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Abstract: Non-enzymatic sensors with the capability of long-term stability and low cost are promising
in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent
binding mechanism for glucose recognition, which enables continuous glucose monitoring and
responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design
has been explored and has become a hot research topic for real-time glucose sensing in recent decades.
This paper reviews the glucose recognition mechanism of boronic acids and discusses different
glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The
tunable pKa, electron-withdrawing properties, and modifiable group of phenylboronic acids were
explored to develop various sensing strategies, including optical, electrochemical, and other methods.
However, compared to the numerous monoboronic acid molecules and methods developed for
glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited.
The challenges and opportunities are also highlighted for the future of glucose sensing strategies,
which need to consider practicability, advanced medical equipment fitment, patient compliance, as
well as better selectivity and tolerance to interferences.

Keywords: diboronic acid; glucose sensors; recognition mechanism

1. Introduction

Diabetes is a chronic disease with an inadequate ability to regulate blood glucose levels.
Long-term hyperglycemia can cause severe damage to organs, such as the heart, blood
vessels, eyes, kidneys, and nerves, leading to a higher risk of premature death [1–5]. While
there is no cure for diabetes, blood glucose level management can significantly reduce the
health risks [6]. Affordable home glucose monitoring, particularly with stable real-time
glucose level tracking ability, is an effective way to guide the management and improve
the life quality of diabetics [7]. Currently, most commercial glucose monitoring sensors
are enzyme-based devices, such as glucose oxidase and glucose dehydrogenase, relying
on electrochemical analytical measurements. Despite the good selectivity and sensitivity
toward glucose, enzyme-based strategies have some drawbacks, especially for continuous
glucose monitoring, such as inflated cost, thermal and chemical instability, and strict
storage conditions [8,9]. Enzyme-based sensors require complex enzyme fixation processes
to maintain enzyme activity, and the commercialized manufacture of enzyme-based devices
requires sterilization of the entire production line [10]. In contrast, non-enzymatic sensors
without biological units are advantaged in terms of structural simplicity, quality control
for mass production, and better stability under different storage and usage conditions.
Therefore, there is a strong demand for the development of non-enzymatic sensors with
long-term stability and low cost.

Until now, several non-enzymatic strategies have been developed, such as catalytic
nanomaterials-based non-enzymatic electrochemical sensors, metabolic heat conformation
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methods, and near-infrared or terahertz optical sensing methods [11–13]. Nanomaterials-
based electrochemical sensors have been extensively studied, but most of the sensors
have to work in harsh conditions (e.g., alkali solution). Other strategies are promising
alternatives but are challenged by selectivity and accuracy [14]. Aromatic boronic acid
(BA)-derivatives-based glucose sensing is another alternative, relying on their dynamic
covalent binding with diol moieties of saccharides. The dynamic binding property offers
the possibility to develop continuous glucose monitoring devices using various sensing
methods. However, the lack of selectivity to glucose in BA-based glucose sensing was the
biggest obstacle to practical application.

The binding affinity between boronic acid and saccharide is strongly dependent on the
orientation and arrangement of hydroxyl groups in saccharide, enabling the differentiation
of various monosaccharides. Glucose contains two binding sites with boronic acid, cis-1,2-
dihydroxyl and cis-3,5,6-trihydroxyl groups. Therefore, the establishment of diboronic acid
derivatives with two recognition sites can achieve selective recognition of glucose, and
the design of suitable diboronic acid (DBA) structures has become a hot research topic in
past decades.

Though the development of boronic acid-based glucose monitoring has been fre-
quently summarized, most of them cover all boronic acid sensors, and quite a few reviews
have focused on DBA-based sensing strategies, which are more practical [15–18]. Herein,
in this review, we emphasize the fundamental mechanisms involved in boronic acid-based
glucose sensing strategies, especially focusing on DBA-based glucose sensors reported in
the past 10 years (Figure 1).
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2. Mechanism of Selective Glucose Recognition via Diboronic-Acid-Based Sensors

The reversible and covalent reaction between boronic acids and saccharides with cis-
1,2- or 1,3-diol moieties has been studied in detail. In 1959, Lorand and Edwards quantified
the interaction between phenylboronic acids and diols based on the change of pH in a
solution, and the pH-dependent thermodynamic cycle of the reversible reaction is shown in
Figure 2a [19,20]. In an aqueous solution, phenylboronic acid can react with water, showing
an equilibrium process (Ka) between the planar triangular structure of boronic acid and the
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tetrahedral boronate anion structure. Generally, the binding strength of the boronate anion
(Ktet) to the diol is larger than that of boronic acid (Ktrig), resulting in a decrease in boronic
acid pKa values by 2–3 units.
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Figure 2. (a) Binding equilibria of phenylboronic acid with a diol [20]; (b) Equilibrium between the
dominant form (pyranose, left) and the form that contains a syn-periplanar anomeric hydroxyl pair
(furanose, right) of D-fructose, D-glucose, and D-galactose [21].

