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Abstract: Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However,
DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX
concentrations in biofluids and tissues is important. Most methods for the determination of DOX
concentrations are complex and costly, and are designed to determine pure DOX. The purpose of
this work is to demonstrate the capabilities of analytical nanosensors based on the quenching of the
fluorescence of alloyed CdZnSeS/ZnS quantum dots (QDs) for operative DOX detection. To maximize
the nanosensor quenching efficiency, the spectral features of QDs and DOX were carefully studied,
and the complex nature of QD fluorescence quenching in the presence of DOX was shown. Using
optimized conditions, turn-off fluorescence nanosensors for direct DOX determination in undiluted
human plasma were developed. A DOX concentration of 0.5 µM in plasma was reflected in a decrease
in the fluorescence intensity of QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, for
5.8 and 4.4%, respectively. The calculated Limit of Detection values were 0.08 and 0.03 µg/mL using
QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, respectively.

Keywords: quantum dots; doxorubicin; nanosensor; fluorescence quenching; Stern–Volmer constants;
anthracycline antibiotics; human plasma

1. Introduction

Doxorubicin (DOX) is an effective chemotherapeutic agent from the group of anthra-
cycline antibiotics (Figure 1), and has high activity against many types of cancer. It is one of
the commonly used agents in the treatment of different cancers types, including pediatric
cancer, leukemia, breast cancer, etc. [1]. However, the use of DOX has significant disadvan-
tages because it affects both cancer and healthy cells. DOX is highly cardiotoxic, cytotoxic
and neurotoxic. It causes cell death through multiple intracellular targets: DNA-adduct
formation, topoisomerase II enzyme inhibition, reactive oxygen species generation, histone
eviction, Ca2+ and iron hemostasis regulation and ceramide overproduction [2]. There are
several mechanisms of DOX-induced cardiotoxicity, among which oxidative stress, free
radical generation and apoptosis are the most widely reported [1]. The side effects are
often observed when the concentration of DOX exceeds a certain level in blood, so the
therapeutic range of DOX concentration in blood is narrow. For this reason, the continuous
monitoring of DOX concentrations in body fluids is important [3].
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Figure 1. Doxorubicin structure. 

