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Abstract: Tremendous interest in research of small extracellular vesicles (sEVs) is driven by the
participation of vesicles in a number of biological processes in the human body. Being released by
almost all cells of the body, sEVs present in complex bodily fluids form the so-called intercellular
communication network. The isolation and profiling of individual fractions of sEVs secreted by
pathological cells are significant in revealing their physiological functions and clinical importance.
Traditional methods for isolation and purification of sEVs from bodily fluids are facing a number
of challenges, such as low yield, presence of contaminants, long-term operation and high costs,
which restrict their routine practical applications. Methods providing a high yield of sEVs with a
low content of impurities are actively developing. Bead-assisted platforms are very effective for
trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. Here, we
review recent advances in the enrichment of sEVs via bead-assisted platforms emphasizing the type
of binding sEVs to the bead surface, sort of capture and target ligands and isolation performance.
Further, we discuss integration-based technologies for the capture and detection of sEVs as well as
future research directions in this field.

Keywords: small extracellular vesicles; exosomes; beads; isolation; molecular characterization;
liquid biopsy

1. Introduction

To date, numerous methods have been developed, tested, and compared to isolate
and purify small extracellular vesicles (sEVs) for fundamental research as well as research
and development of new technologies for disease diagnostics and new drug carriers for
therapeutics [1–4]. Although no single standard protocol exists, the most commonly
used approach that is considered to be a gold standard for sEV isolation from biological
samples is differential centrifugation, which is purely based on the size and density that
affect sedimentation rate at a given centripetal force [5,6]. The final step of differential
centrifugation protocol is ultracentrifugation (UC), which allows obtaining a sEVs pellet at
the most common force of 100,000 g [7,8]. Further purification can be achieved by additional
ultracentrifugation steps [9–11]. Other ultracentrifugation methods are based on sucrose or
iodixanol to form a density gradient allowing to separate and purify sEVs based on their
buoyant density and can be coupled with UC [2,9]. Size-exclusion chromatography [12],
polymer-based precipitation [13,14], field-flow fractionation [15], ultrafiltration [16,17],
asymmetric depth-filtration [18], immuno-affinity capture [19] and different combinations
of such methods [2,9,17,20] have been tested to improve the yield and purity of obtained
sEVs samples and to find an optimal isolation method, which also depends on the end
goal. Isolation of sEVs becomes especially difficult when working with more complex
biological fluids such as human whole blood, plasma, and serum due to the presence
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of lipoproteins, such as very-low-density lipoproteins (VLDLs), low-density lipoprotein
(LDLs), high-density lipoprotein (HDLs), albumin and other proteins and their aggregates,
the removal of which is still an obstacle primarily due to the overlap of physical properties
between sEVs and such contaminants [21]. The absence of a single solution to completely
remove such proteins during sEV isolation produced a broad range of reported sEVs
concentrations in blood [14,18,22]. Moreover, microvesicles (MBs) and apoptotic bodies
(ABs) present in biological fluids also contributed to the heterogeneity of the samples
(Table 1). MVs originated from the outward budding of the plasma membrane and exerted
similar biological functions to that of sEVs. ABs are formed during cell apoptosis when
cytoskeleton fragmentation causes the plasma membrane to swell outward.

Table 1. Classification of extracellular vesicles.

Small Extracellular Vesicles
(sEVs) Microvesicles (MVs) Apoptotic Bodies (ABs)

Size, nm 30–150 100–1000 100–5000

Biogenesis Inward budding of
endosomal membranes

Outward budding of
plasma membrane Cell apoptosis

Characteristic markers

ALIX, TSG01, tetraspanins (CD9,
CD63 and CD81), GM1

gangliosides and transferrin
receptors, cholesterol, ceramide

and sphingomyelin

Cholesterol, sphingomyelin,
ceramide, CD40 ligand,

ADP-ribosylation factor 6,
integrins and flotillins

Annexin V, C3b, thrombospondin,
histones and DNA fragments

Immuno-affinity capture in the form of stand-alone particles or integrated technologies
is the proposed solution to such problems, which allows isolating subpopulations of
sEVs with minimal contamination. Although a limited number of subpopulations can be
isolated in a short period of laboratory time [23], such methodology received attention
in recent years because it allows directly quantifying sEV subpopulations according to
their membrane markers and is compatible with further sEV analysis, such as PCR or mass
spectrometry (MS).

In this review, multiple approaches that are based on the use of sEV membrane
composition for the isolation of sEVs are presented and discussed, highlighting their
advantages and limitations. We focus on bead-assisted platforms, which rely on catching
sEVs by surface-modified beads made of different materials, such as polymers, silica,
magnetically responsive microparticles and others. We also highlight the area of integrated
technology that combines bead-assisted approaches along with microfluidic technologies
for harvesting and quantification of sEVs.

2. Outline of sEV Isolation Using Bead-Assisted Platforms

The isolation of sEVs using bead-assisted platforms consists of the following steps:
(i) mixing the beads with sEVs; (ii) incubation of the mixture; (iii) separation of the beads
with adsorbed sEVs from the unbounded sEVs; and (iv) analysis of the molecular composi-
tion of isolated sEVs.

Cell culture media and different bodily fluids, such as blood plasma, urine, lymph
and others, are the primary sources of sEVs. Prior to blending sEVs with the beads, the
sEVs samples are pre-isolated with ultracentrifugation, size-exclusion chromatography,
ultrafiltration or a combination thereof to separate sEVs from larger size vesicles, cell
debris, cells and plasma proteins. The analysis of the literature showed that the main
pre-cleared method is ultracentrifugation, which includes three main steps: low-speed
centrifugation during a short time period, high-speed centrifugation with an extended
time period to remove cell debris and microvesicles, and ultra-high speed centrifugation or
ultracentrifugation (UC) at forces of 100,000× g or greater to precipitate exosomes. At the
same time, size-exclusion chromatography and PEG precipitation are also used to purify
sEVs samples and reduce the cost and time of sample preparation.
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After mixing the beads and sEVs, the mixture is incubated at room temperature for a
defined time period that depends on a specific protocol.