Saccharides may exist in two structural configurations, open chain and cyclic. For
monosaccharides, cyclic structures contain furanose (five-membered) or pyranose (six-
membered). Boronic acids tend to bind the furanose form, and a high proportion of furanose
conformation contributes to a higher binding constant. As shown in Figure 2b, fructose
and galactose contain ~25% and 2.5% furanose form, respectively, while glucofuranose is
only ~0.14% [21]. Therefore, boronic acid traditionally shows a relatively low affinity to
glucose, and other saccharides severely disturb the precision of monoboronic-acid-based
glucose sensing [22].

Shinkai et al. developed the first glucose-selective fluorescent diboronic acid sensor
1 in 1994 and proposed a 1:1 binding mechanism between the two boronic acid moieties
and two potential binding sites of glucopyranose (Figure 3) [23]. The binding constant of
sensor 1 to glucose, measured in 33.3% methanol/H2O at pH 7.77, was 3981 M−1, which
was much higher than that of fructose (316 M−1) and galactose (158 M−1). Subsequently,
Norrid and Eggert re-examined this work and re-confirmed the conformation of com-
plex 1a under anhydrous conditions. Furthermore, in the presence of water, complex 1a
rearranges into the thermodynamically more stable complex 1b, where diboronic acid
interacts with α-D-glucofuranose by binding to the cis-dihydroxyl groups at position 1,2
or cis-trihydroxyl groups at positions 3,5,6 (Figure 3) [24]. The glucose-selective diboronic
acids share a similar structural arrangement in that the two boronic acid moieties match
both the distance between the two potential binding sites of glucose and the orientation of
the hydroxyl groups.

Based on this property, researchers have designed different structures of diboronic
acids to improve the selectivity for glucose, enabling their application in glucose detec-
tion. In addition, the pseudo-diboronic acid moieties designed by the assembly of two
monoboronic acid molecules at precise positions are also able to recognize the two 1,2-diol
moieties of D-glucose, such as the supramolecular inclusion complex of γ-cyclodextrin
(γ-CD) with two molecules of monoboronic-acid-based receptors [25–27]. However, we
will not cover pseudo-diboronic acids in this review as we focus on sensors that possess two
boronic acid moieties in one single molecule.
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3. Design Principles of Diboronic-Acid-Based Optical Glucose Sensors

In previous decades, optical sensors have gained significant attention due to their high
sensitivity. In biosensing, a variety of sensing mechanisms have been applied in diboronic-
acid-based sensors, including intramolecular charge transfer (ICT), photoinduced electron
transfer (PET), fluorescence resonance energy transfer (FRET), excimer/exciplex, and
surface-enhanced Raman spectroscopy (SERS).

3.1. Intramolecular Charge Transfer (ICT) Sensors

Intramolecular charge transfer (ICT) sensors are a class of fluorescent molecules that
possess a push–pull electron system, typically comprising an electron-accepting group (A)
and an electron-donating group (D). The change of electron distribution in the D-A system
can lead to the shift of fluorescence emission spectra along with the variation in emission
intensity (Figure 4) [28]. Fluorophores with boronic acid groups were found to respond to
molecules with diol groups.
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Figure 4. Schematic diagram of intramolecular charge transfer. The recognition of cis-diols with
phenylboronic acid-conjugated ICT fluorophores may result in a blue-shift (a) or red-shift (b) of
fluorescence emission depending on the structure of different molecular structures.

To explore the fluorescence response mechanism of boronic acid-based sensors, DiCe-
sare and Lakowicz examined a series of stilbene-4-boronic acid derivatives by introducing
electron-accepting or electron-donating groups at the 4′ position [29,30]. In the case of sen-
sor 2 with the 4′-dimethylamino as the donor group, when boron is sp2 hybridized and acts
as an acceptor, excited-state ICT can occur between the amino donor and boron acceptor,
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redshifting the emission wavelength of sp2 species. While boron is sp3 re-hybridized, its
acceptor abilities are lost. This results in a change in the ICT effect and shifts the emission
wavelength of the fluorophore toward higher energies. For the sp2 to sp3 interconver-
sion, a blue shift of 45 nm is induced in the emission wavelength, accompanied by an
increase in emission intensity (Figure 5a). By increasing the pH of the solution of sensor
2 (from 6.0 to 12.0) or adding saccharides to the buffer solution at pH 8.0 to generate sp3

species, the fluorescence response was exactly the same. For comparison, they designed
4′-cyanostilbene-4-boronic acid (3), with the strong electron-withdrawing cyano group as
the electron acceptor. When boron is sp3 re-hybridized, the boron is no longer an acceptor
group, allowing the changes of ICT and red-shifted emission (Figure 5b). By examination
of two diametrically opposed systems, they verified the change in the electronic properties
of the sensor after the binding to saccharides occurs via the ICT effect [31].
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Figure 5. (a) The emission wavelength of sensor 2 blueshifts due to the interruption of the ICT state
when saccharide is added (or an increase in pH); (b) The emission wavelength of sensor 3 redshifts
due to the interruption of the ICT state when saccharide is added (or an increase in pH). (Colors
are used to describe the red and blue shift in the emission wavelengths, not the actual color of the
emitted light.)

Although ICT is an important mechanism in mono-boronic acid-based optical sensors,
it has not been reported in the molecular design of diboronic-acid-based glucose sensors.
This is probably because the introduction of optical moieties to boronic acid results in
complicated synthesis and poor water solubility.