Number methods are known for quantitative DOX determination in body fluids 
and tissues. One way is to measure the DOX concentration by registering its own 
absorption in the visible spectral range. In this case, a thorough purification of the 
sample or extraction is necessary. Such sample preparation takes up to one hour and 
allows for DOX determination with a Limit of Detection (LOD) of ∼1.2 µg/mL DOX in 
plasma [3]. Spectrophotometric detectors are also used in tandem with high 
performance liquid chromatography and provide low DOX LOD values of 5–5000 
ng/mL in rat serum and tissues. Here, performing a sample extraction using a methanol-
chloroform mixture is also necessary. The method is able to determine the DOX 
concentration in both blood and tissues [4,5], as well as in gall and lymph [6]. The optical 
properties of DOX also allow its concentration to be determined on the basis of its 
emission. Thus, the DOX passage across the blood–brain barrier in the form of a low-
density lipoprotein receptor-targeted liposomal drug was studied by Pinzón-Daza et al. 
DOX concentrations can be determined based on its fluorescence, at excitation and 
emission wavelengths of 475 and 553 nm, respectively [7]. DOX concentrations as low as 
18 ng/mL in rabbit plasma were detected by capillary electrophoresis with in-column 
double optical-fiber LED-induced fluorescence detection using rhodamine B as an 
internal standard. Before analysis, rabbit serum samples were subsequently diluted 
twice with acetonitrile to precipitate the proteins. For electrophoretic separation, a 
borate buffer (15 mM, pH 9.0) containing 50% acetonitrile (v/v) was used [8]. 
Electrochemical methods are traditionally used for operative high-throughput detection. 
Differential pulse cathodic stripping voltammetry on a polished silver solid amalgam 
electrode in a specially designed micro-volume voltametric cell was used for the DOX 
determination with a LOD of 0.44 µM. The applicability of this method was verified 
through an analysis of spiked tap water samples and human urine [9]. The same authors 
developed differential pulse voltammetry on a polarized liquid/liquid interface 
impregnated with a ionic liquid polyvinylidenfluoride microporous filter with a DOX 
LOD of 0.84 µM. Due to the affection of some body fluids interfering compounds, this 
method must be preceded by a separation step. The ability of DOX to bind with DNA 
was used in a voltammetric DNA sensor using a glassy carbon electrode covered with 
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Number methods are known for quantitative DOX determination in body fluids and
tissues. One way is to measure the DOX concentration by registering its own absorption in
the visible spectral range. In this case, a thorough purification of the sample or extraction is
necessary. Such sample preparation takes up to one hour and allows for DOX determination
with a Limit of Detection (LOD) of ~1.2 µg/mL DOX in plasma [3]. Spectrophotometric
detectors are also used in tandem with high performance liquid chromatography and
provide low DOX LOD values of 5–5000 ng/mL in rat serum and tissues. Here, performing
a sample extraction using a methanol-chloroform mixture is also necessary. The method is
able to determine the DOX concentration in both blood and tissues [4,5], as well as in gall
and lymph [6]. The optical properties of DOX also allow its concentration to be determined
on the basis of its emission. Thus, the DOX passage across the blood–brain barrier in
the form of a low-density lipoprotein receptor-targeted liposomal drug was studied by
Pinzón-Daza et al. DOX concentrations can be determined based on its fluorescence, at
excitation and emission wavelengths of 475 and 553 nm, respectively [7]. DOX concentra-
tions as low as 18 ng/mL in rabbit plasma were detected by capillary electrophoresis with
in-column double optical-fiber LED-induced fluorescence detection using rhodamine B
as an internal standard. Before analysis, rabbit serum samples were subsequently diluted
twice with acetonitrile to precipitate the proteins. For electrophoretic separation, a borate
buffer (15 mM, pH 9.0) containing 50% acetonitrile (v/v) was used [8]. Electrochemical
methods are traditionally used for operative high-throughput detection. Differential pulse
cathodic stripping voltammetry on a polished silver solid amalgam electrode in a spe-
cially designed micro-volume voltametric cell was used for the DOX determination with
a LOD of 0.44 µM. The applicability of this method was verified through an analysis of
spiked tap water samples and human urine [9]. The same authors developed differential
pulse voltammetry on a polarized liquid/liquid interface impregnated with a ionic liquid
polyvinylidenfluoride microporous filter with a DOX LOD of 0.84 µM. Due to the affection
of some body fluids interfering compounds, this method must be preceded by a separation
step. The ability of DOX to bind with DNA was used in a voltammetric DNA sensor using
a glassy carbon electrode covered with electropolymerized Azure B film and physically
adsorbed native DNA. In optimal conditions, the DNA sensor provided a DOX LOD of
0.07 nM for commercial DOX formulations and on artificial samples mimicking the elec-
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trolyte content of human serum [10]. The modification of the glassy carbon electrode with
a vertically-ordered mesoporous silica-nanochannel film with electrochemically reduced
graphene oxide by a one-step electrochemically assisted self-assembly method allowed us
to reach a DOX LOD of 0.77 nM in human whole blood [11]. The application of rolling
circle amplification allowed us to develop an ultrasensitive electrochemical DNA sensor
with DOX@tetrahedron-Au as the electrochemical indicator, and reach a DOX LOD of
0.29 fM [12]. The application of surface enhanced raman spectroscopy for DOX detection
using silica nanoparticles covered with 10 nm think gold film allowed us to archive a LOD
of 20 nM in undiluted serum [13]. These methods for determining DOX concentrations are
complex and costly and/or need exhaustive sample preparation.

DOX has a fairly intense native fluorescence in the range of 540–660 nm (quantum
yield, QY is 4.39%) [14]. However, the optical properties of DOX (absorption and emission)
are sensitive to the form of DOX molecules in the solution, which in turn, depends on
plenty of factors, including DOX concentration, ionic strength, pH, additives and so on [15].
DOX, like other anthracyclines, has the propensity to form dimers and associates; DOX
fluorescence dramatically drops upon dimerization (QY~10−5) [16]. This makes trouble for
direct fluorescence-based DOX detection. There is a demand for the development of simple
nanosensors that enable the fast determination of analytes in solutions based on changes
in the properties of nanoparticles as they interact with analytes [17,18]. One example of
such a system is localized surface plasmon resonance technology (LSPR). This LSPR-based
biosensing system utilizes the sensitivity of the plasmonic frequency to changes in the local
index of refraction at the nanoparticle surface. Optimizing the nanoparticle material and
geometry alters the plasmonic properties towards sensitivity improvement [19,20].

