high fluorescence
at 520 nm (curve a). After incubation with the biotin–dsDNA/PAR conjugates-covered
MB-NTA-Ni-rSA (Scheme 1A), the fluorescence signal of FITC-PBA decreased (curve b),
indicating that the probe could be captured and removed by binding to the PAR polymers
on the MB surface. When PARP1 was activated by the rSA–biotin–dsDNA conjugate and
then separated via MB-NTA-Ni (Scheme 1B), a more significant decrease in the fluores-
cence signal was observed (curve c). The result implied that rSA was also PARated, thus
sequestering a greater number of FITC-PBA dyes. To investigate the influence of steric
hindrance on the PARylation efficiency, rSA–biotin–dsDNA was immobilized on the surface
of MB-NTA-Ni for the capture and activation of PARP1 (Scheme 1C). The resulting PAR
polymers in both rSA and PARP1 on the MB surface also caused the decrease in fluores-
cence signal (curve d). However, the fluorescence intensity was higher than that obtained
using the immobilization-free method (curve c), indicating that PARylation efficiency was
limited due to steric hindrance. All of the results demonstrated that the proposed schemes
could be used to monitor PARP1 activity by sequestering FITC-PBA dye to quench the
fluorescence signal through the borate ester interaction. We also found that the MB-NTA-Ni
and FITC-PBA probe exhibited high stability after storage at 4 ◦C for at least six months.
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3.3. SPR Analysis

SPR is a sensitive surface analysis technique that can monitor the change in the
dielectric constant caused by molecular adsorption on heavy metal films. This method has
been widely used in the study of biomolecular interactions. However, the conventional SPR
methods are unable to detect a small change in refractive index. Previous investigations
suggested that the positively charged nanomaterials could be used to distinguish the
produced PAR polymer via electrostatic interactions. A typical example is that Yang and co-
workers achieved the detection of PARP1 by discerning PAR effectively with the positively
charged CTAB-coated GNRs to amplify the frequency change of the QCM biosensor [12].
Inspired by the result and the similar sensing principle of the SPR and QCM biosensors,
we investigated the PARylation of both SA and PARP1 on the chip surface. SA was
covalently immobilized on the chip surface via the amino coupling reaction. Then, biotin–
dsDNA duplexes were attached onto the SA-covered chip for the capture of PARP1. After
PARylation in the presence of NAD+, GNRs were injected into the channel to recognize
the produced PAR polymers. As shown in Figure 3, SPR signal was significantly higher
when injecting GNRs to the PARylated surface (curve b) than without the capture of biotin–
dsDNA for the PARylation (curve a), indicating that the SPR method can also be used to
monitor the formation of PAR polymer. To verify that that SA proteins attached on the
chip surface were also PARated, biotin–dsDNA and PARP1 were released using 12% (v/v)
phenol and then GNRs were injected into the channel. As a result, a decreased SPR signal
was observed (curve c). However, the signal was still higher than that by injecting GNRs to
the SA-covered chip, indicating that SA was also PARylated and the formed PAR polymer
in SA facilitated the capture of GNRs.
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3.4. Analytical Performances

To evaluate the analytical performances of the method, different concentrations of
PARP1 was determined with the proposal of Scheme 1B in view of its high sensitivity
and simplicity. As shown in Figure 4A, the fluorescence signals decreased gradually
when the rSA–biotin–dsDNA conjugates were incubated with increasing concentration
of PARP1 and then separated via MB-NTA-Ni. Thus, a higher concentration of PARP1
can permit the generation of more PAR polymers on the MB surface, thus sequestrating
more FITC-PBA probes. No significant change in the fluorescence signal was observed in
the absence of PARP1, indicating that the dye of FITC-PBA showed no interaction with
rSA–biotin–dsDNA and MB-NTA-Ni. The fluorescence intensity change (∆F = F0 − F1,
where F0 and F1 represent the fluorescence intensity of the system in the absence and
presence of PARP1, respectively) was used to evaluate the performances of the method.
As shown in Figure 4B, ∆F increased linearly with the increase in PARP1 concentration
and then began to level off beyond 20 U. The platform is indicative of the achievement
of PARylation. The relative standard deviations (RSDs) were all less than 8.6%, which is
indicative of good reproducibility of this method. The linear equation was found to be
∆F = 112 + 113[PARP1] (U) with a lowest detectable concentration of 0.01 U. The value is
comparable to that obtained via heterogeneous methods through electrostatic interactions
(Table 1). The high sensitivity can be attributed to the high PARylation efficiency and the
specific borate ester interaction.

Biosensors 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

Figure 3. SPR sensorgrams when injecting GNRs to the SA-covered chip before (a) and after (b) 
treatment with biotin–dsDNA/PARP1 for the PARylation. Curve c corresponds to that when in-
jecting GNRs to the PARylated surface that has been treated by 12% (v/v) phenol. 