3.2. Photoinduced Electron Transfer (PET) Sensors

The most widely reported optical glucose sensors are designed based on the PET effect, which
typically involves a fluorophore connected to the amine group of (2-(aminomethyl)phenyl)boronic
acid with a methylene spacer [32]. When the fluorophore is excited, an electron from
the highest occupied molecular orbital (HOMO) is promoted to the lowest unoccupied
molecular orbital (LUMO), followed by electron transfer from the HOMO of the donor (free
amine) to the HOMO of the fluorophore (Figure 6). This process results in fluorescence
quenching (OFF). However, when the sensor binds to a saccharide molecule, the amine
group interacts strongly with the boron atom, which increases the redox potential of the
donor and lowers the energy of the associated HOMO. As a result, the PET process is
hindered, and the fluorescence is recovered (ON). Therefore, this system functions as a
molecular switch turned on by the analytes.
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Intra-Molecular PET Sensors

In 1994, Shinkai reported the first PET-based fluorescent glucose sensor (sensor 4,
structure shown in Figure 7), which consisted of a benzylamine with a boronic acid group
attached at the adjacent position and a fluorescent group, anthracene [33]. As shown in
Figure 8, the B-N interaction between the amino nitrogen atom and the boronic acid group
is very weak in the absence of the substance, and the lone electron pair on the nitrogen
can quench the fluorescence of anthracene by a PET process, so the sensor is in the “off”
state. However, the complexation with saccharide increases the acidity of the boronic
acid group on sensor 4, and a stronger Lewis interaction between the boron atom and
the lone pair of the amine can occur. The B-N interaction triggers the recovery of the
inherent fluorescence of anthracene and then is in the “on” state [34–36]. However, Sun and
coworkers determined that the vibrational-coupled excited-state relaxation instead of B-N
interaction plays an important role in the modulation of the fluorophore’s fluorescence [37].
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Sensor 1 with two boronic acids was designed with a higher selectivity toward glucose
than fructose by Shinkai [23]. The sensor contains two boronic acid receptors, and the spa-
tial spacing of the diboronic acid groups provides an effective binding pocket for glucose.
The binding constant of sensor 1 to glucose in a water/methanol buffer at pH = 7.8 was
3980 M−1, which is 12-fold greater than that of fructose (316 M−1) and 25-fold greater than
that of galactose (158 M−1). James and Shinkai et al. decorated 15-crown-5 rings to sensor 1
and obtained sensor 5, which exhibits unique “glucose cleft” and “metal sandwich” prop-
erties [38]. When Na+, K+, Sr2+, and Ba2+ are present, two 15-crown-5 rings form a metal
sandwich, making sensor 5 impossible to form the 1:1 diboronic acid-glucose complex due
to the increased spacing between the two boronic acids. This work indicated that the spatial
disposition of the two boronic acid moieties is crucial for preferential binding to glucose.
Since then, diboronic acid sensors with an anthracene ring based on the PET mechanism
have been extensively studied. Lots of researchers have optimized the molecular structure
of sensor 1. Wang and coworkers designed a series of fluorescent sensors in 2017, desig-
nated as 6a–e [39]. Linkers with different lengths, molecule rigidity, and boronic acid spatial
orientations were introduced to optimize the arrangements of the two boronic acid units,
which has improved selectivity for mono-/oligosaccharides. The fluorescence intensity of
6a–e increased significantly with the addition of various monosaccharides/bisaccharides.
Compounds 6d and 6e showed strong binding affinities but poor selectivity to glucose
and fructose (6d: Kglu = 1418 M−1, Kfru = 1666 M−1; 6e: Kglu = 1990 M−1, Kfru = 1896 M−1).
Furthermore, the Eversense, which uses sensor 1 as a fluorescent probe for continuous
glucose monitoring, is the only FDA-approved and successfully commercialized diboronic-
acid-based glucose sensor that provides 180 days of continuous glucose monitoring in
humans. This continuous glucose monitoring system measures glucose in the interstitial
fluid every 5 min and requires daily fingertip blood collection calibration [40–43].

Although the introduction of the diboronic acid structure greatly enhances the se-
lectivity for glucose, the sensors are mostly poorly water-soluble, which limits practical
applications in aqueous media and at physiological pH. To solve the issue, Eggert and
his colleagues synthesized sensor 7 based on sensor 1 by replacing the benzene ring with
a positively charged pyridinium group [44]. The cationic pyridinium salt in the sensor
provides a pKa of only 4.0, which benefits the binding of the sensor to glucose in neutral
aqueous solutions. Binding studies in aqueous solutions at physiological pH showed that
the sensor binds to glucose (1:1) in the form of α-D-glucofuranose at positions cis-1, 2
and cis-3, 5. As shown in Figure 9d, sensor 8 exhibits a selective fluorescence response to
glucose compared to fructose and galactose (binding constant of 2512 M−1 with D-glucose).
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Figure 9. (a) Fluorescence excitation and emission spectra of CN-DBA (10 µM in 0.5% MeOH/PBS,
pH = 7.4) before and after adding glucose (0.1 M) (λex = 375 nm, λem = 427 nm); (b) Fluorescence
changes (F/F0) of P-DBA and CN-DBA in 1.56 mM saccharides; (c) Illustration of the fluorescence
responses of CN-DBA against 0.1 M glucose under different pH values. Reprinted with permission
from [45]. Copyright © 2021 American Chemical Society; (d) Relative fluorescence of sensor 7 (10−5 M,
0.05 M aqueous phosphate buffer, pH 7.4) as a function of carbohydrate concentration [44]. Reprinted
with permission from [44]. Copyright © 1999 American Chemical Society.