The third step includes the separation of sEVs bound to the surface of the beads from
unreacted sEVs and other impurities that remain in a working solution. Depending on
the type of the beads (magnetic and nonmagnetic), either magnet or centrifugation can be
applied to collect the beads with bound sEVs.

At the final stage, whether membrane receptors or interior molecules of sEVs are
investigated, different methods are applied for the analysis of the molecular content of
sEVs directly on the beads or in the free state after they are released from the bead surface.

3. Nonmagnetic Beads

The use of polymeric materials for sEV isolation was commonly used and presented
in the past years. Two types of approaches exist and are based on specific or nonspecific
initial sEVs capture (Figure 1). Specific sEV isolation is based on the use of polymeric
particles containing capture ligands, such as antibodies, aptamers, peptides and others
that can specifically interact with target molecules on the membrane of sEVs. This allows
isolating a subpopulation of sEVs from the pool of sEVs and other impurities present in the
sample in the first step, followed by additional sample processing such as labeling of the
capture ligands with tag-conjugated antibodies/aptamers for analysis or RNA isolation.
Nonspecific sEVs capture is based on the passive adsorption of sEVs to the particle surface
in the initial step, followed by sEVs labeling with tag-conjugated antibodies/aptamers for
further analysis. A subpopulation cannot be obtained for further analysis after nonspecific
capture. For the convenience of the readers, we have summarized the most effective
bead-assisted platforms for the isolation, characterization and quantification of sEVs in
Table 2.
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Figure 1. Classification of bead-assisted platforms based on nonmagnetic particles, magnetically
responsive beads and those integrated with microfluidics, microarrays and porous materials. Middle
row depicts the functionalization of bead-assisted platforms by coatings and organic molecules,
leading to nonspecific and immunoaffinity enrichment of sEVs.
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3.1. Immunospecific sEVs Capture

One of the most commonly used affinity-based isolation techniques is based on the
coupling of particles (e.g., polymeric materials) with bioaffinity ligands (e.g., antibodies or
antibody mimetic) for immunoaffinity capture of a subpopulation of sEVs containing the
chosen membrane proteins followed by further characterization of sEVs.

Katsu et al. isolated CD171+ neuron-specific sEVs that were later freed from bound
anti-CD171 antibody–resin conjugates by lowering pH with glycine-HCl [24]. Flow cytome-
try was used to confirm the isolation of sEVs that contain neuron-specific markers, SNAP25
and synaptophysin, as well as common sEVs markers, CD81 and CD63. The obtained
subpopulation of sEVs was eventually used for RNA extraction and miRNA expression
analysis. The group was able to show that miRNA from neuro-derived sEVs in plasma
can represent miRNA alterations in the brain and be used as biomarkers of amyotrophic
lateral sclerosis. Yin et al. immobilized CD3-targeting aptamers in the shape of a caliper on
the gold nanoparticles (AuNP) surface by forming an Au-S linkage to obtain and distin-
guish T-cell CD3 monomeric and dimeric sEVs subpopulations [25]. To isolate the CD3+
subpopulation of sEVs, the Au–caliper was mixed with sEVs to obtain the Au–caliper–EVs
complex. sEVs bound to affinity oligonucleotide probes were released by successively
incubating Au–caliper–sEVs complex with complementary oligonucleotides that are more
thermodynamically preferable on the backbone stand of the caliper compared with affinity
oligonucleotide probes. The same steps were used for the plasma of a skin transplantation
mouse model, which showed the applicability of such a method for the isolation of CD3+
sEVs directly from biological fluids. The sEVs released from the Au–caliper–sEVs complex
were further analyzed by nano-flow cytometry using FITC anti-CD3 antibody, which con-
firmed that the sEV membrane protein is intact. The obtained sEV subpopulations were
eventually used for small RNA isolation and miRNA sequencing. Immunoaffinity isolation
of sEVs based on the use of non-magnetic beads was also applied to plant studies [26,27].
Beads coupled to antibodies against markers such as Tetraspanin 8 (TET8) were used to
isolate and purify specific subpopulations of plant sEVs for further analysis.

In addition to specific protein markers presented on the surface of sEVs, research
groups used other interactions between sEVs and beads [28]. Commercial heparin affinity
chromatography beads (Affi-Gel® Heparin Gel) were mixed with a cell culture medium
of 293 T-cell line that was concentrated by 100 kDa filter prior to sEV isolation and, after
overnight incubation, were centrifuged to remove proteins and nucleic acid complexes
(Figure 2) [29]. sEVs were later unbound from the beads with high salt (NaCl) into the
supernatant, and sEV-free beads were concentrated in the form of a pellet by centrifuga-
tion. The obtained sEVs from the supernatant were applicable for further analysis and
RNA extraction. Pan W. et al. developed an EV-FISHER platform that is constructed
from zirconium-based metal–organic frameworks and PO4(3−)-spacer-DNA-cholesterol
(PSDC) [30]. The group showed that EVs could be effectively isolated from cell-culture
media (MDA-MB-231) and plasma of breast cancer patients by their interaction with choles-
terol present on the EV-FISHER and purified by low-speed centrifugation (12,800 g). It
was also shown that DNase I can be used after isolation to detach EVs for further analysis,
e.g., nano-flow cytometry and mass-spectrometry, as it hydrolyses the DNA in PSDC and
allows for obtaining pure EVs. The amount of EVs isolated from breast cancer patients and
healthy donors by EV-FISHED that contained the GPC-1 marker was shown to correlate
with the clinical stage of the patient and reflect therapeutic efficacy based on nano-flow
cytometry results.
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Figure 2. Workflow of isolation and purification of small extracellular vesicles using heparin-coated
agarose beads. (i) The beads are incubated with sEVs derived from different cell lines, (ii) formation
of a sEVs/bead complex, (iii) removing proteins and nucleic acids by washing with PBS, (iv) release
of sEVs from the beads using a concentrated salt solution and (v) extraction of RNA from sEVs for
analysis. Reprinted with permissions from reference [29]. Copyright 2015, Springer Nature.

