
Citation: Kumar, S.; Ko, T.; Chae, Y.;

Jang, Y.; Lee, I.; Lee, A.; Shin, S.; Nam,

M.-H.; Kim, B.S.; Jun, H.S.; et al.

Proof-of-Concept: Smartphone- and

Cloud-Based Artificial Intelligence

Quantitative Analysis System

(SCAISY) for SARS-CoV-2-Specific

IgG Antibody Lateral Flow Assays.

Biosensors 2023, 13, 623. https://

doi.org/10.3390/bios13060623

Received: 20 April 2023

Revised: 31 May 2023

Accepted: 2 June 2023

Published: 5 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Proof-of-Concept: Smartphone- and Cloud-Based Artificial
Intelligence Quantitative Analysis System (SCAISY) for
SARS-CoV-2-Specific IgG Antibody Lateral Flow Assays
Samir Kumar 1,† , Taewoo Ko 1,†, Yeonghun Chae 2, Yuyeon Jang 3 , Inha Lee 3, Ahyeon Lee 1, Sanghoon Shin 1,
Myung-Hyun Nam 4, Byung Soo Kim 5, Hyun Sik Jun 3,* and Sungkyu Seo 1,*

1 Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea;
skumar@korea.ac.kr (S.K.); rdks95@korea.ac.kr (T.K.); ahyun904@korea.ac.kr (A.L.);
ghost10s@korea.ac.kr (S.S.)

2 Season Co., Ltd., Sejong 30127, Republic of Korea; proin@season.co.kr
3 Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea;

juy0811@korea.ac.kr (Y.J.); dlsgk1017@korea.ac.kr (I.L.)
4 Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine,

Seoul 02841, Republic of Korea; yuret@korea.ac.kr
5 Department of Hematology, Anam Hospital, Korea University College of Medicine,

Seoul 02841, Republic of Korea; kbs0309@korea.ac.kr
* Correspondence: toddjun@korea.ac.kr (H.S.J.); sseo@korea.ac.kr (S.S.); Tel.: +82-44-860-1427 (H.S.J.);

+82-44-860-1411 (S.S.); Fax: +82-44-860-1585 (H.S.J.); +82-44-860-1598 (S.S.)
† These authors contributed equally to this study.

Abstract: Smartphone-based point-of-care testing (POCT) is rapidly emerging as an alternative
to traditional screening and laboratory testing, particularly in resource-limited settings. In this
proof-of-concept study, we present a smartphone- and cloud-based artificial intelligence quantitative
analysis system (SCAISY) for relative quantification of SARS-CoV-2-specific IgG antibody lateral
flow assays that enables rapid evaluation (<60 s) of test strips. By capturing an image with a
smartphone camera, SCAISY quantitatively analyzes antibody levels and provides results to the
user. We analyzed changes in antibody levels over time in more than 248 individuals, including
vaccine type, number of doses, and infection status, with a standard deviation of less than 10%. We
also tracked antibody levels in six participants before and after SARS-CoV-2 infection. Finally, we
examined the effects of lighting conditions, camera angle, and smartphone type to ensure consistency
and reproducibility. We found that images acquired between 45◦ and 90◦ provided accurate results
with a small standard deviation and that all illumination conditions provided essentially identical
results within the standard deviation. A statistically significant correlation was observed (Spearman
correlation coefficient: 0.59, p = 0.008; Pearson correlation coefficient: 0.56, p = 0.012) between the
OD450 values of the enzyme-linked immunosorbent assay and the antibody levels obtained by
SCAISY. This study suggests that SCAISY is a simple and powerful tool for real-time public health
surveillance, enabling the acceleration of quantifying SARS-CoV-2-specific antibodies generated by
either vaccination or infection and tracking of personal immunity levels.

