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Abstract: The ultimate objective of this research work is to design a sensitive and selective elec-
trochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in
blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel
Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working
electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO
NC were investigated using various techniques to ensure their suitability for the sensor. The resulting
sensor electrode was able to detect a broad range of AA concentrations (0.5–1571 µM) in neutral
phosphate buffer solution, with a high sensitivity of 0.4341 µAµM−1cm−2 and a reasonable detection
limit of 0.062 µM. The sensor’s great sensitivity and selectivity allowed it to accurately determine
the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high
levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the
measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great
potential in detecting AA from real samples.

Keywords: ascorbic acid; amperometric sensor; Yb2O3.CuO@rGO; vitamin C; human blood serum

1. Introduction

Ascorbic acid (AA) is a vital biomolecule that is present in a variety of naturally
occurring sources, including fruits and vegetables, and that functions as a nutrient and
antioxidant [1]. It is essential to numerous bodily metabolic activities including activating
the immune system, aiding in wound healing, helping with the absorption of iron, and
protecting against damage to bones and teeth [2]. Additionally, AA serves as a cofactor
during the synthesis of collagen and carnitine [3]. In addition, AA has been demonstrated to
provide protective effects against oxidative illnesses such as heart disease, several cancers,
AIDS, the common cold, etc. [4]. However, there is no AA produced by the human body
and it can only be obtained through the consumption of foods and medicines [5]. AA is a
crucial ingredient in dietary and pharmaceutical supplements [6]. Human blood serum
typically contains between 28.5 and 85.2 µM of AA, and the amount of AA in blood serum
can provide information about a person’s general state of health [7]. Scurvy and anemia
can result from an AA deficit in blood serum, while an excess of AA can lead to gastric
irritation or diarrhea [8]. Therefore, it is crucial to have precise and efficient techniques for
figuring out how much AA is present in foods, medications, and blood serum.
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Direct titration [9], chromatography [10], spectrophotometry [11], and solid-phase
spectrophotometry [12] are currently used methods for AA measurement. However, such
methods are costly and require skilled personnel as well as challenging analytical measures
for multi-sample preparation. To address these issues, researchers are working to develop
efficient and cost-effective methods for real-time and in situ AA determination. The ad-
vantages of electrochemical detection include quicker measurements, reduced sample size,
reduced costs, and an absence of pre-concentration processes, making them handy, portable,
and simple to use with miniaturized electrodes [13]. However, due to its irreversible nature
and high overpotential requirements, the electrochemical AA oxidation at a bare electrode
might have negative effects on selectivity, electrode fouling, and repeatability. Therefore, it
is indispensable to fabricate an electrode surface that enables efficient AA detection with
less overpotential. In recent years, to detect AA, researchers have proposed several sensors,
including electrodes modified with metals and metal oxides [14], alkylimidazolium salt [15],
graphene derivatives [16], carbon nanotubes [14], and polymers [17].

Due to their potential technological uses and intriguing optical and structural char-
acteristics, semiconducting doped nanostructured materials comprising transition metal
oxides have drawn a lot of attention. Due to their size, shape, and surface, these materials
have distinct physical and chemical properties that make them relevant in a variety of
study fields and applications for industry. In particular, metal oxide-based sensors have
been explored for their diverse uses in areas such as the protection of the environment,
chemical process management, personal security, healthcare, and in the military [18–20].
These sensors have several advantages, including their compact size, affordable price, lower
power consumption, straightforward processing, and good stability [21]. Previously, re-
searchers have investigated various types of metal oxides, such as CuO [22,23], MnO2 [24],
NiO [25], Fe2O3 [26], and ZnO [27], as electron mediators for sensing applications. Addi-
tionally, doped metal oxides, such as NiO.CoO nanocomposites [28], CdO.SnO2.V2O5 [29],
CuO.In2O3 [30], CuO.Nd2O5 [31], CuO.NiO [32], and CuO.ZnO [33], have been studied
as efficient sensing materials with higher sensitivity, small detection limits, wide linear
dynamic ranges, and quick response times. CuO, a p-type semiconductor, has shown partic-
ularly good performance as an electrocatalyst in sensing applications [34]. To improve the
performance of CuO, researchers have also investigated using other semiconductor metal
oxides such as In2O3 [30], Nd2O5 [31], NiO [32], TiO2 [35], and SnO2 [36] in combination
with CuO as bimetallic oxide pairs. Ytterbium oxide (Yb2O3) has also been explored for
use in sensing applications [37–39]. Yb2O3 is a lanthanide-based C-type sesquioxide that
can exhibit electrochemical redox characteristics [40]. In addition, the electrical as well as
structural and morphological properties of the CuO can be engineered through doping of
the CuO matrix with suitable dopants. Many trivalent lanthanide ions and their oxides
have been reported as excellent dopants for CuO with modified and enhanced electrical
properties. However, a detailed literature survey revealed very few reports for the synthesis
of Yb2O3-doped CuO structures. Thus, here we have synthesized the Yb2O3-doped CuO
nanostructures through the coprecipitation method. Furthermore, this Yb2O3.CuO was
combined with rGO to obtain the ternary Yb2O3.CuO@rGO nanocomposite for the AA
sensing with improved sensor parameters.