To further improve water solubility, Wang and coworkers modified the parent structure
of sensor 1 (P-DBA) by introducing electron-withdrawing groups (F, Cl, and CN) and
electron-donating groups (MeO) at the para-position of phenylboronic acid and obtained
a series of diboronic-acid-based sensors 8a–d [45]. The cyano-substituted compound 8e
(CN-DBA) exhibited the highest glucose binding constant (6489.5 M−1, 33% MeOH/PBS)
and is highly soluble in an aqueous solution containing 0.5% MeOH with a lower pKa value
(4.894) than its parent molecule P-DBA (5.667). CN-DBA can accurately detect glucose in
the pH range of 6.0–9.0 and has an ultra-sensitive recognition of glucose (LOD = 1.51 µM).
CN-DBA can be used as an accurate and sensitive fluorescent probe for glucose detection
in biological samples, as demonstrated by its ability to detect glucose in cell lysates and
plasma with good recovery and precision (Figure 9a–c).



Biosensors 2023, 13, 618 9 of 22

In a recent study, T.D. James et al. designed and synthesized two diboronic acid glucose
probes Mc-CDBA(9a) and Ca-CDBA(9b) by introducing water-solubilizing group cyano (-
CN) at the phenylboronic acid counterpart of the sensor 1 and methoxycarbonyl (-COOCH3)
and carboxyl (-COOH) at the β-position of the anthracene ring to improve the biocompati-
bility (Figure 10). These two probes were successfully applied to multidimensional imaging
of both cells and zebrafish, providing a technical tool for clinical medical studies of glucose
homeostasis in vivo and for the study and diagnosis of metabolic diseases [46].
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Published by American Chemical Society; (b) the emission spectra of sensor 10b with glucose (in PBS
buffer/10% MeOH, pH = 7.40, λex = 350 nm). Reprinted with permission from [47]. Copyright ©
2023 American Chemical Society.

In addition, A.D. González et al. designed pyridine-2,6-dicarboxamide-quinoline
salts 10a–c containing two phenylboronic acid groups for optical recognition with good
water solubility and photostability. Among them, the 10b showed the highest affinity and
selectivity for glucose (Ka = 3800 M−1) and good selectivity toward glucose over other
monosaccharides. UV-vis and fluorescence titration experiments, HRMS measurements,
X-ray crystal structure, and DFT calculations indicate that glucose binds to 10b in a 1:1
mode via its furanose form co-bound with diboronic acid (Figure 10b). The affinity of
glucose for receptor 10b is higher than all reported cationic diboronic-acid-based related
receptors in aqueous media. The pKa values of receptor 10b for boronic acid range from 7.7
to 7.1, dropping to ~6.2 in glucose complexation, allowing for recognition at physiological
pH [47].3.2.2. Inter-Molecular PET Sensors

Different from intramolecular PET sensors, the boronic acid-based inter-molecular PET
sensors consist of two components, a dye and a dye-quencher. The boronic acid molecule
acts as a quencher and an acceptor for the saccharides, and the fluorescence of the dye
is modulated by electron transfer from the dye to the quencher/acceptor. Singaram et al.
developed an intermolecular PET sensing system using the anionic dye 8-hydroxypyrene-
1,3,6-trisulfonic acid trisodium salt (HPTS) and cationic diboronic acid derivatives (11) and
reported the identification of monosaccharides and disaccharides with a six-channel, two-
component sensor array consisting of 11a–f and HPTS [48,49]. In 2015, Xing and colleagues
reported a series of cationic N,N-di-2-picolylamine-derived diboronic acid molecules 12a–c
to distinguish six monosaccharides and five disaccharides with anionic HPTS as the fluores-
cent indicator [50]. Compared with the known diboronic acid receptors based on viologen
and phenanthrolinium salt, these molecules have remarkably higher spatial flexibility and
a significantly larger pocket for sugar analytes. As shown in Figure 11, a well-separated
two-dimensional linear discriminant analysis (LDA) plot demonstrated that the sensor
array based on 12a–c can achieve efficient discrimination of various monosaccharides.
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tem based on diboronic acid 12a–c and HPTS; (b) Fluorescence response of sorbitol and different
monosaccharides based on HPTS/12a–c ensembles at pH 7.4 using a fluorescence plate reader;
(c) Two-dimensional canonical score plot of seven analytes (1 mM) analyzed by LDA. Reprinted with
permission from [50]. Copyright © 2015 Wiley Online Library.