Keywords: smartphone; point-of-care testing; lateral flow assay; artificial intelligence; SARS-CoV-2;
IgG antibody

1. Introduction

Since December 2019, the deadly severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has infected more than 762 million people, led to approximately seven million
deaths, and caused unprecedented disruptions to public health and the economy [1–3].
Real-time polymerase chain reaction (RT-PCR) for the detection of viral nucleic acids is
currently the gold standard for the diagnosis of coronavirus disease 2019 (COVID-19) [4,5].
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However, practical limitations prevent it from keeping pace with the rapid spread of the
virus. For example, collecting samples from the nasopharynx is a painful process that can
take a long time and requires licensed laboratories and specialized skills [6]. Therefore,
RT-PCR is not suitable for rapid and straightforward patient screening. Rapid screening
to identify SARS-CoV-2-infected patients is essential to prevent transmission of the virus,
ensure timely treatment, and support mass testing. Considering these factors, the focus
has shifted to point-of-care testing (POCT) because it is easy and quick to perform and
can screen large numbers of patients [7–13]. In addition, experts agree that mortality
rates can be reduced if more people are vaccinated, and that complete elimination of
COVID-19 may not be possible until all people have access to vaccination. Despite the
availability of 13.33 billion vaccine doses worldwide over the past two years, by April 2023,
less than half of World Health Organization member countries (WHO) have reached the
organization’s goal of 70%, and only 37% of health professionals in low-income countries
have received primary vaccination [14,15]. Booster vaccinations and additional doses
account for approximately 20% of all administered vaccinations today [16]. According
to the director general of the WHO, Tedros Adhanom Ghebreyesus, “Blanket booster
programs are likely to prolong the pandemic, rather than ending it, by diverting supply
to countries that already have high levels of vaccination coverage, giving the virus more
opportunity to spread and mutate” [17]. In addition, there is the question of vaccination
parity—who should receive booster vaccinations and when.

Various techniques have been developed for the detection of SARS-CoV-2, including
nucleic acid amplification tests (NAATs), antigen tests, and antibody tests [18,19]. NAATs,
such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification
(LAMP), are the most commonly used techniques for detecting SARS-CoV-2 [20]. These
techniques amplify viral RNA to a detectable level and can provide highly sensitive and
specific detection of the virus. PCR and LAMP have been shown to have comparable
sensitivity of 95–100% [21–23]. However, their high cost and complexity make them
unsuitable for rapid POCT. Antigen testing is another technique used to detect SARS-CoV-
2. In this technique, a sample is tested for the presence of viral proteins using specific
antibodies. Antigen tests are rapid and can provide results within 15 to 30 min. However,
the sensitivity (50–90%) of antigen tests is lower than that of NAATs [24]. Antibody tests
are techniques that detect the presence of SARS-CoV-2-specific antibodies in the human
body. These tests can be either rapid diagnostic tests (RDTs) or laboratory-based tests.
RDTs are lateral flow assays that provide results within minutes, while laboratory-based
tests use enzyme-linked immunosorbent assay (ELISA) or chemiluminescent immunoassay
(CLIA) techniques and require specialized equipment. The sensitivity and specificity of
antibody tests vary depending on the type of antibody tested and the timing of the test. The
sensitivity of antibody tests for the detection of SARS-CoV-2 has been reported to range
from 30.1% for IgM tests to 72.2% for IgG tests when samples are collected within the first
week of symptom onset. The sensitivity of antibody tests increases over time, with IgM
tests having a sensitivity of 73.9% and IgG tests having a sensitivity of 91.4% when samples
were collected 15–35 days after the onset of symptoms [25].

During the COVID-19 pandemic, there has been an urgent need for rapid and accu-
rate testing methods to detect SARS-CoV-2 infection. Immunodiagnostic kits that detect
IgM/IgG antibodies formed by vaccination or infection have been developed to quali-
tatively identify the presence of antibodies in patient samples [13,26,27]. Although the
concentrations of IgG and IgM antibodies can provide information about a person’s im-
mune response to infection, they do not necessarily reflect the person’s immunity to the
pathogen or ability to prevent or control infection. Nevertheless, detection of IgG and
IgM antibodies to SARS-CoV-2 has been shown to be a reliable indicator of infection. IgM
antibodies can be detected in the blood of patients at 3–6 days and IgG at 8 days after
COVID-19 infection [10]. Detection of both IgM and IgG antibodies could provide valuable
information about the time course of viral infection, and rapid detection of these antibodies
could improve the diagnosis and treatment of COVID-19.
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One of the promising methods for the POC detection of IgM/IgG antibodies in patient
samples is the lateral flow assay (LFA), which is based on the light scattering phenomenon
of nanoparticles. In this method, antibodies bind to gold nanoparticles (GNP) conjugated to
a non-pathogenic antigen and move in a specific direction [28,29]. LFA tests are commonly
used at the POC because they are user-friendly, allow on-site testing, and provide results
within minutes, making them cost-effective [30,31]. However, rapid LFA tests can only
provide qualitative information about the presence or absence of antibodies, rather than
quantification of specific antibodies.