Table 2. Application of bead-assisted platforms along with integrated technologies for isolation,
characterization and quantification of sEVs.

Isolation Platform Capture Ligand Targeting Ligand EV Source Performance Reference

AuNPs Anti-CD3 aptamer CD3

Cell culture; plasma
of a skin

transplantation
mouse model

Capture capacity
22 µg/mg [25]

Metal–organic
framework

(EV-FISHER)
Cholesterol Glypican-1 Cell culture; breast

cancer plasma Capture efficiency 74.2% [30]

Aldehyde
microbeads - EpCAM and HER2 Cell culture;

breast cancer serum
Purity ≈ 5 × 109 particles

µg−1 of protein
[31]

Magnetic beads

Anti-CD63, anti-CD9
antibodies CD63 and CD9 Cell culture; human

plasma or serum
Capture efficiency

75–80% [32]

Anti-CD63 antibody CD63
microRNA

Plasma of high-risk
cardiovascular

disease patients

Capture efficiency 74%,
miRNA extraction 91% [33]

Anti-CD63, anti-MUC1
aptamers CD63 and MUC1 Cell culture; breast

cancer plasma
Capture efficiency ~ 60%,
release efficiency ~ 20% [34]

Tim4 protein Phosphatidylserine Cell culture; mouse
serum, human urine 78.1% of total peptides [35]

Combination of
hydrophilic and lipophilic

groups
- Urine cancer patients Capture efficiency 95% [36]

PEG-assisted - Cell culture; human
plasma

Capture efficiency
~40 × 1010 particles/mL;

purity 19.2 × 1010

particles per mg protein

[37]

Ti(IV) ions, phospholipid
derivative 1,2-distearoyl-

sn-glycero-3-
phosphorylethanolamine

CD9 and CD63 Prostate cancer
human urine Capture efficiency > 81% [38]

Anion-exchange coating CD81 and HSP70 Cell culture; human
plasma

Capture efficiency >90%
purity ~ 4×1011 particles

per mg protein
[39]

Integrated
microfluidic
(ExoSearch)

Anti-CD9, anti-CD81,
anti-CD63 antibodies

anti-α-IGF-1R,
anti-EpCAM, anti-CA125,
anti-CD9, anti-CD81 and

anti-CD63 antibodies

CA125, EpCAM, HE4
and CD24

IGF-1R/p-IGR-1R

Ovarian cancer
human plasma

ovarian and
non-small-cell lung

cancer human
plasma

Capture efficiency
~79.7%,

binding capacity ~ 5 µg,
biotinylated antibody per

mg beads; LOD 0.281
pg/mL for IGF-1R, 0.383

pg/mL for p-IGF-1R

[40,41]
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Table 2. Cont.

Isolation Platform Capture Ligand Targeting Ligand EV Source Performance Reference

Integrated
microfluidic device Anti-EpCAM antibody -

Cell culture; breast
cancer human

plasma

Sensitivity 90%,
specificity > 95% [42]

ExoCounter Anti-CD9 antibody CD9, CD63, CD147,
CEA and HER2

Cell culture;
colorectal, lung,

breast and ovarian
cancer human serum;

glaucoma or
interstitial lung

disease/pulmonary
fibrosis

LOD 1.16 ng protein for
cell culture; 0.39 µg

for serum
[43]

Integrated magnetic-
electrochemical
exosome (iMEX)

Anti-CD63 antibody
EpCAM, CD24,
CA125, HER2,

MUC18 and EGFR

Cell culture; ovarian
cancer human

plasma before/after
treatment

LOD 3 × 104 vesicles [44]

Electric field-induced
release and

measurement
(EFIRM)

Anti-CD63 antibody GAPDH mRNA

Cell culture; mice
serum and saliva
after injection of

H460 cells

Capture efficiency ~ 85% [45]

Miniaturized
micronuclear

magnetic resonance
(µNMR) system

Anti-CD235a antibody CD235a, CD55, CD47
and CD44

Packed red blood
cell unit

LOD ∼ 2 × 106 MV/µL
with dynamic range up to
∼2 × 108 MV/µL

[46]

3.2. Nonspecific sEVs Capture and Labeling

Other groups performed quantification of immunolabeled sEVs by first allowing them
to passively adsorb to the bead surface and then labeling them with primary and secondary
antibodies for analysis by using techniques such as flow-cytometry, which is commonly
referred to as microbead-assisted flow cytometry. Such methods often require sEVs to be
purified to minimize the effect of competitive nonspecific binding of contaminants to the
bead surface.