An important property of DOX is the effective quenching of the emission of a large
number of luminophores, which allows for the use of quenching-based methods for DOX
detection. Different luminophores were used as emission turn-off probes, such as fluo-
rescent polyethyleneimine-functionalized carbon dots [21] and other carbon nanostruc-
tures [22,23], gold nanoclusters [24], and phosphorescent Mn-doped ZnS quantum dots
(QDs) [25], fluorescent Mn-doped ZnSe D-dots [26] and CdSe/ZnS QDs [27]. The DOX
quenching of nanoparticles fluorescence can be so efficacious that the DOX quenching of
QDs emission has been used for the detection of DNA [26] and analysis of telomerase
activity [27]. While characterizing the DOX—luminophore interaction, the authors mostly
focus on the quenching in model solutions, demonstrating perspectives for its application
in biofluids.

In this work, we use fluorescent alloyed semiconductor QDs, which are of particular
interest because they are photostable, homogeneous in size and properties and can form
a stable aqueous colloid. In addition, the possibility to select surface ligands to achieve
optimal interactions and improve the sensitivity of turn-off nanosensors is important and
useful [28,29]. The analytical application of the quenching of QD fluorescence is based
on changes in the emission intensity during the interaction between the nanosensors and
modulating molecules (quenchers). The quenching of QD probe fluorescence is the simplest
analytical method for DOX detection compared to other known protocols. Compared with
the carbon-based nanostructures mentioned above, semiconductor QDs have excellent
uniformity, high synthesis reproducibility, photo- and chemical stability, as well as well-
studied synthetic routs and emission mechanism. As QDs, we used alloyed CdZnSeS/ZnS
core/shell nanocrystals, covered with 3-mercaptopropionic acid (MPA) and thioglycolic
acid (TGA) (Figure S1 in Supplementary Material). Compared to traditional core/shell
QDs, alloyed QDs are characterized by a simple synthesis route and smaller size, while
maintaining narrow emission peaks and high emission QY, and the possibility to use
various surface ligands. The comparison of two QD samples with the same architecture
of a semiconductor core, but stabilized with different surface ligands, makes it possible to
determine the effect of the ligand on the sensitivity of QDs to emission quenching.
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2. Materials and Methods
2.1. Materials

Cadmium (II) acetate (99.995%), zinc acetate (99.99%), zinc stearate (technical grade),
elemental selenium (powder), elemental sulfur (powder), trioctylphosphine (90%), 1-
octadecene (90%), oleic acid (90%), MPA and TGA were purchased from Merck. All
other chemicals and solvents were of analytical grade and used without additional pu-
rification. In this work, we used Sindroxocin (50 mg, Actavis, Iceland), an antitumor
antibiotic whose active ingredient is doxorubicin hydrochloride (50 mg). It also contains
the following excipients: methyl parahydroxybenzoate (5 mg) and lactose monohydrate
(263.15 mg). Before analysis, 3 mg (corresponding to 0.5 mg of DOX) of the lyophilizate
was dissolved in 1 mL of Milli-Q water. From the resulting solution (500 µg/mL), solutions
with concentrations of 50, 5 and 1 µg/mL were obtained.

2.2. QD Synthesis and Hydrophilization

The alloyed QD synthesis was adapted from [30]. For hydrophilization, 25 µmol of
TGA or MPA were added to 50 µL of QDs aliquot in 1 mL of toluene. The following steps
were performed according to [30].

2.3. QD Characterization and Spectral Measurements

Absorption spectra were obtained with a Shimadzu UV-1800 spectrophotometer (Shi-
madzu, Kyoto, Japan). Emission spectra were recorded with a Cary Eclipse fluorescence
spectrometer (Agilent Technologies, Santa Clara, CA, USA) and multimode microplate
reader Synergy H1 (BioTek Instruments, Charlotte, NC, USA). The ζ-potential of the QDs
samples were determined via dynamic light scattering measurements using a Zetasizer
Ultra instrument (Malvern Instruments, Malvern, UK). A Libra 120 transmission electron
microscope (TEM) (Carl Zeiss, Jena, Germany) was used to take photomicrographs and
determine the size of QDs.