The conventional methods of measuring an LFA signal use clinical or research labora-
tory equipment, such as a spectrophotometer or a fluorometer, which provide exceptional
performance. These instruments provide accurate and precise measurements of signal
intensity and can be used to quantify the amount of analyte present in the sample. However,
the use of laboratory equipment can be expensive, bulky, time-consuming, and requires
specialized training, making it difficult to use LFA assays in resource-limited settings or
POC applications [32–36]. To overcome this limitation, several portable and handheld
devices for LFA signal measurement have been developed. Some examples of portable
devices for measuring LFA signals are the portable fluorescence readers, such as the Q-
POC [37–40]. Additionally, smartphone-based systems are also being developed to provide
a rapid, user-friendly, and cost-effective method for antibody quantification [41,42].

Several researchers have developed smartphone platforms to quantify various ana-
lytes, including concentrations of vitamin D, iron, and vitamin B12. Lee et al. and Srinivasan
et al. developed a smartphone platform to quantify vitamin D and iron levels [43–45]. How-
ever, these systems usually require an external device connected to the smartphone, which
limits the functionality and increases the cost. For example, Lee et al. developed a low-cost
POC quantification system for vitamin B12 concentrations using silver amplification to
increase the initial signal and detection limit within the required range [41]. However, they
used a specially designed LFA kit with a “spacer pad” to extend the duration of the critical
competitive binding reaction. Similarly, Foysal et al. developed a smartphone-based ana-
lyte detection method to measure albumin in human serum on an LFA strip [40]. However,
this method cannot provide accurate data for slight misalignment under the camera. The
LFA kits must be accurately placed in the field of view to avoid errors in the calculation
of the number of pixels. Tong et al. developed an AI-assisted colorimetric LFA platform
based on polydopamine nanoparticles using the receptor-binding domain of viral spike
protein and mouse IgG for the quantification of neutralizing antibodies from vaccines [13].
They used a portable smartphone-based reader to image the LFIA results and output them
to the AI algorithm to analyze the concentration of neutralizing antibodies. This approach
is a promising solution for accurate quantification of LFAs using smartphones.

Here, we present a smartphone- and cloud-based artificial intelligence analysis sys-
tem (SCAISY) for SARS-CoV-2-specific IgG antibodies detected on LFA strips. SCAISY
allows users to measure and quantify antigen and SARS-CoV-2 antibody retention rates for
various purposes based on the rapid LFA-type immunodiagnostic kit quickly and easily.
This system provides statistical data in addition to antibody retention values without the
need for an external device. In addition, SCAISY ensures robust performance under a
wide range of illumination conditions and camera orientations without the need for an
external illumination device. As demand for vaccination and immunity testing rapidly
increases, SCAISY is a simple and powerful method to track vaccination effectiveness in
large populations, especially in resource-limited countries. This technique can be used
as a real-time public health tool to monitor immunity levels and determine the need for
additional vaccinations and immunity to specific antigens based on vaccination status,
vaccine type, and duration after vaccination or infection.
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2. Materials and Methods
2.1. LFA Kit and Human Blood Sampling