Li et al. first allowed sEVs isolated by UC from MCF10a, MDA-MB-468, MCF-7 and SK-
BR-3 cell culture media and human serum obtained from breast cancer patients and healthy
donors to nonspecifically adsorb to aldehyde/sulfate latex beads [31]. After that, the bead–
sEVs complexes were stained with anti-EpCAM or anti-HER2 primary antibodies and
secondary antibodies for flow cytometry. Flow cytometry results for sEVs obtained from
cell culture media were compared and agreed with Western blot. Based on the obtained
results, it was found that both EpCAM+ and HER2 + sEVs can be effective diagnostic
markers of breast cancer. Yang et al. pre-isolated sEVs from human plasma and cell culture
media of 1617 PDAC cells by size-exclusion chromatography (SEC) and UC, respectively.
The derived sEVs were biotinylated with EZ-link NHS-PEG4-Biotin, followed by collecting
them with streptavidin-coated polystyrene particles and performing antibody staining for
flow cytometry [47]. The streptavidin-coated latex beads were also compared with standard
aldehyde/sulfate latex beads prior to immunolabeling. The streptavidin-coated particles
showed a better signal compared to latex beads for the chosen sEVs markers (EpCAM,
EGFR, MUC1 and PDAC that comprises an antibody cocktail, which included EpCAM,
EGFR, MUC1, WNT-2 and GPC1 that were tested). The method was validated by using
sEVs that were pre-isolated by SEC from the plasma of pancreatic ductal adenocarcinoma
patients and healthy controls. In addition to the markers used for cell-culture media, the
group also performed an analysis of additional markers (CD73, TIMP1, EphA2, LRG1 and
Mesothelin). Flow cytometry results indicated that the multi-marker approach with the
marker group consisting of EpCAM, EGFR, MUC1, WNT-2 and GPC1 allows to achieve
high sensitivity and reproducibility. The described assay requires <4 h for analysis of
48 samples and LOD for sEVs protein and particle counts were estimated to be 41.3 ng and
1.3 × 107 particles.
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4. Magnetically Responsive Beads

An alternative to nonmagnetic particles, magnetic beads are yet another platform for
trapping sEVs (Figure 1). Similar to nonmagnetic beads, magnetically responsive particles
can carry bioaffinity ligands, which can specifically target sEVs surface receptors. Alter-
natively, magnetic beads functionalized with polymers, polysaccharides, phospholipids,
etc., can capture sEVs through electrostatic interaction, hydrogen bonding or in an ion-
dependent way. Unlike non-magnetic particles, magnetic beads can be collected using a
permanent magnet by placing the magnet in a test tube containing an aqueous solution
of beads and an analyte. Collecting magnetic beads with a magnet is advantageous over
collecting non-magnetic beads with centrifugation because it can speed up the isolation of
sEVs. In addition, due to the soft nature of the magnetic field generated by the magnets,
the aggregation of beads and the adsorption of impurities can be minimal. Thus, the
use of magnets to collect magnetic beads in isolation of sEVs can improve the purity of
sEVs samples. In this section, we give an overview of the application of magnetic beads
for the isolation of sEVs from cell culture media and bodily fluids in both specific and
nonspecific manner.

4.1. Immunomagnetic sEV Enrichment

We start this section with an immunomagnetic-based approach, which relies on the
selective targeting of sEV membrane receptors with ligand-functionalized magnetic beads.
The antibodies targeting ligands are widespread for the separation of sEVs from both cell
culture media and bodily fluids. The antibodies against human MHC Class II receptors
were used to isolate sEVs from conditioned cell media of antigen-presenting cells [48]. In
another example, antibody-coated paramagnetic beads allowed the collection of HER2-
positive tumor sEVs (Tu-sEVs) of high purity from malignant ascites, which contain EVs
secreted from various types of cells such as tumor cells, lymphoid cells and mesothelial
cells [49]. Anti-CD9 and anti-PSMA functionalized antibodies magnetic beads were used
to isolate sEVs from prostate cancer cell lines (LNCaP and PC-3), blood plasma of healthy
volunteers and prostate cancer patients [50]. The CD-63 receptor was detected only in
sEVs captured by anti-CD9 beads. The higher CD9 expression was identified in sEVs
isolated from advanced cancer patients and from patients taking treatment but not in
sEVs harvested from healthy volunteers and patients without metastasis. An untouched
isolation strategy that specifically collected tumor-derived extracellular vesicles (T-EVs)
from tumor tissue, preserving their native characteristics, was developed by Yu and co-
workers [51]. The natural T-sEVs secreted by tumor tissues of cancer patients were isolated
by a collection of undesired T-sEVs from the samples using magnetic beads carrying anti-
bodies against surface receptors of sEVs characteristic of immune, endothelial and tumor
cells. The avidity of vesicle antibodies immobilized on magnetic beads was increased by
DNA linker, which allows not only isolating of sEVs from HEK-293 cell culture media and
healthy human blood plasma volunteers but also a facile release of harvested EVs by enzy-
matically cleaving DNA linkers with DNase I [52]. A comparison of ultracentrifugation
(UC-Exos), OptiPrepTM density-based separation (DG-Exos) and immunoaffinity capture
using anti-EpCAM antibodies-coated magnetic beads (IAC-Exos) was performed by Tauro
and co-workers [19]. It was found that IAC-Exos is the most effective method to isolate
sEVs, which enabled the identification of cancer-related proteins in sEVs for the first time.
Additionally, several cancer-related proteins were identified in IAC-Exos and components
involved in Wnt and Ras signaling. In another study, Brett et al. compared immunomag-
netic isolation techniques and commercially available kits, such as ExoQuick-TCTM (EQ,
System Biosciences, Inc., Palo Alto, CA, USA), ExoSpinTM (Cell Guidance Systems, LLC.,
Cambridge, UK), and Total Exosome (Life Technologies, Inc., Carlsbad, CA, USA) for the
isolation of sEV fraction from prostate cancer patient plasma [53]. The authors concluded
that commercial sEV isolation kits are not able to eliminate a fraction of plasma proteins,
while an immunoaffinity-based approach is highly effective in isolating sEVs of high purity.
A high-resolution atomic force microscope analysis of single sEVs isolated by ultracentrifu-
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gation (UC) method and immunoaffinity (IA) approach using antibody-coated magnetic
beads revealed that IA sEVs had higher surface roughness and bimodal size population
compared to UC sEVs [54]. Zarovni et al. performed a comparison of commercially avail-
able (Thermo Scientific) and in-house developed immunoaffinity beads (HansaBioMed,
Tallinn, Estonia) for sEV separation from complex and “crude” samples [32]. It was shown
that immunoaffinity beads integrated with ELISA and PCR methods made it possible to
reduce plasma volume to 0.1 mL for on-line analysis of proteins and mRNAs/miRNAs
of sEVs. A two-step magnetic bead-based (2MBB) method for isolation of a subset of
sEVs and sEVs microRNAs was designed by S. Chen and co-workers [33]. The first set of
magnetic beads with anti-CD63 capture antibodies recognize the corresponding sEVs sur-
face receptor, while the second set of magnetic beads functionalized with complementary
oligonucleotides is specific to sEVs-associated microRNAs (Figure 3). The efficiencies of
the 2MBB method amounted to 74% of sEVs enrichment and 91% of miRNA extraction
compared with supernatant with spiked-in exogenous cel-miR-238 molecules.
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Figure 3. Workflow of two-step magnetic bead-based (2MBB) method for isolation of a subset of sEVs
and sEV microRNAs. Anti-CD63 antibody-coated magnetic beads are first added to human plasma
samples to capture sEVs. The isolated sEVs are then eluted for size and concentration analysis and
lysed for analyzing proteins and RNAs. miRNAs are extracted using oligonucleotide-conjugated
magnetic beads (upper panel). Levels of miRNAs hsa-miR-21-5p (left) and hsa-miR-126-3p (right)
extracted from platelet-poor plasma, sEVs captured on magnetic beads and supernatant after mag-
netic beads relative to the spike-in exogenous cel-miR-238-3p (bottom panel). (** p < 0.01, * p < 0.05,
Student’s t test). Reprinted with permission from reference [33]. Copyright 2020, PLOS ONE.