3.3. Fluorescence Resonance Energy Transfer (FRET) Sensors

FRET is a non-radiative energy transfer process via a long-range dipole-dipole in-
teraction between donor and acceptor. The process occurs when the vibrational energy
difference between the ground state and the first excited state of the donor matches that
of the acceptor or when the emission spectrum of the donor overlaps with the excitation
spectrum of the acceptor [51]. The FRET mechanism provides an alternative approach
to designing fluorescent sensors, but it has more stringent requirements in terms of the
fluorescence relationship between the donor and acceptor and the spatial positioning of the
boronic acid groups.

The representative diboronic acid fluorescent sensor (13) using the FRET mechanism
was developed by James et al. in 2002 [52]. Sensor 13 contains two phenylboronic acid
groups, a hexamethylene linker, and two different fluorophore groups (phenanthrene and
pyrene). The emission spectrum of phenanthrene (donor, λem = 369 nm) is well-overlapped
with the excitation spectrum of pyrene (acceptor, λex = 342 nm), which offers the basis of
FRET from phenanthrene to pyrene in sensor 13. Moreover, the intra-molecular π-π stacking
between phenanthrene and pyrene in sensor 13 also contributes a long wavelength exciplex
emission at 460 nm (Figure 12). Upon binding with glucose, the exciplex emission decreased,
and the emission from pyrene was significantly enhanced under 299 nm excitation. This
result indicates the break of the intramolecular π-π stacking and efficient FRET from
phenanthrene to pyrene. The fluorescence enhancement of sensor 13 by D-glucose is
3.9 times, while the enhancement is 1.9 times by D-fructose. These results indicate that
the energy transfer from phenanthrene (donor) to pyrene (acceptor) in a rigid 1:1 cyclic
D-glucose complex is more efficient than in a flexible 2:1 acyclic D-fructose complex.
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3.4. Excimer/Exciplex Sensors

An excimer/exciplex is a homodimeric or heterodimeric complex of two fluorophores
that interact through π-π interaction, with one in the excited state and the other in the
ground state. These complexes usually emit a red-shifted broad peak compared to the
individual monomers. The substrate recognition of excimer/exciplex-based sensors relies
on the changes of π-π interactions upon receptor binding, which can cause either an increase
or a decrease in fluorescence intensity [53].

In 2016, Xing et al. reported the synthesis of two water-soluble excimer-based sensors
14a–b that differ only in their flexible aliphatic linkers between the fluorophore pyrene and
the diboronic acid moiety [54]. Both 14a and 14b can form pyrene excimers in the presence
of monosaccharides. Monomers 14a and 14b had fluorescence emissions at 381 nm, while
distinct excimer emissions at 528 and 510 nm, respectively (Figure 13). The two sensors
showed different responses to monosaccharides. They also built a four-channel assay using
linear discriminant analysis (LDA) to distinguish six monosaccharides within a certain
concentration range by monitoring monomer and excimer emissions. This assay accurately
detected glucose in artificial urine and blood containing common interferents, proving the
effectiveness of the system under physiological conditions.
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Copyright © 2016 American Chemical Society.
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3.5. Surface-Enhanced Raman Spectroscopy Sensors

Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has been
widely used since the 1980s for its high sensitivity and selectivity to low concentrations of
analytes. The SERS enhances the Rama signal by generating a strong electric field when
molecules are adsorbed to metallic surfaces with nanometric features [55]. However, the
electric field decays rapidly from the substrate surface, resulting in a strong distance depen-
dence. Therefore, the molecule to be detected must be within 2 nm of the nanostructured
substrate surface to be efficiently detected [56].

In 2016, Sharma and coworkers developed SERS sensors 15a–e, a diboronic acid-
modified gold film-over-nanosphere (AuFON) substrates for direct detection of glucose [57].
A panel of diboronic acid analogues with variable length linkers was synthesized and ex-
hibited higher glucose binding affinities than 4-amino-3-fluorophenylboronic acid (Table 1).
Surprisingly, they selected the n,n = 1,1-diboronic acid (15a) for SERS studies (for 15a,
Kglu/Kfru = 0.10). In the presence of fructose and glucose, the SERS spectra of the diboronic
acid immobilized AuFON exhibited distinct line shapes, enabling the differentiation of
various monosaccharides. Additionally, by incorporating principal component analysis
(PCA) with the SERS data, the above-mentioned SERS sensor can distinguish well be-
tween hypoglycemia, hyperglycemia, and normal glucose levels (Figure 14). Therefore, the
SERS-based strategy is promising for the further development of in vivo glucose sensors.

Table 1. 15a–e and monoboronic acid selectivity for glucose and fructose.

Sensors Structures Kglu (M−1) Kfru (M−1) Kglu/Kfru
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(>8 mM) can be distinguished by the HCA; (b) SERS difference spectrum of a 5 mM glucose and
5 mM fructose mixture (purple), the normal Raman spectra of a saturated glucose solution (red) and
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fructose. Reprinted with permission from [57]. Copyright © 2016 American Chemical Society.