Figure 1 shows a flowchart of the steps involved in using an AI-based system for
quantitative evaluation of LFA kits. Blood samples (3–5 µL) were collected from the subjects
by pricking the finger and directly entered into the sample pad of a COVID-19 IgM/IgG
Plus test kit (SD Biosensor, Suwon, Republic of Korea). Whole blood samples were collected
with approval from the Institutional Review Board (#2021AN0040) of the Anam Hospital
of Korea University. A buffer solution (3–4 drops) provided by the kit manufacturer was
added to the sample pad. The sample was then passed through a conjugation pad where
antibody and conjugated markers were stored. When the target molecule was present in
the sample, it bound to the immobilized conjugated antibodies and markers and continued
to move through the LFA kit. As the sample moved through the LFA, the reagents on the
nitrocellulose membrane bound to the target molecule on the test line. The presence of the
target analyte in the sample was indicated by a colored line formed by light scattering from
the GNP, the density of which varied depending on the amount of target analyte present.
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Figure 1. A flowchart illustrating the procedure for AI-based quantitative evaluation of LFA kits.
Blood samples were collected from each subject by a single prick of the finger. (A) The collected
blood samples were placed directly on the sample pad of the test strips. (B) A special buffer solution
(3–4 drops) was then poured into the sample pad. (C) After 10–15 min, the strips were photographed
with a smartphone (D) and uploaded to a dedicated server. SCAISY quickly analyzed the transferred
image (E) and provided the user with a report containing the results and statistical data.

2.2. Display of Results

The LFA strip used in this study has three detection lines: a control line (C) and two
test lines (M and G) for detecting IgM and IgG antibodies, respectively. The control line
serves as a safety measure to indicate that the test was performed correctly. A positive
result for IgM or IgG antibodies is shown by the appearance of a bright red line on the
corresponding M or G test line. The intensity of the color on these test lines reflects the
concentration of the analyte in the sample. In case of a negative sample, only the control
line (C) shows a red line.

2.3. Data Acquisition Using a Smartphone Camera and Image Analysis

We used a smartphone to capture images of the LFA strips 10–15 min after sample
application. Images were captured using the rear-facing camera of a Samsung Galaxy S21
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smartphone (Samsung Electronics, Seoul, Republic of Korea) running on Android 12.0.0,
with autofocus and flash turned off. The images were then uploaded to a server for analysis
by an artificial intelligence algorithm. The algorithm quickly analyzed the transferred
image and generated a user report with the results and statistical information. Figure 2
shows the workflow of SCAISY.
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Figure 2. Schematic representation of rapid immunodiagnostic kit image processing for quantitative
evaluation of antibody levels using SCAISY. The kit detection algorithm consisted of two mask
region-based convolutional neural network (mask-R-CNN) models and a pixel-based quantification
function. The two mask-R-CNN models were used to detect the exact area of the kit in the image.
The quantification function then extracted and quantified the pixel intensity from the image of the
detected area.

2.4. Feature Extraction

The specialized server for LFA kit evaluation consisted of two main components: a
web server that received the kit image and user data after the LFA test, and an analysis
server responsible for kit evaluation (Figure S1). During the training process, a range
detection model was used to decide the range of the analysis result window. Then, a kit
detection model was used to determine whether the image was from a particular LFA kit
based on images from different kits. A region of interest containing both test and control
lines was automatically extracted from the image. Black and white images were created
from the color images and an area detection model was used to extract pixel values from
the resulting window image. The user was then presented with a graphical representation
of the pixel intensities.

2.5. Test to Control Line Signal Intensity (T/C) Quantification Using AI

Figure 2 shows a schematic representation of image processing of rapid immunodi-
agnostic kits for quantitative evaluation using SCAISY. Two object recognition models
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based on the mask region-based convolutional neural network (mask-R-CNN) algorithm
were used to quantitatively analyze images of kits taken with a camera. The first model
recognized the area of the kit in the photo and was trained using images in which the kit
area was masked as a polygon. Approximately 700 photos were taken under different
environmental conditions to account for factors such as angle and background.

The second model recognized the area used for quantitative analysis within the
detected kit area. To improve accuracy, a reference angle was defined for the training
dataset and the accuracy of the recognition model was checked when the image was
rotated. The area with the highest accuracy among the rotated areas was selected as the
final result and converted to a numerical value using a quantification function. A leveling
algorithm was used to calibrate this value and correct deviations caused by shadows on
the photo.