Aptamers are yet another ligand for selective isolation of sEVs which in most cases
surpass the affinity of antibodies due to their highly specific interaction with the target
molecule, high affinity and small size. Zhang et al. demonstrated the isolation of sEVs with
high purity from cell culture media by anti-CD63 aptamer-coated magnetic beads [34]. The
subsequent release of captured sEVs is mediated by adding complementary sequences,
which break the secondary structure of aptamer and nondestructively liberate sEVs from
the bead surface. The trials on clinical samples showed a substantial difference in the
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number of captured sEVs between healthy volunteers and cancer patients using MUC1
aptamer instead of CD63. Then, working with clinical samples, the capture and release
efficiencies of the assay were found to be about 60% and 20%, respectively.

Highly purified EVs were derived from cell-conditioned media, mouse serum and
human urine by magnetic beads coated with T-cell immunoglobulin domain and mucin
domain-containing protein 4 (Tim4), which strongly react with phosphatidylserine in a
Ca2+-dependent manner [35]. The release of intact sEVs from magnetic beads was realized
by the addition of an elution buffer containing the chelating agent EDTA (Ca2+ chelator).
The Tim4-affinity purification method showed much purer fractions of sEVs compared
with conventional ultracentrifugation and Total Exosome Isolation (TEI) reagent.

4.2. Nonspecific sEVs Trapping

In this section, we summarize research describing a nonspecific strategy for the iso-
lation of sEVs by magnetically responsive beads. This strategy relies on different interac-
tions between sEVs and the surface of magnetic beads, such as electrostatic, hydrophobic,
lipophilic, etc. Although a nonspecific approach does not enable the isolation of a subpop-
ulation of sEVs, as in the case of immunoaffinity, this strategy is costly and attractive in
clinical implementation for genome and proteome analysis of sEVs.

A novel extracellular vesicles total recovery and purification (EVTRAP) method, which
is based on the capture of sEVs by magnetic beads modified with a combination of hy-
drophilic and lipophilic groups, was developed by Wu and co-workers [36]. In combination
with Western blot and liquid chromatography-mass spectrometry (LC-MS), the EVTRAP
method showed superior capture efficiency of sEVs with high recovery yield (95%) and
with about 2000 unique proteins from 0.2 mL of urine samples with a total LC-MS anal-
ysis of 90 min. The phosphoproteome analysis of urine sEVs demonstrated more than
860 phosphoproteins in 10 mL of urine versus 104 phosphoproteins in sEVs isolated by
ultracentrifugation. The sEVs from cell culture media and from the blood plasma of healthy
volunteers were successfully extracted by the MagExo approach operating in defined
polyethylene glycol PEG concentrations [37]. One-step MagExo showed several times
higher yield of the isolated sEVs than those of ExoQuick Ultra, UC and SEC, while purity
was better than that achieved with ExoQuick Ultra. Two-step MagExo had a similar yield
as one-step MagExo and comparable purity to SEC and UC. Sun et al. have extended the
previous protocol ExtraPEG [55] to MagPEG (Magnetic beads and PEG-based protocol),
which combines PEG precipitation and magnetic beads to isolate high-purity sEVs from
conditioned cell media and human plasma [56]. The yield, purity and protein markers of
sEVs derived by MagPEG were similar to that of the ExtraPEG method. MagPEG workflow
combined with an automated liquid handling instrument allowed the isolation of up to
96 sEV samples from 5 µL pre-cleared serum in 45 min. J. Chen et al. have introduced
the anion-exchange (AE) method for the isolation of sEVs from cell culture media and
from plasma using anion-exchange magnetic beads [39]. The AE-based method enabled
to reduce total isolation time to 30 min with high recovery yield (more than 90%) and
improved purity of sEVs (several times higher compared with ultracentrifugation and
AE chromatography). Bifunctional magnetic beads (BiMBs) functionalized with Ti(IV)
ions and a phospholipid derivative, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
(DSPE), were developed for efficient enrichment of sEVs [38]. As stated by the authors,
DSPE on BiMBs surface can penetrate sEVs membrane, while Ti(IV) ions bind to phosphate
groups; thus, BiMBs can improve affinity and specificity for isolation and further molecular
analysis of sEVs. The BiMBs showed the best isolation efficiency from both PBS and urine
samples compared with magnetic beads immobilized with Ti(IV) only (TiMBs), DSPE only
(DspeMBs) and ultracentrifugation (US). The proteome of isolated sEVs coupled with liquid
chromatography-mass spectrometry resulted in identifying 3302 unique proteins with 95%
of 100 top sEVs proteins in sEVs isolated using BiMBs that were higher compared with
sEVs captured by TiMBs, DspeMBs and US. Additionally, sEVs captured with BiMBs have
lower contaminants than sEVs harvested by other beads and US. Furthermore, phospho-
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proteomic analysis of prostate cancer sEVs from urine samples isolated by BiMBs with the
help of trapped ion mobility spectrometry revealed 120 phosphoproteins with multiple po-
sitional isomers in phosphorylation. Magnetic beads coated with polysaccharide chitosan
are capable of mediating sEV isolation from conditioned cell culture media (CCM) [57].
Magnetic beads at a final concentration of 0.5 mg/mL captured sEVs had characteristic
sEVs markers, such as HSC70, CD63, CD9 and FLOT1. With increasing concentrations of
chitosan-coated magnetic beads, the increase in the signal of sEVs markers was observed.
In contrast, dextran-coated magnetic beads did not have any specific sEVs markers in the
isolated material.