2.4. Quantum Yield Calculation

The relative QY of QD emission was calculated as described in [31], relative to fluores-
cent dye Coumarin 153 (ethanol solution, peak optical density 0.1, QY 53%). The excitation
and emission wavelengths of the QY measurement were 360 and 514 nm, respectively.

Φx = Φst
Ix

Ist

Ast

Ax

n2
x

n2
st

Φx—relative QY of the QDs sample;
Φst—the relative QY of the reference (coumarin-153);
Ix—is the integral fluorescence intensity of the QDs sample;
Ist—integral intensity of the reference (coumarin-153);
Ax—optical density of the QDs sample;
Ast—optical density of the reference (coumarin-153);
nx—the refractive index of the sample (water);
nst—the refractive index of the reference solvent (ethyl alcohol).

2.5. Optical Measurements

In order to avoid the internal filter effect and maintain the same QD concentration
in the samples, all QD samples were brought to the same optical density equal to 0.1 at
excitation wavelength (λex = 360 nm). All experiments were performed in three repetitions
to evaluate the accuracy of the measurements.

2.6. Analysis Performance in Plasma Samples

Syndroxocin solution in Milli-Q (1000 mg/mL) water was used to determine the DOX
concentration in plasma. It was added to plasma to obtain DOX concentrations in the range
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of 0.5, 1, 5, 10, 50, 100 and 500 µg/mL. Plasma was incubated for 30 min at 37 ◦C. The
test was performed in a 96-well plate, and 50 µL of QDs colloid with an optical density of
0.1 was added to each well. Subsequently, 50 µL of spiked plasma was added to the QDs
colloid and measured immediately. To evaluate the stability of the quenching magnitude,
the incubation of DOX with plasma samples for 24 h was also performed.

3. Results and Discussion
3.1. Optical Properties of QDs

The nanosensor for DOX detection is based on QD fluorescence quenching. The most
probable quenching mechanisms are the Förster resonance energy transfer (FRET) and
photoinduced electron transfer (PIET). Therefore, to enhance quenching, it was necessary
to obtain QDs with a fluorescence peak overlapping with the absorption band of DOX
(Figure S2) [32,33].

CdZnSeS/ZnS QDs (λem = 540 nm) (Figure 2) were synthesized and transferred into
water by the ligand exchange process according to the procedure described by Drozd
et al. [30]. TEM images show a size of about 10 nm (Figure S3). As hydrophilizing agents,
two mercaptoacids with a different carbon chain length—TGA (two carbon atoms) and MPA
(three carbon atoms)—were used (Figure S1). After TGA coverage, the zeta potential of QD
is—76 mV, and for MPA it was—46 mV. The emission QY for QD@TGA and QD@MPA was
calculated as 0.55 and 0.60, respectively.
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Figure 2. Absorbance and fluorescence (λex = 360 nm) spectra of QDs stabilized with 3-
mercaptopropionic acid (QD@MPA) and thioglycolic acid (QD@TGA).

It is important to note that in most cases, studies were performed with pure DOX
hydrochloride, while chemotherapy often uses DOX formulations with excipients, which
can affect the efficacy and accuracy of assays. In this work, we used the pharmaceutical
formulation Syndroxocin, which contains Doxorubicin hydrochloride (50 mg), methyl p-
hydroxybenzoate (1 mg) and lactose monohydrate (50 mg). To control the possible effect of
lactose on QDs emission, we added lactose (5 mg/mL) to the QD solutions and compared
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the optical properties. The results show that no changes in the QD fluorescence intensity
and spectra shape were observed, so we can conclude that lactose has no effect on QDs
fluorescence (Figure S4).

3.2. Optical Properties of DOX

DOX has a characteristic wide absorption peak at 450–550 nm (λmax = 480 nm) and
fluorescence spectra with three distinct peaks at 560, 594 and 638 nm. DOX molecules in
solutions can be presented in different forms, which are reflected in their spectral properties.