3.4. Analytical Performances 
To evaluate the analytical performances of the method, different concentrations of 

PARP1 was determined with the proposal of Scheme 1B in view of its high sensitivity and 
simplicity. As shown in Figure 4A, the fluorescence signals decreased gradually when the 
rSA–biotin–dsDNA conjugates were incubated with increasing concentration of PARP1 
and then separated via MB-NTA-Ni. Thus, a higher concentration of PARP1 can permit 
the generation of more PAR polymers on the MB surface, thus sequestrating more 
FITC-PBA probes. No significant change in the fluorescence signal was observed in the 
absence of PARP1, indicating that the dye of FITC-PBA showed no interaction with 
rSA–biotin–dsDNA and MB-NTA-Ni. The fluorescence intensity change (ΔF = F0–F1, 
where F0 and F1 represent the fluorescence intensity of the system in the absence and 
presence of PARP1, respectively) was used to evaluate the performances of the method. 
As shown in Figure 4B, ΔF increased linearly with the increase in PARP1 concentration 
and then began to level off beyond 20 U. The platform is indicative of the achievement of 
PARylation. The relative standard deviations (RSDs) were all less than 8.6%, which is 
indicative of good reproducibility of this method. The linear equation was found to be ΔF 
= 112 + 113[PARP1] (U) with a lowest detectable concentration of 0.01 U. The value is 
comparable to that obtained via heterogeneous methods through electrostatic interac-
tions (Table 1). The high sensitivity can be attributed to the high PARylation efficiency 
and the specific borate ester interaction. 

 
Figure 4. (A) Fluorescence emission spectra for the detection of different concentrations of PARP1 
(from top to bottom: 0, 0.01, 0.1, 1, 2, 5, 10, 20, 25 and 50 U). (B) Plots of ΔF against PARP1 concen-
tration. 

Table 1. Overview of the detection of PARP-1 via different methods. 

Figure 4. (A) Fluorescence emission spectra for the detection of different concentrations of PARP1 (from
top to bottom: 0, 0.01, 0.1, 1, 2, 5, 10, 20, 25 and 50 U). (B) Plots of ∆F against PARP1 concentration.

Table 1. Overview of the detection of PARP-1 via different methods.

Method Signal Reporter Linear Range Detection Limit Ref.

photoelectrochemistry PFP 0.01~2 U 0.007 U [11]
QCM CTAB-GNRs 0.06~1.2 nM 0.04 nM [12]
colorimetry NAD-AuNPs 0.43~1.74 nM 0.32 nM [16]
colorimetry CTAB-GNRs 0.05~1.0 U 0.006 U [63]
colorimetry hemin-graphene 0.05~1.0 U 0.003 U [24]
chemiluminescence AuNCs 0.01~1.0 U 0.009 U [21]
electrochemistry MBs/FcBA 0.1~50 U 0.1 U [58]
electrochemistry [Ru(NH3)6]3+ 0.01~1 U 0.003 U [25]
electrochemistry Polyaniline 0.005~1.0 U 0.002 U [15]
electrochemistry Artificial nanochannels 0.05~1.5 U 0.006 U [64]
electrochemistry NH2-MSFs 0.01~1.2 U 0.005 U [65]
electrochemistry P-CuNPs 0.01~1U 0.004 U [13]
electrochemistry PMo12O40

3− 0.01~1.0 U 0.008 U [14]
fluorescence PFP/MnO2 0.024~1.2 nM 0.003 nM [22]
fluorescence TOTO-1 0.02~1.5 U 0.02 U [20]
fluorescence FITC-PBA 0.01~20 U 0.01 U This work

Abbreviations: PFP, poly[9,9-bis(6′-N,N,N-trimethylammonium)hexyl]fluorenylene phenylene; CTAB-GNRs, posi-
tively charged cetyltrimethylammonium bromide-coatedgold nanorods; AuNPs, gold nanoparticles; AuNCs, gold
nanocluster; MBs, magnetic beads; FcBA, ferrocenylboronic acid; NH2-MSFs, positively charged amino-functioned
mesoporous silica films; P-CuNPs, peptide-templated copper nanoparticles; TOTO-1, an unsymmetrical cyanine
dye dimer.
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3.5. Evaluation of Inhibition Efficiency

To investigate the inhibition efficiency, PARP1 was incubated with various concentra-
tions of AG014699 (a well-known PARP1 inhibitor) and then analyzed with Scheme 1B.
After extraction via MB-NTA-Ni and separation using a magnet, FITC-PBA was added to
the magnetic precipitates. The inhibition efficiency was determined with the formula of
inhibition (%) = 100 × (F0 − F2)/(F0 − F1), where F2 represents the fluorescence intensity
in the presence of PARP1 with a given concentration of inhibitor. Figure 5 shows the
dependence of inhibition efficiency on inhibitor concentration. It was found that the value
was intensified with the increase in inhibitor concentration. Thus, a higher concentration
of inhibitor can limit the PARylation more efficiently. The half maximal inhibitory con-
centration (IC50) value was found to be 44.2 nM for 10 U PARP1, which is consistent with
that attained using other methods [58,63,65]. Thus, the proposed method could be used
for evaluating the inhibition efficiency of potential PARP1 inhibitors with high simplicity
and throughput.
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3.6. Selectivity