A lot of research has been carried out on the applicability of carbonaceous nano-
materials for sensing applications, including reduced graphene oxide, activated carbon,
mesoporous carbon, and carbon nanotubes. In particular, graphene, a sheet of sp2-bonded
carbon atoms, with a particular surface area, low density, outstanding electrical conductiv-
ity, and great mechanical properties, has drawn a lot of interest [41,42]. Graphene-based
3D nanomaterials have also generated huge interest due to their high surface area, lower
density, better electrical conductivity, and exceptional mechanical properties [43,44]. Com-
posite materials made of metal oxides and graphene have recently been explored for their
stability, long-term storage, and photo-catalytic capabilities [45,46]. Many graphene-based
nanomaterials have been studied in sensing applications [47–49]. However, rare earth
oxide-transition metal oxide-reduced graphene nanocomposite has hardly been studied in
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sensing applications. Hence, in this work, we developed and examined Yb2O3.CuO@rGO
nanocomposite (NC) as the active sensing material for AA detection.

Inspired by previous works available in the literature, we synthesized Yb2O3-doped
CuO nanoparticles to improve stability, sensitivity, and selectivity, and then used a simple
sonication technique to synthesize the Yb2O3.CuO@rGO NC sensing material. This study
presents a simple method for preparing an electrochemical AA sensor using Yb2O3.CuO@rGO
NC that offered improved selectivity and sensitivity. As far as we are aware, this will be
the maiden article utilizing Yb2O3.CuO@rGO NC to develop an enzyme-less AA electro-
chemical sensor.

2. Materials and Methods
2.1. Materials

All necessary chemicals, including ascorbic acid, copper (II) nitrate, ytterbium (III)
nitrate, sodium hydroxide, reduced graphene oxide, NaH2PO4, Na2HPO4, citric acid,
glucose, uric acid, dopamine, sodium chloride, and calcium nitrate, were purchased from
Sigma–Aldrich, and utilized exactly as they were given. All solutions were made using
double-distilled water. The XPS investigation of Yb2O3.CuO@rGO was performed using a
MgKα spectrometer (JEOL, JPS 9200) in the subsequent circumstances: pass energy = 50 eV
(wide-scan) and 30 eV (narrow-scan), Voltage = 10 kV, Current = 20 mA. A PANalytical
X-ray diffractometer was used to acquire X-ray diffraction (XRD) spectra with Cu Kα1/2,
λα1 = 154.060 pm, λα2 = 154.439 pm radiation. A “Raman station 400 (Perkin Elmer)”
spectrometer was used to acquire the Raman spectra. A FE-SEM (JEOL-6300F, 5 kV)
was used to analyze the morphology and structural characteristics of Yb2O3.CuO@rGO.
EDS (JEOL) was used to investigate the elemental composition of the Yb2O3.CuO@rGO.
A JEOL JEM-2100F-UHR field emission apparatus fitted with a Gatan GIF 2001 energy
filter and a 1 k-CCD camera was used to capture transmission electron microscopy (TEM)
micrographs at 200 kV. Electrochemical measurements were conducted using a Zahner
Zennium potentiostat.