4.3. Quantification of Magnetically Isolated sEVs

Along with the development of sEVs isolation methods, techniques for the quan-
tification of sEVs are also evolving. sEVs are first trapped on magnetically responsive
particulate platforms, while the amount of sEVs is then determined by different detec-
tion methods [58–61]. The fluorescence-based approaches are most widely used for sEVs
quantification. F. He et al. have proposed two methods for the quantification of sEVs.
The first is based on DNA hybridization chain reaction (HCR) measurement for signal
amplification using a bivalent-cholesterol-labeled DNA probe spontaneously inserted into
the membrane of sEVs [62]. In the second method, sEVs are quantified by fluorescent
copper nanoparticles forming in the presence of poly(thymine) as a result of the dissolution
of anti-CD63 aptamer-functionalized copper oxide nanoparticles anchored to sEVs [63].
Both methods showed a low quantification limit (103–104 vesicles per µL) of determined
sEVs when working with cell culture media and human serum of cancer patients. A new
method for competitive detection of sEVs was developed by Yu and co-workers [64]. In
this method, aptamer-functionalized magnetic beads specific to the CD63 protein of sEVs
are hybridized with a Cy3-labeled short-sequence oligonucleotide probe complementary
to a certain region of the aptamer. After adding sEVs to the magnetic bead–Cy3 probe
complex, sEVs competitively bind to the aptamer-conjugated magnetic bead, resulting in a
decrease in the fluorescence signal. Thus, the number of EVs can be estimated by measuring
fluorescence intensity. A fluorescence-based platform for the sensitive detection of sEVs
was developed by L. Huang and co-workers [65]. A three-step protocol was used for sEVs
estimation. First, leukemia-derived sEVs were harvested by anti-CD63 antibody-modified
magnetic beads. Then, a DNA primer comprising a nucleolin-recognition aptamer was
applied to initiate a rolling circle amplification (RCA) reaction generating many repeat
sequences. In the final step, gold nanoparticles were injected into the samples to induce
the release of FAM dye. The fluorescence signal was continuously accumulated due to
the transformation of FAM from the quenching state to the emission state. The sEVs in
PBS and in spiked serum samples were successfully quantified with the limit of detection
of 1 × 102 vesicles per µL. A comparative study for the identification of EpCAM and
HER2 surface proteins in the sEVs derived from MCF7, SKOV3, MDA-MB-231 and CHO
cell lines and blood plasma of a healthy donor was carried out using anti-EpCAM and
anti-HER2 designed ankyrin repeat proteins (DARPins) [66]. Both DRAPins showed high
specificity to EpCAM and HER2 receptors, whereas the highly reactive nature DARPins,
along with magnetic capture, allowed reducing total assay time. The performance of the
bead-flow cytometry method for quantification of the molecular cargo in sEVs isolated
from cell culture media and plasma of cancer patients was investigated in the following
works [67,68]. The authors emphasized the following critical points for analysis of sEVs
by bead-flow cytometry: (i) the right selection and preparation of beads and antibodies
for sEVs capture; (ii) finding the optimal ratio of beads/antibody/sEVs; and (ii) the right
isotype control to achieve the best separation of the isotype signal from the detection anti-
body signal. Additionally, gating on sEVs–bead complexes is yet another critical factor that
should be set in the detection system to avoid analysis of sEVs–bead complexes aggregates.
Following these criteria, one can achieve reliable and reproducible analysis of the molecular
composition of sEVs using bead-flow cytometry method.
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Apart from fluorescence-based quantification methods, a biocatalytic color-changing
system based on horseradish peroxidase-encapsulated DNA flowers (HRP-DFs) was intro-
duced by R. Zeng et al. for the quantitative screening of sEVs [69]. In this immunoassay
design, target sEVs are bound to cholesterol-modified DNA probes-conjugated magnetic
beads and CD63 aptamer-encoded HRP-DFs forming sandwich immune complexes. The
complex is then magnetically separated to further initiate oxidation of 2,2′-azino-bis(3-
ethyl-benzothiazoline-6-sulphonic acid) (ABTS), which undergoes a color change in the
presence of H2O2. Thus, the color change of the ABTS-H2O2 system can be monitored by
ultraviolet-visible spectrometry and is proportional to the concentration of sEVs.