3.6. Vibration-Induced Emission (VIE)-Based Sensors

Vibration-induced emission (VIE) is a new mechanism proposed by Tian and cowork-
ers when studying the dynamic luminescence properties of dihydrophenoxazine molecules.
For the saddle-shaped dihydrophenoxazine molecule, when excited by light, the aromatic
rings on both sides of the N-N axis will gradually evolve to quasi-planar structures along



Biosensors 2023, 13, 618 13 of 22

the axis, thus exhibiting a Stokes shift of up to 250 nm; at the same time, through precise
chemical modification or external environmental modulation, the dihydrophenoxazine
conjugated molecular backbone can achieve conformation-dependent multi-color lumines-
cence [58,59]. Therefore, the VIE strategy has been applied in different analytical assays; for
example, Sessler and Stang have developed receptors for the discrimination of carboxylic
acids in organic solvents [60].

In 2021, Ramos-Soriano et al. reported a fluorescent diboronic-acid-based chemical sen-
sor 16 that displays typical VIE properties. This system can distinguish monosaccharides in
a mixed solvent of methanol/water (80/20), causing significant changes in fluorescence that
can be distinguished by the naked eye. In the case of glucose, the recognition process leads
to the most dramatic changes in color and fluorescence intensity, even in the presence of
other monosaccharides, with an LOD of 9.4 µM for D-glucose (Figure 15). However, sensor
16 is insoluble in water and is less selective for D-glucose than other monosaccharides
with two 1,2-diol fractions (e.g., D-galactose) [61]. This proof-of-concept study is the first
example of dihydrophenoxazine-based differentiation of saccharides in aqueous media,
opening new directions for the development of optical sensors for the detection of glucose
using different detection principles.
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4. Design Principles of Diboronic-Acid-Based Electrochemical Glucose Sensors

Electrochemical sensors use chemically modified electrodes as working electrodes
and detect electrical signals proportional to the concentration of the substance to be mea-
sured. There are four categories of electrochemical sensors according to their output signals:
potentiometric, conductometric, voltammetric, and amperometric glucose sensors. Am-
perometric glucose sensors are the most widely studied. They use the magnitude of the
oxidation current generated by the direct catalytic oxidation of glucose on the electrode
surface to determine the concentration of glucose [62,63]. Potentiometric glucose sensors
detect glucose through potential changes caused by the glucose binding with recogni-
tion molecules. The reaction with glucose results in concentration differences between
electrolytes on both sides of the ion-selective membrane [64]. Conductometric glucose
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sensors detect glucose levels by monitoring the conductivity change of the solution due to
glucose reaction.

As most diboronic acids are not electrochemically active and lack redox signals within
the effective potential range, it is necessary to add redox-active groups (such as ferrocene),
which can be in the solution or modified on diboronic acid derivatives. Arimori and
coworkers prepared a ferrocene-modified diboronic-acid-based glucose sensor 17 (structure
shown in Figure 16). Differential pulse voltammograms (DPV) of 17 were recorded in the
presence of different concentrations of glucose. The interaction of the boronic acid and
neighboring amine is strengthened on saccharide binding, thereby reducing the electron
density on the neighboring amine (Figure 17a). This, in turn, destabilizes the ferrocenium
ion at higher concentrations of saccharides, resulting in a more anodic ferrocene oxidation
overpotential (Figure 17b). Sensor 17 showed a 40-fold binding capacity compared to the
ferrocene-modified monoboronic acid analogue to D-glucose [65].

OH OH 

(Y8' 0H Ho- 8Y) 
~ ~ 

~ N N._____,Q 

V ~ -8, 

17 

'''/f {:,s\ycF, 
NH2 0 NH, 

20 21 22 

Figure 16. The chemical structures of electrochemical sensors 17–22.

Recently, F. Wang et al. designed a PtAu/CNTs nanoenzyme modified by diboronic
acid molecules (SDBA, sensor 18) through reversible complexation between SDBA molecules
and cis-diols [66]. After SDBA modification, some of the active sites of PtAu/CNTs na-
noenzymes were occupied, which reduced the catalytic activity. However, the special
attraction of SDBA to glucose greatly improved the selectivity of the SDBA-PtAu/CNTs
glucose sensing channel and reduced the interference of other substances, thus improving
the reliability of the detection. A new multi-calibration glucose potentiometric (MCGP)
sensing array, including a glucose electrode set, pH electrode set, and reference electrode
channel, was designed for multiple calibrations of the basic potential due to sample matrix
change (Figure 17c) and the response slope due to sample pH change (Figure 17d), thus
improving the reliability of the assay. Additionally, the effect of temperature on slope has
been calibrated in real time using an external temperature probe (Figure 17e). The MCGP
sensing array has been further applied to the detection of glucose in human urine, and the
satisfactory accuracy and reproducibility indicate that the MCGP sensing array can directly
detect glucose and pH in urine without pretreatment.
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Another approach is to modify electrodes with phenylboronic acids, and the changes
in electrode surface potential to glucose are used for detection [67]. For instance, James
et al. synthesized a diboronic acid derivative 19 with an electrode surface-anchored unit
(1,2-dithiolane) [68]. As shown in Figure 18a–c, the diboronic acid molecules were self-
assembled on the surface of a gold electrode. The anodic current of cyclic voltammetry (CV)
and the charge-transfer resistance (Rct) of electrochemical impedance spectroscopy (EIS)
was linearly related to the concentration of monosaccharides in the range of 0–10 mM in PBS
and was used to evaluate the binding capability of the sensor to glucose, fructose, galactose,
and mannose. The sensor exhibited good selectivity to glucose (1.7 ± 0.3 × 105 M−1) over
other monosaccharides (D-galactose 9.1 ± 1.2 × 104 M−1, D-fructose 4.6 ± 0.5 × 104 M−1