As can be seen from the 3D fluorescence spectra (Figure 3), there is no shift in the DOX
emission maxima when excited with the light of different wavelengths and when the DOX
concentration is changed. At the same time, there are notable changes in the ratio of peaks
when the DOX concentration increases. These effects are related to the dimerization of
DOX as well as the inner filter effect. Thus, DOX undergoes dimerization with increasing
concentration. An increase in the absorption intensity at 415–540 nm indicates the formation
of aggregates [16].
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3.3. Influence of QDs on the DOX Fluorescence

Various possible mechanisms of the interaction between QDs in the excited state and
DOX molecules have been suggested, including FRET and PIET. Since the emission spectra
of QDs and the absorption spectra of DOX overlap (Figure S2), we assume that FRET is
the main reason for QD emission quenching. Because both QDs and DOX are emissive,
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the mutual influence of QDs and DOX molecules on each other’s fluorescence should
be checked.

To examine the possible effect of QDs on DOX, fluorescence spectra were recorded
for a series of DOX and QD-DOX solutions with an increasing concentration of DOX and
a fixed concentration of QDs (Figure 4). It was shown that the fluorescence intensity of
DOX concentrations < 50 µM is lower than the fluorescence intensity of QDs at a peak
near 540 nm. This suggests that at DOX concentrations around or above 50 µM, the
contribution of DOX to the total fluorescence intensity of QD-DOX solutions will be very
significant. A DOX concentration < 18 µM practically does not contribute to the total
QD-DOX fluorescence.

At the same time, when QDs are added to the DOX solution, the fluorescence spec-
tra of DOX are almost unchanged. However, at high concentrations (>50 µM), a slight
quenching of the fluorescence in the presence of the QDs occurs, which may be due to the
inner filter effect. This effect is clearly seen from the comparison of the intensities of the
fluorescence of the DOX, QD@MPA + DOX and QD@TGA + DOX solutions at increasing
DOX concentrations (Figure 4c). The shape of the DOX spectrum has not visibly changed,
indicating that there are no changes in the molecule.

3.4. QDs Fluorescence Quenching by DOX

Since the DOX concentration used for chemotherapy is large (244 mg per square
meter) [34], we studied a wide range of DOX concentrations. To determine the magnitude
of QDs fluorescence quenching with DOX, 0–920 µM (0 to 500 µg/mL) DOX concentrations
(Table S1) at fixed QDs concentration were used. The comparison was made for QDs coated
with TGA and MPA to find the more sensitive QDs (Figure S1). Since quenching is based on
the adsorption of DOX on the QD surface, the modifying surface layer can play a key role.
The obtained dependences of QDs emission intensity from DOX concentrations are pre-
sented in Figure 5a,b. It is possible to see two different ranges; at low DOX concentrations
(<50 µM), there is the quenching of QDs emission, and at the range > 100 µM of DOX, an
approximately stable emission intensity is observed due to the increasing contribution of
DOX fluorescence. For the evaluation of the quenching of QDs fluorescence, Stern–Volmer
plots were built and Stern–Volmer constants were evaluated (Formula (1)).

I0

I
= 1 + kSV [DOX] (1)

I0 and I—fluorescence intensity in the absence and presence of DOX, [DOX]—concentration
of the DOX [mol/L], kSV—Stern–Volmer constant [L/mol]. The deviation of the Stern–Volmer
plot from liner dependency suggests that several processes accompany quenching and that the
nature of quenching may combine both static and dynamic interactions (Figure 5b) [35].

The plots are linear for a DOX concentration of 0–50 µM, which corresponds to the
range in which there is no significant DOX fluorescence effect on the total emission of
QD-DOX solutions. The value of the Stern–Volmer constants was calculated at 0.074 M−1

for QD@TGA and 0.039 M−1 for QD@MPA. The quenching for QD@TGA in the presence of
DOX is about two times more effective than that for QD@MPA. Two reasons, both related to
the surface ligand size, can cause such a difference. The smaller size of the TGA molecules
provides a better interaction of the quenching agent on the QD surface with the emissive
semiconductor core. On the other hand, the smaller size of the TGA molecule makes the
hydrophilic ligand layer on the QD surface more dynamic, opening up more opportunities
for DOX interactions with the QD surface.
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3.5. Determination of DOX in Human Blood Plasma

DOX is usually determined in patients’ blood, plasma or urine. The intrinsic feature
of DOX as an anthracycline antibiotic is its ability to bind with DNA and other compounds.
The determination of DOX concentration can be inaccurate due to its elimination from
the sample with biomaterials. Therefore, for DOX determination, it is important to use
biofluid samples that are as unaltered as possible. To determine the feasibility of analysis
in biological fluids, the matrix effect of plasma on QDs fluorescence was tested. For this
purpose, 50 µL of plasma was added to 50 µL of the QDs colloid in the well of a microtiter
plate. As a result, a slight change in the fluorescence intensity can be seen due to the inner
filter effect of the serum components and the change in the pH in comparison with the
previous experiment, which was performed in Milli-Q water (Figure 6) [36].