Photo-click chemistry for specific marker capture and release of intact sEVs with
the help of 3D-structured nanographene magnetic particles (NanoPoms) with unique
flower pom-poms morphology was developed by N. He and co-workers [70]. The results
showed improved specificity and sensitivity for detecting urological tumor biomarkers
in sEV NanoPoms compared with ultracentrifugation or other bead isolation approaches
(Figure 4). A few miRNAs and protein cancer biomarkers highly enriched in urinary sEVs
were identified by this method for the first time.
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Figure 4. Schematic of the fabrication of Nano pom-poms capture platform for trapping of sEV and
their release via on-demand photo-cleavage (a). TEM and SEM images of Nano pom-poms and a
commercial nanoplatform (b). TEM image of captured sEVs on the surface of Nano pom-poms. Red
arrows indicate captured sEVs with bound 10 nm antiCD63 gold nanoparticles (c). Nanoparticle
tracking analysis of sEVs isolated by Nano pom-poms and ultracentrifugation (d). Nanoparticle
tracking analysis of the size of sEVs isolated with Nano pom-poms and ExoEasy kit (e). SEM images
of Nano pom-poms with captured sEVs and those after the release of sEVs via on-demand photo-
cleavage. Workflow of multi-omic analysis and in vivo study (f). Reprinted with permission from
reference [70]. Copyright 2022, Springer Nature.

SERS coding nanoprobes functionalized with bivalent cholesterol-labeled DNA strands
were used for highly sensitive quantification of sEVs. The proposed approach enabled sEV
detection as low as 27 vesicles per µL [71]. The simultaneous detection of SKBR3, T84 and
LNCaP sEVs with the limit of detection from tens to hundreds of vesicles per microliter
using aptamer-conjugated SERS-encoded probes on magnetically captured magnetic beads
was demonstrated by Z. Wang [72].

5. Integrated Technologies

In addition to various types of particles being used as stand-alone tools for the isolation
of sEVs, other groups demonstrated technologies where the particles are integrated onto a
substrate for sEV capture and analysis. Figure 5 gives an overview of using bead-assisted
platforms for the isolation of sEVs in combination with microfluidics and microarrays. In
such combinations, various capture approaches can be applied, such as physical trapping,
ligands, electric and magnetic fields and laser light. Moreover, once the sEVs are trapped,
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the physical and biochemical characteristics of sEVs can be analyzed by different methods,
such as ELISA, mass spectrometry, flow cytometry, plasmonic-based and others.
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Zhao Z. et al. developed a microfluidic chip (ExoSearch) from PDMS with an inte-
grated 2 mm magnet disk and magnetic beads coated with capture antibodies for trapping
sEVs [40]. This approach allowed the group to quantitate sEVs obtained from ovarian
cancer patient plasma and healthy controls and perform multiplexed marker detection with
the LOD of 7.5× 105 vesicles per mL. By using ExoSearch, it was shown that ovarian cancer
patients overexpressed the CA-125, EpCAM, CD9, CD81 and CD63 markers. Subsequently,
the group designed a microfluidic chip that, in addition to isolation of sEVs subpopulations,
allows to lyse them and perform multiparametric analysis of intravesicular biomarkers [41].
Niu F. et al. introduced an S-shaped micromixer with an embedded baffle that allowed
the effective capture of subpopulations of sEVs by the immunomagnetic bead. [73]. The
fabricated chip was allowed to perform a complete isolation of a subpopulation of sEVs.
The flow rate through the microfluidic channels was set to be 20 µL/min, with the total time
that was required for the isolation of 150 µL serum samples being ~50 min. The authors
used Western blot to verify the ability of the platform to isolate CD63 + sEVs. Another
type of a microfluidic chip in the form of a microarray composed of channels that are
separated by pillars was presented by Bai Y. and co-workers [74]. Such geometry with an
optimized flow rate allows single beads with sizes slightly larger than the micropillar gap
length to become trapped. If the gap is already occupied, the flow resistance of the gap
would increase and cause the beads to bypass this site and end up in empty gaps. Commer-
cial microbeads conjugated with anti-CD9 antibodies along with quantum dots (QD) for
carcinoembryonic antigen (CEA), fragments of cytokeratin 19 and pro-gastrin-releasing
peptide (Pro-GRP) were used to identify and fluorescently label sEVs isolated from lung
adenocarcinoma (A549), lung squamous carcinoma (H226), small cell lung cancer (H446),
human umbilical vein endothelial (HUVEC) cells and plasma from 10 patients who had
not undergone primary surgical resection of lung cancer and 10 healthy controls. The
group observed increased marker expression levels in lung cancer patients compared to
controls, although it did not find a distinct difference in expression levels in different types
of lung cancer. However, they were able to differentiate sEVs obtained from different lung
cancer cell lines by using the presented method. Chen W. et al. produced a microfluidic
device with multiple layers containing a sealing layer, chamber layer, channel layer and
a magnet positioned between the cover and mounting plates [42]. The procedure of the
lab-on-a-chip first started with the immunomagnetic beads with captured sEVs flowing
through a channel where a magnet was present to capture them for further fluorescent
labeling. The tetramethylbenzidine (TMB) substrate, which was added next under the
catalysis of HRP, produces a soluble product causing a color change and allows the use of
a spectrophotometer for optical density measurements. To evaluate the device’s applica-
bility for clinical use, the group compared EpCAM expression in 10 breast cancer patients
compared to 10 healthy controls. It was found that EpCAM expression evaluated by the
microfluidic chip allows differentiating of breast cancer patients from control patients
with 90% sensitivity and >95% specificity. Kabe Y. et al. introduced an ExoCounter for
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the quantification of bound sEVs by labeling them with antibody-conjugated magnetic
beads [43]. ExoCounter allowed us to find high expression of CD9+/HER2+ sEVs in sera of
breast and ovarian cancer patients compared to healthy donors. The LODs of ExoCounter
were found to be 1.16 ng protein for sEVs purified from the cell culture medium and 0.39 ug
for serum samples, which were significantly lower than counterparts such as ELISA and
flow cytometry. Lin A. et al. fabricated chips where ferromagnetic metals were electro-
deposited into self-assembled microlattice, which allowed them to produce billions of
nanomagnetic traps that allowed to enrich magnetically labeled sEVs and obtain a purified
sample for further characterization [75]. To capture subpopulations of sEVs the group used
commercial anti-biotin magnetic nanoparticles that target sEV markers. Such magnetic
nanoparticles with bound sEVs were trapped by a face-centered cubic immunomagnetic
sorter (FIS). The group has shown that, compared with the commonly used methods for
the isolation of sEVs, such as UC and precipitation, their approach allows the capture
and purification of subpopulations of sEVs with the possibility of lysing them for further
RNA extraction and qPCR. The total RNA yield of FIS was also shown to surpass the
UC isolation approach. Jeong S. et al. developed and presented an integrated magnetic-
electrochemical exosome (iMEX) platform that allows to capture of subpopulations of sEVs
by magnetic beads containing capture antibodies and labeling them with target antibodies
and horseradish peroxidase (HRP) for electrochemical detection by using chromogenic
electron mediators, which generate an electrical current when HRP is present [44]. The
group first performed testing of the system by using EVs isolated from cell lines and found
a strong correlation between the expression of markers on the cell and sEV membranes. The
iMEX platform was then tested by directly using 80 µL plasma obtained from 11 ovarian
cancer patients and 5 healthy controls. It was found that expression levels of EpCAM and
CD24 of CD63+ sEVs were significantly higher in ovarian cancer patients compared with
healthy controls. The group also has shown the applicability of the developed method
to monitor the dynamics of marker expression before and after drug treatment. Wei F.
et al. presented an electric field-induced release and measurement (EFIRM) system to
eventually detect the subpopulation of sEVs and their RNA after release by applying a
non-uniform electrical field [45]. Magnets underneath the electrochemical sensor were used
to capture the sEVs–magnetic bead complexes. Once fixed by the magnet, the csw E-field
was applied to release GAPDH mRNA from captured sEVs. The mRNA was hybridized
with oligonucleotide capture and detector probes, followed by adding an anti-fluorescein
antibody conjugated to HRP for amperometric measurements. The group showed the
ability to simultaneously measure sEVs CD63 surface proteins and detect harbored mRNA.
It was shown that tumor-derived sEVs could be detected in saliva in addition to blood.
Rho J. et al. developed a prototype micro-nuclear magnetic resonance (uNMR) system that
allows to isolate and quantify microvesicles (MVs) in packed red blood cell (pRBC) units
and label their subpopulations with target-specific magnetic nanoparticles [46]. In a recent
study, Wang S. et al. developed and tested a rapid Cu nanoshell-enhanced immunoas-
say (Cu-NEI) where in situ Cu growth allows to significantly enhance NP-induced signal
intensity [76]. The group first tested and compared AuR with AuS enhancement by Cu
nanoshell growth. They found that Cu nanoshell growth significantly enhances plasmonic
scattering intensity with AuR@Cu signal outperforming AuS@Cu hence AuR@Cu was used
for experiments thereof. Slides having multiple wells conjugated with protein A/G were
conjugated with a CD81 antibody. Pre-isolated sEVs or serum samples were added and
labeled with biotinylated antibodies to CD63 or LAM, followed by avidin-conjugated AuR
NPs. Cu-NEI has shown a greater overall pediatric TB diagnostic performance, including
sensitivity (76%) and specificity (100%), compared with Mtb culture, Xpert, urinary LAM
and AuR (without Cu nanoshell growth) assay methods. The Cu-NEI method was also
shown to have LOD down to 39 sEVs/uL, significantly better than ELISA (5187 sEVs/uL).