and D-mannose 1.2± 0.1× 102 M−1). At the same time, their partner paper uses the surface
plasmon resonance (SPR) detection regime to probe the saccharide binding (Figure 18d–f)
and is shown to detect D-glucose with high selectivity, showing higher affinity than the
other sugars detected (i.e., D-galactose, D-fructose, and D-mannose) [69].
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Figure 17. (a) Schematic diagram of the ferrocene-boronic acid bound to saccharide; (b) The DPV
of 17 with different concentrations of D-glucose (50 µM in 52.1 wt.% methanol, pH 8.21). Reprinted
with permission from [65]. Copyright © 2002 Royal Society of Chemistry; (c) Schematic illustration
of MCGP sensing array based on SDBA-PtAu/CNTs nanozyme; (d,e) Response performances of
glucose electrode group to glucose at different pH (d) and temperature (e). Reprinted with permission
from [66]. Copyright © 2022 Elsevier B.V.
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Figure 18. (a) Representation of gold surface functionalization by 19 and saccharide binding;
(b,c) The detection of saccharides by CV (b) and EIS (c) (in PBS containing 5 mM Fe(CN)6

3−/4−

(1:1) with 0.1 M KNO3, pH = 8.0). Reprinted with permission from [68]. Copyright © 2013 Royal
Society of Chemistry; (d) Schematic diagram of SPR detection glucose; (e) SPR kinetic measure-
ments detection of different saccharides concentrations (D-glucose, D-galactose, D-fructose, and
D-mannose); (f) The calibration curve of SPR response change for diboronic acid sensor with different
saccharides (glucose (red), fructose (blue), galactose (black), and mannose (green)). Reprinted with
permission from [69]. Copyright © 2013 Royal Society of Chemistry.

Bazan et al. designed a cationic sensor 20 to determine glucose concentration at
physiological pH by monitoring solution conductivity changes [70]. Upon binding to
glucose, the pKa of sensor 20 decreased from 9.4 to 6.3, leading to deprotonation of boronic
acid at physiological pH (7.4) and conductivity decrease in the solution by turning high
conducive HPO4

2− to low conductive H2PO4
− (Figure 19a–c). They also tested the stability

of the sensor to detect physiological (5 mM) and pathophysiological (20 mM) concentrations
of glucose in the presence of interfering compounds such as fructose, galactose, lactose,
and maltose and showed neglectable interference.

Joong-Hyun Kim et al. synthesized a trifluoromethyl-substituted diboronic-acid acetyl
anthracene 21a. The addition of an electron-withdrawing trifluoromethyl group at the
para-position of phenylboronic acid (21b) increased the resistance to oxidation by reactive
oxygen species (ROS), and the introduction of acetyl group in anthracene resulted in a larger
Stokes shift up to 90 nm compared to the commercially used analogue. The introduced
acetyl group did not affect the resistance to ROS, and the association constant for glucose
(Kglu = 730 ± 18 M−1) is at least 3.6-fold higher than those of the interfering saccharides
(Kmannitol = 213 ± 4.5 M−1; Kfructose = 164 ± 3.1 M−1; Kgalactose = 55 ± 6.1 M−1) [71].
Subsequently, they synthesized diboronic acid derivative 22 for surface immobilization on a
screen-printed gold electrode (SPGE) and performed the CV and EIS for detecting glucose in
the range of 0–500 mg/dL by using the redox pair of 1:1 Fe(CN)6

3−/4− (Figure 19d–e). The
CV and EIS results showed that the linear detection range of glucose was 40 to 500 mg/dL
with limits of detection of 31.2 mg/dL and 21.5 mg/dL, respectively. In addition, they
designed a glucose detection method without adding redox pairs to the sample by attaching
an asymmetric membrane to the electrode, where the redox pairs are preloaded and dried.
Since the membrane is attached to the electrode surface, allowing sample droplets to
penetrate the electrode, the attached membrane can cover the electrode surface with a
smaller volume of sample. The asymmetric membrane achieved 90% recovery of the
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electrochemical signal without adding redox pairs to the test sample and reduced the
sample volume by a factor of 2.5. Since the sample volume is determined by the electrode
size, the volume required to detect glucose can be easily reduced by fabricating an electrode
of similar size to the commercially available glucose sensor, which is the key to the sensor
prepared for clinical applications [72].
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at high frequency; (b) Solution resistance (R) of 1 mL of test solution changes with continuous
addition of 0.5 M or 2 M glucose concentration (2 mM in 2.5 mM Na3PO4, pH = 7.6); (c) Addition
of galactose had a negligible effect on solution resistance. The addition of fructose caused a 3%
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OnlineLibrary; (d) Schematic diagram of diboronic-acid-immobilized electrodes; (e) Nyquist plots
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Fe(CN)6

3−/4−, 0.1 M KCl, and glucose in the range of 0–500 mg/dL to the diboronic-acid-modified
electrode. Reprinted with permission from [72]. Copyright © 2023 MDPI.