2.6. Comparative Analysis with ELISA

The accurate quantification of SARS-CoV-2-specific IgG antibodies plays a crucial role
in assessing immune response and vaccine efficacy. We performed a comparative analysis
between SCAISY and ELISA to evaluate their concordance and reliability for quantifying
SARS-CoV-2-specific IgG antibody levels. Nineteen blood samples were collected and
analyzed using both SCAISY and ELISA methods. In the present study, R- FIND COVID-
19 ELISA (SG Medical, Republic of Korea) was used to quantify COVID-19 IgG total
antibodies in serum samples, following the manufacturer’s instructions. Serum samples
were subjected to a 1:101 dilution using the sample diluent provided in the kit. A volume of
100 µL of the diluted sample was added to a microwell plate coated with the SARS-CoV-2
nucleocapsid protein as antigen. The mixture was then incubated for 45 min at room
temperature. After washing the wells with 1× wash buffer, 100 µL IgG conjugate was
added to each well and incubated for 30 min at room temperature. After another wash
step, 100 µL of TME substrate was added to each well, followed by an incubation period
of 15 min in the dark. After the incubation period, a 50 µL stop reagent solution was
added to each well. The absorbance of the samples was then measured at 450 nm using an
absorbance microplate reader, SunriseTM (Tecan, Zurich, Switzerland). The validity of the
study was ensured by using positive and negative controls. The OD450 values from ELISA
were compared with the antibody levels calculated from SCAISY. Spearman and Pearson
correlation coefficients were calculated to assess the relationship between the ELISA and
SCAISY results. Linear regression analysis was performed to determine the extent of the
linear relationship. Data were analyzed using GraphPad Prism 9.0.0. (San Diego, CA, USA).

3. Results
3.1. Effect of Blood Volume and Measurement Time on Antibody Level

Determining the effects of blood volume and measurement time on antibody results is
critical for practical applications and also important for scientific replication. In this study,
blood volumes of 5–20 µL were applied to the inlet of the test strip, and measurements
were performed at intervals of 5–20 min, as shown in Figure 3A. The results showed that
antibody levels increased with time and reached a plateau after 10 min. Notably, the
results of 5 µL and 10 µL blood were almost identical after 15 min, while the antibody
levels decreased when the blood volume was increased to 20 µL. This decrease in antibody
levels at a blood volume of 20 µL could be due to the fact that the chemical components
of the LFA kit flow through the porous materials and do not reach a steady state. The
formation of immune complexes in the test and control lines depends on the finite time for
the components to be sufficiently close to each other to combine. This time is determined
by the capillary flow rate. Xia et al. have previously reported that sample volume can affect
flow rate and that there is an inverse relationship between the effective concentration of
analyte in the sample and the square of the change in flow rate [46,47]. Consequently, a
larger volume may result in a lower effective antibody concentration as the flow rate of the
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analyte increases [47]. Therefore, 5–10 µL is the recommended volume and 15 min is the
optimal time to obtain reproducible results.
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3.2. Analysis of Variability Caused by Different Lighting Conditions and Shooting Angles

POCT devices are highly portable and automated diagnostic instruments that can be
used in various settings such as hospitals, private homes, outpatient clinics, and remote
locations [48–50]. These devices can be used in real-world scenarios such as outdoor
or indoor camps and by individuals or groups in different environments. For practical
applications, it is important to understand the variations that can occur due to different
external lighting conditions and image acquisition angles. To evaluate the performance
of SCAISY in real-world situations, six different LFA samples were used, and data were
collected under five different lighting conditions (indoor LED light, incandescent light,
lobby light, sunlight, and shade) and three different camera positions (45◦, 60◦, and 90◦).
The influence of the acquisition angle on the results under indoor LED light is shown in
Figure 3B, while the influence of the acquisition angle on the results under different lighting
conditions is shown in Figure S2. The results for all three angles were almost identical, with
a standard deviation (SD) of less than 10%. Thus, SCAISY is a robust system that provides
accurate results with a low SD for images captured between 45◦ and 90◦, making it possible
to capture images in real-world scenarios without worrying about the camera’s field of
view or capture angle.