To study the selectivity of this strategy, the sensing system was challenged with dif-
ferent biological species, such as serum albumin BSA (bar 1), glycoprotein avidin (bar 2),
protease thrombin (bar 3) and small molecule glucose (bar 4). As a result, only PARP1 led to
a significant change in fluorescence intensity (bar 5) (Figure 6). For BSA and thrombin, the
results are accessible since the two proteins show no interaction with the FITC-PBA probe.
Although avidin and glucose can react with boric acids to form borate ester bonds, the
two diol-containing species did not significantly induce the signal change. This is under-
standable since they cannot be captured via MB-NTA-Ni through the metal–oligohistidine
interactions. Therefore, although the FITC-PBA probes can also react with other intrinsic
molecules containing cis-diol groups, the interferences from the intrinsic biological species
can be easily eliminated during the magnetic separation step. In addition, we also found
that the four tested biomolecules showed no interference in the assay of PARP1 activity
(bar 6), indicating that the method shows high specificity and exhibits great potential to de-
termine PARP1 in biological samples. Moreover, even if other species in biological matrixes
may influence the detection of PARP1, the proposal of Scheme 1C could be performed to
eliminate the potential interference by preconcentration of PARP1.

3.7. Real Sample Assays

The level or activity of PARP1 is related to many tumor and inflammation diseases.
To probe into the application of the method for clinical analysis, the levels of PARP1 in
the cytoplasms of living and apoptotic cells were determined. As depicted in Figure 7A,
the signal change increased gradually with the increase in the number of living MCF-7
cells, indicating that the system could be used to determine PARP1 in the cytoplasm of
MCF-7 cells. However, no significant change was found for the cytoplasm extracted from
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apoptotic MCF-7 cells. The result can be explained by the fact that apoptosis activated
the activity of caspases, thus inducing the digestion of PARP1 into two segments and
making it lost the ability of PARylation [66,67]. Among the caspase family, caspase-3, a
central mediator for controlling internal and external apoptosis pathways, is acknowledged
as the therapeutic target and diagnostic biomarker for apoptosis-relative diseases. The
peptide containing a sequence of Asp-Glu-Val-Asp (DEVD) can be specifically recognized
and cleaved by caspase-3 at the C-terminus. To verify the apoptosis, a peptide probe
of SGHDEVDK-dansyl was used to monitor the activity of caspase-3 [59]. As shown in
Figure 7B, the fluorescence intensity change increased gradually when the cells were treated
by the inducer STS, while no significant increase was observed for the analysis of cytoplasm
extracted from living cells. The results demonstrated that caspase-3 in the cells was indeed
activated during apoptosis. The result was also confirmed by the morphology change of
the living and apoptotic cells (Figure 7C). Therefore, the presented method for monitoring
PARP1 activity shows promising applications in evaluating cell apoptosis and developing
potential drugs for apoptosis-related diseases.
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To demonstrate that PARP1 was digested during cell apoptosis, we monitored the
change in PARP1 concentration in both living and apoptotic MCF-7 cells using a commercial
ELISA kit. The optical density (OD) values for living cells were significantly higher than
those for apoptotic cells (Figure 8A), indicating that apoptosis induced the decrease in the
level of endogenous PARP1. To further demonstrate the feasibility of this method for the
assays of real biological samples, we monitored the activity of PARP1 in normal human
embryonic kidney cell line (HEK-239T) and cervical carcinoma cell line (HeLa). As shown
in Figure 8B, the change in fluorescence intensity induced by cancer cells (HeLa and MCF-7)
were significantly higher than that by HEK-293T cells, indicating that the expression level
of PARP-1 in cancer cells is higher than that in normal cells.
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4. Conclusions

In summary, we suggested that SA could be conjugated with DNA to design biosensors
for the detection of PARP1. The method did not require the pre-immobilization of the DNA
probe on the solid surface for PARylation, thus improving the catalytic reaction efficiency.
In addition, it was confirmed that SA with a close proximity to the captured PARP1 can also
be PARated, thus allowing for the design of immobilization-free biosensors with improved
sensitivity. In contrast to the previously reported methods, the proposed detection system
was designed based on the formation of specific borate ester bonds but not the nonspecific
electrostatic interactions, which can eliminate the false positive signals. The method was
used to evaluate the inhibition efficiency of a classical inhibitor and measure the activity
of PARP1 in living and apoptotic cells with satisfactory results. In addition, this work
provides important information for the development of novel homogeneous biosensors for
monitoring PARP1 activity and evaluating cell apoptosis.
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