5. Diboronic-Acid-Based NMR Sensors

Nuclear magnetic resonance (NMR) spectroscopy is an atomic-level technique that
provides information on molecular structure and spatial interactions [73]. The 19F atom
is characterized by a high spin quantum number, high sensitivity, extensive chemical
shift, and negligible human background signals; therefore, accurate and interference-
free glucose testing in complicated biological samples can be realized using 19F-NMR.
Although glucose sensors based on optics and electrochemistry can also achieve continuous
blood glucose detection, they can only be used in vitro or above the dermis layer of the
skin. Fluorinated sensors, however, hold the potential for whole-body glucose monitoring
in vivo, relying on the low abundance of the element F and advantages of the magnetic
resonance molecular imaging technique, such as noninvasiveness, quantitative results, and
good imaging depth [74].

In 2017, Schiller et al. designed a water-soluble sensor 23 and realized glucose detection
in synthetic urine samples merely using a low-resolution (188 MHz) NMR spectrometer
with a detection limit of 1 mM [75]. However, this system only distinguishes between
D-fructose and D-glucose in a binary mixture, but real human urine is a more complex
system containing multiple sugars compared to synthetic urine samples. To improve the
sensitivity to glucose, Shi et al. designed a fluorinated diboronic acid sensor 24 in 2021.
This sensor showed a specific 19F NMR signal at δ19F −114.93 ppm when bound to glucose,
which is different from that of other saccharides [76]. Sensor 24 has shown high sensitivity
and strong interference resistance for the detection of glucose, even in mixtures containing
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up to 10 different saccharides, and in real human urine samples without any prior treatment
(Figure 20). The detection limit of this sensor for glucose in human urine samples was
found to be 0.41 mM. Since the glucose concentration in the urine of a healthy person is in
the range of 0~0.8 mM, 19F NMR-based glucose sensor 24 had the potential for the direct
diagnosis of diabetes.
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pH 7.4); (b) 19F NMR intensity at δ19F −114.93 ppm after 10 kinds of different saccharides (10 mM
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for 2 h, respectively. Reprinted with permission from [76]. Copyright © 2021 American Chemical
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Reprinted with permission from [77]. Copyright © 2018 American Chemical Society.

In addition, T.D. James et al. also reported a chiral proline-based diboronic acid by
conjugating two phenylboronic acid groups at the N and C termini via amide bonds and
introducing fluorine atoms on the benzene rings (sensor 25) for chiral recognition of D-
/L-glucose [77]. As shown in the 19F NMR spectra of sensor 25 after the addition of an
excessive amount of D-/L-monosaccharides (Figure 20c), a well-resolved 19F NMR pattern
appeared only in the presence of L-glucose resulting from the limited conformational
flexibility of sensor 25.

6. Conclusions and Perspective

Here, we provide a brief overview of the glucose recognition mechanism of boronic
acids and discuss various glucose detection methods based on diboronic-acid sensors
developed over the past decade, including optical, electrochemical, and nuclear magnetic
approaches. The reversible and covalent binding between boronic acids and diols forms
the basis for detecting saccharides, particularly glucose, at millimolar or sub-millimolar
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levels. By utilizing the specific two binding sites of glucose to boronic acid, selective
glucose monitoring can be achieved using molecules containing two boronic acid groups
that match both the distance and orientation of glucose’s two binding sites. However,
most current diboronic acid sensors are developed through trial-and-error synthesis and
screening, resulting in uneven selectivity to glucose. Despite successful cases of continuous
glucose monitoring using diboronic-acid-based sensors such as Eversense being approved
by the FDA, practical application in human environments remains challenging due to poor
water solubility and interference from structural analogues in biological samples. Therefore,
designing diboronic acid molecules with good water solubility and high glucose selectivity
remains a daunting challenge for researchers.

The tunable pKa, electron-withdrawing properties, and modifiable group of phenyl-
boronic acids have been widely used to develop various sensing strategies, including
optical, electrochemical, pH-based, and other methods. Compared to the numerous
monoboronic acid molecules and methods developed for glucose monitoring, the diversity
of diboronic acid molecules and applied sensing strategies remains limited. Leveraging
the progress made with MBA-based sensors could accelerate the development of more
effective DBA sensors, as most BA and DBA sensors share similar design principles. Given
the rapid development of commercial electrochemical enzyme-based glucose detection de-
vices, combining diboronic acid with electrochemistry is a promising research direction for
glucose sensors. Additionally, the development of new sensing methods, such as nuclear
magnetic resonance sensing, is crucial in light of advancements in medical equipment. This
may enable non-invasive whole-body glucose monitoring using fluorinated DBA [73–75].

Moreover, most diboronic-acid-based sensors have been investigated in non-physiological
or in vitro simulated environments, with very few successfully detecting glucose in complex
samples such as urine or blood. Due to the complexity of the physiological environment in
the human body and the presence of interfering factors, glucose detection in actual samples
or in vivo is necessary.
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