Freshly prepared Syndroxocin solutions were used for the spiking plasma experi-
ments. Incubation at body temperature and stirring were carried out in order to uniformly
distribute DOX over the plasma components and obtain an equilibrium of possible interac-
tions. The Corning Costar 96-well plate was chosen as the plate with the least adsorbing
effect for bio-objects. The 96-well plate also allows you to build a calibration curve and use
the test for multiple samples at once. The fluorescence spectra show that the concentration
of DOX in the plasma affects the QDs fluorescence. Moreover, the fluorescence intensity of
TGA-stabilized QDs decreases more than that of MPA-stabilized QDs as well as DOX in
water solutions (Figure 7). Consequently, TGA-stabilized QDs are more sensitive to DOX in
plasma, but their dependence on concentration is not sufficiently uniform throughout the
DOX concentration range. Nevertheless, QD@MPA shows a more uniform dependence of
fluorescence quenching on DOX concentration, which may be due to the increased stability
of QD@MPA relative to QD@TGA over a wide range of pH [37].



Biosensors 2023, 13, 596 10 of 14

Biosensors 2023, 13, x FOR PEER REVIEW 10 of 15 
 

related to the surface ligand size, can cause such a difference. The smaller size of the 
TGA molecules provides a better interaction of the quenching agent on the QD surface 
with the emissive semiconductor core. On the other hand, the smaller size of the TGA 
molecule makes the hydrophilic ligand layer on the QD surface more dynamic, opening 
up more opportunities for DOX interactions with the QD surface. 

3.5. Determination of DOX in Human Blood Plasma 
DOX is usually determined in patients’ blood, plasma or urine. The intrinsic feature 

of DOX as an anthracycline antibiotic is its ability to bind with DNA and other 
compounds. The determination of DOX concentration can be inaccurate due to its 
elimination from the sample with biomaterials. Therefore, for DOX determination, it is 
important to use biofluid samples that are as unaltered as possible. To determine the 
feasibility of analysis in biological fluids, the matrix effect of plasma on QDs 
fluorescence was tested. For this purpose, 50 µL of plasma was added to 50 µL of the 
QDs colloid in the well of a microtiter plate. As a result, a slight change in the 
fluorescence intensity can be seen due to the inner filter effect of the serum components 
and the change in the pH in comparison with the previous experiment, which was 
performed in Milli-Q water (Figure 6) [36]. 

 
Figure 6. Fluorescence of QDs in water and plasma: TGA stabilized QDs (QD@TGA) (a) MPA 
stabilized QDs (QD@MPA) (b). 

Freshly prepared Syndroxocin solutions were used for the spiking plasma 
experiments. Incubation at body temperature and stirring were carried out in order to 
uniformly distribute DOX over the plasma components and obtain an equilibrium of 
possible interactions. The Corning Costar 96-well plate was chosen as the plate with the 
least adsorbing effect for bio-objects. The 96-well plate also allows you to build a 
calibration curve and use the test for multiple samples at once. The fluorescence spectra 
show that the concentration of DOX in the plasma affects the QDs fluorescence. 
Moreover, the fluorescence intensity of TGA-stabilized QDs decreases more than that of 
MPA-stabilized QDs as well as DOX in water solutions (Figure 7). Consequently, TGA-
stabilized QDs are more sensitive to DOX in plasma, but their dependence on 
concentration is not sufficiently uniform throughout the DOX concentration range. 
Nevertheless, QD@MPA shows a more uniform dependence of fluorescence quenching 
on DOX concentration, which may be due to the increased stability of QD@MPA relative 
to QD@TGA over a wide range of pH [37]. 

Figure 6. Fluorescence of QDs in water and plasma: TGA stabilized QDs (QD@TGA) (a) MPA
stabilized QDs (QD@MPA) (b).