It can be seen that the recently presented coupling of particles with other components,
such as microfluidics, allows the creation of new technologies that, in the near future,
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provide the potential to achieve high sensitivity and specificity and become routinely used
in clinics.

6. Conclusions

sEV isolation from biological fluids still remains a challenge due to their biophysical
properties and the complexity of biofluids where sEVs reside. Although numerous ap-
proaches for sEV extraction and characterization were previously presented and compared,
bead-assisted technology was the main focus in the review presented here to highlight the
advantages and potential that outweigh other methods. The advantages include the versa-
tility as to how beads can be manipulated and used to achieve the end goal, the requirement
of only basic tools (e.g., centrifuge and/or magnet) needed throughout the protocols and
compatibility with commonly used instrumentation such as flow cytometry that can be
used for final molecular profiling. Beads that were previously presented and used for sEV
capture were divided into magnetic or nonmagnetic types and further subcategorized into
specific and nonspecific. In previous work, it was shown that beads could not only be used
for the characterization of preisolated/purified sEVs but also for isolation directly from
biological fluids such as blood plasma, serum and saliva. In addition, we presented recent
integrated technologies where beads were coupled with systems such as microfluidics to
minimize the required sample volume and time needed for sEV analysis. We anticipate that,
in the near future, bead-assisted technologies will become utilized in clinical laboratories to
perform routine testing for diagnostics and treatment monitoring. However, despite recent
success in the extraction and characterization of sEVs by bead-assisted technology, some
problems need to be addressed to enable the effective collection of target sEVs from real
patient samples. The following factors will determine the efficiency of isolation of sEVs and
should be taken into account: (i) the source and characteristics of sEVs; (ii) the characteristic
of the antibody–antigen interaction; (iii) the nature and structure of the target molecule;
and (iv) the ratio and concentration of the beads and target molecules. In addition, the
beads should be biologically inert to prevent the binding of lipoproteins albumin, other
proteins and their aggregates to the bead surface. Moreover, the complete isolation of sEVs
from other EV subsets is yet another valuable problem that should be resolved.
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