The effect of different illumination conditions on the performance of SCAISY was
evaluated at two different angles. Figure 3C shows the results obtained at 60◦ illumination,
while Figure S3 shows a comparison of the results under different illumination conditions
at 90◦. The data show that all illumination conditions gave comparable results within
the SD. However, in some cases, antibody levels were slightly lower under incandescent
light. However, this deviation is considered negligible since incandescent bulbs are no
longer widely used and can be replaced by LED light on a smartphone to avoid this
effect. In addition, the reproducibility of the results was evaluated for seven different
samples, as shown in Figure S4. For each sample, N images were acquired to evaluate the
reproducibility, and the obtained results were transmitted to SCAISY for analysis. The SD
was less than 10% under the same illumination conditions, indicating high reproducibility.
Furthermore, the repeatability of the results was investigated for four different samples, as
shown in Figure S5. The results obtained were consistent, demonstrating the robustness of
SCAISY. This feature is particularly useful for medical professionals as it allows them to
store digital photos in databases and analyze the results later if needed.
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3.3. Analysis of Variability Caused by Smartphone Cameras

We also investigated the effects of different cameras on the performance of SCAISY by
taking images of six different samples under different lighting conditions (see Figure 4). For
the study, we used the rear cameras of two popular Android smartphones, the Samsung
Galaxy S21 and the Mi Note 10 Lite (Xiaomi Inc., Beijing, China), and an iPhone 13 (Apple
Inc., Cupertino, CA, USA). All phones were equipped with autofocus and the flash was
turned off during image capture. The Android phones from Samsung and Xiaomi showed
comparable results, with antibody levels within the standard deviation, as shown by the
stripes and dotted grid, respectively. In contrast, the iPhone showed marginally higher
antibody levels, especially with indoor, incandescent, and lobby lighting for samples 1–3
and with indoor and shade lighting for sample 6. Samsung, on the other hand, showed
lower antibody levels under indoor and incandescent lighting for samples 1 and 4, re-
spectively. Despite the slight differences between the phones, it is noteworthy that all
phones produced similar antibody levels for the different samples tested. The approximate
antibody levels for samples 1–6 were 58%, 60%, 85%, 110%, 120%, and 90%, respectively,
and were the same for all light conditions.
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Figure 4. The effects of using different cameras from three different smartphone manufacturers,
namely Samsung (represented by stripes), iPhone (represented by no fill pattern), and Xiaomi
(represented by a dotted grid), when taking pictures under different lighting conditions. The data
show the variations of the calculated antibody values depending on the smartphone brand and
lighting conditions.

The above results suggest that there may be some differences in the performance of
different types of cell phones in detecting antibody level with the SCAISY. The difference
in results may be due to differences in the camera and image processing capabilities of
the various phone models. The sensitivity of the camera to different lighting conditions
may also have played a role. It should be noted that our system is designed for POCT
where rapid results are important and may not require the same level of accuracy as
laboratory-based assays. Furthermore, these potential sources of error can be mitigated
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by incorporating this information into the AI system and using machine learning to train
the AI to recognize and account for these factors, and will be one of the focuses of our
future study.

It is worth noting that SCAISY has the potential to be a versatile tool for quantifying
several types of LFA kits beyond the scope of this study. By generating a calibration curve
via regression analysis using the T/C ratio, SCAISY can estimate the analyte concentration
in a sample by analyzing an LFA kit image. Further studies are needed to explore the
effectiveness of this approach with different LFA kit types and analytes. Nevertheless, our
results are promising evidence for the usefulness of SCAISY as a general approach for
quantification of LFA kits and open new possibilities for the application of this technology
in clinical and research settings.