Biosensors 2023, 13, x FOR PEER REVIEW 11 of 15 
 

 
Figure 7. Normalized fluorescence spectra of QDs stabilized with MPA (a) and TGA (b) in the 
presence of plasma spiked with different DOX concentrations. 

To reveal the dependence of the QDs fluorescence intensity decrease on the DOX 
concentration, we plotted the fluorescence quenching profiles and Stern–Volmer plots 
(Figure 8). The DOX concentration range was chosen taking into account DOX dosing 
recommendations. The linear range of DOX concentrations was 0–184 µM 
(corresponding to 0–100 µg/mL), with a Stern–Volmer constant of 0.011 M−1 for 
QD@TGA and 0.010 M−1 for QD@MPA, so that the fluorescence reduction values could 
be determined accurately. The better linearity of Stern–Volmer plots in plasma (R2 = 
0.977 and 0.9809 for 0–184 µM of DOX) compared to Stern–Volmer plots in aqua 
solutions (R2 = 0.9634 and 0.9765 for a more narrow DOX concentration range of 0–50 
µM) may result from the increased stability of QDs coatings with TGA and MPA in 
more alkaline media, and thus the uniform interaction of DOX with the QD surface [38]. 
A DOX concentration of 0.5 µM in plasma was reflected in a decrease in the fluorescence 
intensity of QDs, stabilized with thioglycolic and 3-mercaptopropionic acids, for 5.8 and 
4.4%, respectively. To calculate the Limit of Detection (LOD) values, two approaches 
were used. The calculated instrumental LOD value by Formula (S1) was 4.0 ng/mL for 
QDs@TGA and 1.2 ng/mL for QDs@MPA, because of the low deviation in the QDs 
emission intensity measurements. So, we used an approach based on the standard 
deviation of response in the presence of DOX (Formula (S2)), and obtained more realistic 
DOX LOD values of 0.06 µg/mL for QDs@TGA and 0.02 µg/mL for QDs@MPA. 

Since plasma has been found to affect QDs fluorescence quenching, we decided to 
try diluting the plasma by a factor of 10 when preparing the samples. The results 
showed that the dilution resulted in a significant change in QDs sensitivity due to a 
dramatic decrease in the DOX concentration. Therefore, undiluted plasma was used for 
further studies. 

Figure 7. Normalized fluorescence spectra of QDs stabilized with MPA (a) and TGA (b) in the
presence of plasma spiked with different DOX concentrations.

To reveal the dependence of the QDs fluorescence intensity decrease on the DOX
concentration, we plotted the fluorescence quenching profiles and Stern–Volmer plots
(Figure 8). The DOX concentration range was chosen taking into account DOX dosing
recommendations. The linear range of DOX concentrations was 0–184 µM (corresponding
to 0–100 µg/mL), with a Stern–Volmer constant of 0.011 M−1 for QD@TGA and 0.010 M−1

for QD@MPA, so that the fluorescence reduction values could be determined accurately.
The better linearity of Stern–Volmer plots in plasma (R2 = 0.977 and 0.9809 for 0–184 µM of
DOX) compared to Stern–Volmer plots in aqua solutions (R2 = 0.9634 and 0.9765 for a more
narrow DOX concentration range of 0–50 µM) may result from the increased stability of
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QDs coatings with TGA and MPA in more alkaline media, and thus the uniform interaction
of DOX with the QD surface [38]. A DOX concentration of 0.5 µM in plasma was reflected
in a decrease in the fluorescence intensity of QDs, stabilized with thioglycolic and 3-
mercaptopropionic acids, for 5.8 and 4.4%, respectively. To calculate the Limit of Detection
(LOD) values, two approaches were used. The calculated instrumental LOD value by
Formula (S1) was 4.0 ng/mL for QDs@TGA and 1.2 ng/mL for QDs@MPA, because of
the low deviation in the QDs emission intensity measurements. So, we used an approach
based on the standard deviation of response in the presence of DOX (Formula (S2)), and
obtained more realistic DOX LOD values of 0.06 µg/mL for QDs@TGA and 0.02 µg/mL
for QDs@MPA.
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Since plasma has been found to affect QDs fluorescence quenching, we decided to try
diluting the plasma by a factor of 10 when preparing the samples. The results showed that
the dilution resulted in a significant change in QDs sensitivity due to a dramatic decrease
in the DOX concentration. Therefore, undiluted plasma was used for further studies.