2.2. Synthesis of CuO, Yb2O3, Yb2O3.CuO, and Yb2O3.CuO@rGO Nanocomposite

To synthesize the CuO, Yb2O3, Yb2O3.CuO, and Yb2O3.CuO@rGO nanocomposites,
the following process was followed: firstly, equimolar Cu(NO3)2 and Yb(NO3)3 solutions
were mixed in a beaker and stirred for half an hour at 70 ◦C. This mixture was then
combined with NaOH and stirred vigorously at 80 ◦C for 8 h. Afterwards, the ensuing dark
precipitate was cleaned with distilled water and ethanol to remove contaminants and the
resulting black precipitate was dried at 80 ◦C. This as-grown Yb2O3.CuO nanoparticle (NP)
was then calcined by heating it for six hours at 500 ◦C in a furnace. During this synthesis
process, the following chemical reactions occurred:

Cu(NO3)2 + 2NaOH→ Cu(OH)2 + 2NaCl

Yb(NO3)3 + 3NaOH→ Yb(OH)3 + 3NaCl

Cu(OH)2 + 2Yb(OH)3 → Yb2O3.CuO + 4H2O

Precursors, Yb3+ and Cu2+ ions are soluble in NaOH solution, where NaOH keeps
the pH constant during the reaction and continuously releases OH−. The development
of the Cu(OH)2 nucleus starts when the ionic product of Cu2+ and OH− exceeds the Ksp
value. Similarly, Yb(OH)3 was also produced. Cu2+ ions easily incorporate themselves into
the Yb2O3 lattice because of the similar ionic radii. On heating, hydroxides decompose to
produce respective oxides. Similarly, CuO and Yb2O3 NPs were also synthesized.
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To synthesize the Yb2O3.CuO@rGO nanocomposite, 0.5 g of Yb2O3.CuO NPs and
0.025 g of reduced graphene oxide (rGO) were mixed followed by 40 min of sonication in
80 mL distilled water. This resulting mixture was then filtered and had 12 h of drying in an
oven at 70 ◦C.

2.3. Glassy Carbon Electrode Modification Using Yb2O3.CuO@rGO Nanocomposite

Glassy carbon electrodes (GCEs) (diameter = 3 mm; BAS Inc., Sumida-Ku, Japan)
were cleaned using a 1 µm diamond past, followed by a 0.05 µm alumina slurry us-
ing the commercially available polishing pads. Next, the GCE was fabricated utilizing
Yb2O3.CuO@rGO nanocomposite using a Nafion solution. During the fabrication process,
4.0 mg of Yb2O3.CuO@rGO was uniformly mixed with 0.05 mL Nafion and 0.45 mL propan-
2-ol, and then 2 µL of this suspension was carefully applied to a pre-cleaned GCE and dried
at 60 ◦C for 20 min. Such a fabricated GCE was labeled as the Yb2O3.CuO@rGO/GCE.
Control experiments were also conducted, in which CuO/GCE, Yb2O3/GCE, rGO/GCE,
and Yb2O3.CuO/GCE were fabricated using similar procedures. The electrochemical inves-
tigations of AA (0.5–1744 µM) were carried out in a typical three-electrode electrochemical
cell at ambient conditions in 0.1 M PBS (pH 7.0), a Yb2O3.CuO@rGO/GCE, Ag/AgCl, and a
platinum spiral were served as the working, reference, and counter electrodes, respectively.

3. Results and Discussion
3.1. Characterization of Yb2O3.CuO@rGO Nanocomposite

The elemental compositions and structure of Yb2O3.CuO@rGO were examined using
XPS. It is evident from the XPS analysis shown in Figure 1a–e that Yb2O3.CuO@rGO
nanocomposite is composed of Yb, Cu, O, and C atoms only. The Yb4d5/2 spectrum has
three clearly defined peaks appearing at energies of 187.2, 188.4, and 189.1, which are
compatible with Yb4d (Figure 1b) [50]. In the deconvoluted Cu2p spectrum in Figure 1c,
there are two peaks at 937.1 and 956.8 eV that may be related to Cu2p3/2 and Cu2p1/2,
respectively [51]. In between these two peaks, there are some satellite peaks that appeared
that are also consistent with the literature [52]. Figure 1d shows two peaks from the fine-
scan O1s spectra that are associated with the Yb–O and Cu–O bonds, respectively, at 533.3
and 535.2 eV [13]. Three peaks are shown in the fine-scan C1s spectrum in Figure 1e at
energies of 284.6, 287.2, and 289.1 eV. The peaks at 284.6 and 287.2 eV may be attributed
to C–C and C–O–H bonds, respectively [53], and the remaining peak at 289.1 eV can be
correlated to COOH [54].