3.4. Comparative Analysis of SCAISY and ELISA for Quantification of SARS-CoV-2
Antibody Levels

The correlations between the OD450 determined by ELISA and the antibody levels
determined by SCAISY were tested by calculating Pearson and Spearman correlation
coefficients. These results were visualized by a scatter plot for which linear regressions
and their slopes and intercepts were calculated (see Figure 5). The x-axis represents the
optical density for ELISA and the y-axis antibody level obtained using SCAISY. ELISA and
SCAISY showed a good correlation. Statistical analysis found a correlation between the
corresponding values obtained from these tests with r2 = 0.314 and p value = 0.012. The
results of the comparative analysis indicate a moderate positive correlation between OD450
levels determined by ELISA and antibody levels calculated by SCAISY. The Spearman
correlation coefficient (RS) yielded a value of 0.59, whereas the Pearson correlation coeffi-
cient (RP) yielded a value of 0.56. Statistical significance of both correlations was found
with p values of 0.012 and 0.008, respectively. In addition, it was observed that certain
blood samples showed positive IgG lines on the LFA kit and elevated antibody levels using
SCAISY, although low OD450 values were registered by ELISA (Figure S6). The observed
incongruence may be attributed to the different capacity of the LFA kit and ELISA assay
used in this study. Specifically, the LFA kit can identify antibodies directed against both
nucleocapsid protein (NP) and spike protein, whereas the ELISA assay exclusively detects
antibodies specific to NP. To compensate for this inconsistency, correlation analysis was
performed after excluding samples that showed positive IgG lines despite low OD450
values. The Spearman correlation coefficient increased to approximately 0.83, indicating an
increased positive correlation (Figure S7A). The Pearson correlation coefficient increased
to approximately 0.81, indicating a positive linear correlation. The results of the adjusted
linear regression analysis yielded an improved R-squared value of 0.652, indicating that
approximately 65.2% of the variability in antibody levels as determined by SCAISY can be
explained by the OD450 values obtained by ELISA after sample removal.

In addition, the correlation between the results was obtained from photographs taken
with different cell phone models, namely the iPhone XS and Samsung Galaxy S23 Ultra. The
results showed a significant Pearson correlation coefficient of 0.977 and an R-squared value
of 0.954, indicating a robust positive linear relationship (Figure S7B). The high correlation
observed between the results obtained from images taken by different phone models
(iPhone and Galaxy) further emphasizes the consistency and reproducibility of SCAISY.

The results highlight the correlation and agreement between SCAISY and ELISA,
considering the different protein targets and the influence of specific samples. The high level
of correlation observed between images acquired with different phone models provides
confidence in the reliability and consistency of the results. It is essential to conduct further
studies and verify these results with a larger population. In addition, exploring alternative
variables that may contribute to the observed differences will be an important focus of our
future research.
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3.5. Capabilities of SCAISY

The primary objective of this study was to perform quantitative measurements of
IgG and IgM antibodies, with a focus on developing a rapid, efficient, and cost-effective
system for semi-quantitative detection of IgG antibodies. After training SCAISY, we used
it to determine the antibody status of more than 240 individuals. Figure 6 shows the
SARS-CoV-2 antibody retention rate (IgG/C) over time for various users based on vaccine
type and sequence. Our data show that the specific antibody retention rate (IgG/C) for the
third dose of Pfizer was 61%, which was 19% lower than that for the third dose of Moderna
(80%). In addition, individuals who received a second dose of Pfizer or Moderna (average
273 and 155 elapsed days, respectively) had lower antibody retention rates than individuals
who received a third vaccination (average 100–107 elapsed days).
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For individuals who received a third dose of Pfizer vaccine, we grouped the data by
30-day intervals, starting at 0 to 210 days. Figure S8 shows a comparison of antibody levels
in different groups of individuals after receiving the third dose of Pfizer, grouped by 30-day
intervals. Our data show that relative protection against infection decreased from 81.8%
one month after vaccination to 63% three months after the third dose of Pfizer BNT162b2
mRNA COVID-19 vaccine [51]. We observed a gradual decline in antibody levels nearly six
months post-vaccination, suggesting that vaccine efficacy declines over time and showing
similar trends to previous studies [51].

We want to clarify that our goal is not to draw conclusions about the efficacy of a par-
ticular vaccine, but to demonstrate that our method can be used to quantify antibody levels
and track them over time. Controlled, randomized trials are needed to reach definitive
conclusions about vaccine efficacy and immunity status. By using our method to track
an individual’s antibody levels, particularly in the post-COVID-19 era, individuals with
low antibody levels may be prioritized for vaccination. This could reduce pressure on the
supply chain and ensure an even distribution of vaccinations. In addition, this technology
could enable a wider range of individuals to participate in vaccination trials and studies by
allowing them to submit their data from the comfort of their own home.