Because the half-life of DOX in the human body varies between 30 and 150 h [39],
DOX is prescribed in several cycles. Each cycle consists of several days with an injection of
DOX until therapeutic blood concentrations are achieved [40]. Thus, there is a period of
DOX accumulation until the next injection in one cycle. Therefore, in order to simulate a
round in the intrinsic cycle, we analyzed the spiked plasma with different concentrations of
DOX plasma samples after incubation for 24 h. QDs fluorescence quenching in the presence
of DOX was preserved even after this long incubation period (Figure 8), indicating the high
affinity of DOX with the QDs surface and stability of the obtained equilibrium between
the DOX and plasma components. The Stern–Volmer plot has liner dependence in the area
of 0–184 µM. The Stern–Volmer constants were 0.017 M−1 for QDs@TGA and 0.012 M−1

for QDs@MPA.
Due to the fact that after 24 h, the Stern–Volmer constant values experienced minor

changes, but the plots’ linearity was better, we assume that both static and dynamic
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interactions may have played a contribution. The LOD values for DOX detection after
24 hours incubation in plasma were calculated by Formula (S2), and it was 0.08 µg/mL for
QDs@TGA and 0.03 µg/mL for QDs@MPA.

4. Conclusions

The ability of DOX to quench the fluorescence of alloyed CdZnSeS/ZnS QDs was
used to develop turn-off fluorescence nanosensors for DOX determination in human blood
plasma. The quenching depends on the concentration of DOX in the solution. By comparing
the magnitude of quenching for two samples of QD covered with mercaptoacids (TGA and
MPA), the effect of surface hydrofilic ligands was shown:

The QDs covered with shorter carbon chain TGA are more sensitive to DOX presence
both in aqua solution and in plasma. The smaller ligand predetermines slightly less
reproducibility of QD fluorescence intensity values. With longer carbon chain MPA, the
dependence of fluorescence on the DOX concentration has smaller coefficients of variation.
The quenching system was also implemented in blood plasma. In this case, the blood
sample preparation only consists of obtaining plasma and does not need any additional
purification. It is interesting to mention our unexpected discovery that the magnitude of
QD fluorescence quenching is higher in plasma than in aqua, resulting in about a double
increase in Stern–Volmer constants, as well as additionally increasing the plasma long
incubation with DOX. The quenching of QDs fluorescence in the DOX-spiked plasma has a
linear dependence in the range of 0–200 µM.

DOX calculated LOD values for fluorescence turn-off nanosensors were 0.08 µg/mL
for QDs@TGA and 0.03 µg/mL for QDs@MPA, respectively (we used 24 h DOX incubation
with plasma before assay). The suggested format using undiluted plasma without any sam-
ple preparation and lengthy complex analysis methods opens the way for routine studies
of DOX transformation in the patient’s body and the selection of individual chemotherapy
protocols. An easy-to-use nanosensor has been developed and could become a mean-
ingful tool for medical applications, as it can be used as an indicator for chemotherapy
protocol correction.

The developed nanosensor can be used to monitor the concentration of DOX in patients
through cycles of chemotherapy in order to optimize the cytostatic dose. Potentially, the
developed nanosensor (after appropriate studies) can be used for the detection of other
anthracycline cytostatics, as they are able to bind to the surface of the nanosensor and
quench its emission. The issue of selectivity is not a limiting factor for nanosensors in
biofluids, since the chemotherapy regimen and the particular drugs are known for each
patient. The lack of selectivity for specific anthracycline antibiotics can be a problem,
for example, in the analysis of hospital wastewater. In this case, the properties of the
nanosensor must be optimized for each specific task.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13060596/s1, Figure S1: Formulas of (a) Thioglycolic acid
and (b) 3-mercaptopropionic acid; Figure S2: An overlap between the QDs fluorescence spectrum
(red) and DOX absorption spectrum (blue); Figure S3: Fluorescence spectra of QDs stabilized with 3-
mercaptopropionic acid (A) and thioglycolic acid (B) with and without lactose; Figure S4: Fluorescence
spectra of QDs stabilized with 3-mercaptopropionic acid (a) and thioglycolic acid (b) in X10 diluted
plasma, spiked with DOX; Table S1: Correspondence of DOX concentration in µg/mL and µM (DOX
Molecular Weight 543.5).
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