3.6. Monitoring the Antibodies against SARS-CoV-2

In this study, we also analyzed the changes in antibody retention rate of confirmed
COVID-19 cases using SCAISY. As shown in Figure 7, the IgG/C antibody retention rate
increased significantly after the COVID-19 confirmation date (day zero) and decreased
gradually over time. These results suggest that the immune response to COVID-19 may
vary depending on the duration of infection. Interestingly, we observed that antibody
levels decreased more slowly in individuals who received the second or third dose of
the vaccine, suggesting that vaccination may contribute to the maintenance of long-term
immunity against COVID-19. Our results are consistent with previous studies that found a
similar decline in antibody response to SARS-CoV-2 over time after infection [52]. However,
the potential impact of vaccination on the duration and strength of the immune response
to COVID-19 is the subject of ongoing investigation [53,54]. Our study provides further
evidence that vaccination may contribute to the maintenance of long-term immunity
against COVID-19.

In addition, individuals who received only the first dose of the vaccine had lower
peak antibody levels after infection than those who received the second or third dose.
The highest antibody level was observed within 15–60 days after infection and gradually
decreased after 60 days [53]. These results are consistent with previous studies, including
those of Swartz et al., who found that the expected antibody response after COVID-19
infection persisted for more than 500 days after natural infection [54,55]. COVID-19 deaths
have been strongly correlated with age. People aged ≥80 years have a 20-fold higher risk
of death than people aged <50 years [56]. Furthermore, we found no significant differences
in antibody levels between age groups, suggesting that antibody production does not
contribute to age-related mortality. However, we acknowledge that underlying health
conditions, genetics, and lifestyle factors may also be important for antibody production
and function and should be considered when interpreting study results.

In addition, our study used LFA kits to measure antibody levels, which cannot distin-
guish between the effects of immunization and the effects of COVID-19 infection. Nonethe-
less, our focus was on measuring IgG and IgM levels in COVID-19 patients rather than
distinguishing between these two effects. We are aware of this limitation and suggest
that future studies address this issue. Interestingly, our results are consistent with those
of [57], who used an expensive instrument to measure antibody levels in a bead-based
multiplex assay (MILLIPLEX® SARS-CoV-2 Antigen Panel 1 IgG; Merck KGaA, Darmstadt,
Germany). However, it is important to note that our study was based on a small sample
size and further investigation is required to confirm or refute our results.
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4. Conclusions

In summary, we have shown a feasibility study for the development of SCAISY, a
novel POC method for quantification of SARS-CoV-2 IgG antibodies from LFA using a
smartphone camera. Our study provides a basis for quantifying and tracking antibody
levels over time, comparing levels between individuals, and monitoring immune responses
to SARS-CoV-2 exposure or vaccination. We found that images acquired between 45◦

and 90◦ provided accurate results with a small standard deviation and that all illumina-
tion conditions provided essentially identical results within the standard deviation. In
addition, the iPhone camera results should be interpreted with caution, as they yielded
higher antibody levels compared to Android phones. Therefore, we recommend that only
Android phones be used to estimate antibody levels at this time. Spearman and Pearson
correlation coefficients demonstrate a statistically significant correlation between OD450
values determined by ELISA and antibody levels determined by SCAISY. Although this
is a proof-of-concept study, we emphasize that randomized controlled clinical trials are
needed to ensure accurate quantification of antibody levels for calibration before routine
use. Larger sample sizes and more comprehensive assessments of diagnostic accuracy are
needed to further validate and optimize the performance of SCAISY. Once the system is
calibrated with absolute counts of antibodies, dedicated antibody counting equipment
will no longer be needed. SCAISY offers several advantages over traditional methods for
detecting antibodies, such as ELISA. Firstly, the system is simple and easy to use, requiring
only a smartphone and an LFA kit. Secondly, the SCAISY system provides quantitative data
on antibody production rates, allowing accurate tracking of changes in immune responses
over time. Finally, the SCAISY system can be deployed in resource-limited environments,
making it a valuable tool for public health and real-time health monitoring. Therefore,
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SCAISY has tremendous potential for use in clinical and community health settings in
developing countries, as well as for direct-to-consumer market. In conclusion, SCAISY is
a promising tool for rapid and accurate serodiagnosis of COVID-19 and has the potential
to facilitate early detection of infection, guide vaccination interventions, and monitor the
effectiveness of interventions.
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