XRD patterns in Figure 2a showed diffraction bands at 2θ = 20.80, 29.50, 34.30, 36.50,
40.60, 44.00, 47.50, 49.20, 51.00, 54.10, 57.10, 58.50, 60.00, and 61.50, which are related to
the (211), (222), (400), (411), (332), (134), (125), (440), (443), (611), (145), (662), (136), and
(444) planes for Yb2O3 NPs (JCPDS#65-3173), respectively [50]. The diffraction bands at
35.40, 38.60, 48.60, 58.20, 61.60, 66.30, and 68.10 can be related to (002), (111), (−202), (202),
(−113), (−311), and (220) planes of CuO NPs ((JCPDS#45-0937), respectively [55]. The
Yb2O3.CuO@rGO contains the rGO peak connected to carbon that is often appearing at
2θ = 24.30 which is correlated to (002) plane [56] but is not easily visible in Figure 2a due to
low intensity. However, the presence of carbon in Yb2O3.CuO@rGO was established by
XPS, EDS, SEM, and TEM. Figure 2b shows the Raman spectra, where bands at 359.3, 718,
and 1060 cm−1 can be related to Yb2O3, while bands at 328 and 850 cm−1 were connected
to CuO [57]. The characteristic carbon bands at 1344 and 1676 cm−1 are related to the D
and G bands of rGO [58].
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Figure 2. (a) XRD patterns and (b) Raman spectra of CuO, Yb2O3, and Yb2O3.CuO@rGO NC.

FESEM was employed to analyze the morphological and surface structure of CuO,
Yb2O3, Yb2O3.CuO, and Yb2O3.CuO@rGO nanocomposite as presented in Figure 3a–d.
The Yb2O3.CuO@rGO nanocomposite was found to be made up of Yb2O3.CuO composites
that were randomly distributed over the graphene sheets. EDS was used to determine
the Yb2O3.CuO@rGO nanocomposite’s elemental composition (Figure 3e), and the results
showed that the nanocomposite is exclusively made of Yb, Cu, O, and C with their respec-
tive weight percentages as 39.37%, 17.02%, 29.27%, and 14.34%. This elemental composition
agrees with the findings of XPS and XRD. A more thorough morphology of CuO, Yb2O3,
Yb2O3.CuO, and Yb2O3.CuO@rGO nanocomposite was provided by the TEM images in
Figure 3f–i that show a collection of spherical Yb2O3 and elongated CuO NPs dispersed on
sheet-like structures of rGO. Figure 3j presents an HR-TEM image of the Yb2O3.CuO@rGO
nanocomposite and Figure 3k displays the selected area electron diffraction (SAED) pat-
terns, which unequivocally reveal that the composite is polycrystalline.
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3.2. Ascorbic Acid Sensor Development
3.2.1. Electrochemical Study of Yb2O3.CuO@rGO/GCE Assembly

We evaluated the electro-chemical activity of the modified electrodes through cyclic
voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Figure 4a illustrates
the feeble CV response from a bare GCE in the presence of 40 µM AA at +0.52 V; how-
ever, the CuO/GCE and Yb2O3.CuO/GCE showed enhanced CV outputs at +0.41 V and
0.28 V, respectively. For the Yb2O3/GCE and rGO/GCE electrodes, no CV response was
detected. A significantly improved CV result at a low potential of +0.25 V was obtained
from the Yb2O3.CuO@rGO/GCE. This demonstrates that this Yb2O3.CuO@rGO/GCE
assembly possessed the greatest electrocatalytic performance during AA determination
in comparison to other the electrodes shown in Figure 4a. Therefore, we designated the
Yb2O3.CuO@rGO/GCE assembly as an AA sensor in this investigation. Additionally, a
definite CV peak was produced for the Yb2O3.CuO@rGO/GCE sensor with 40 µM AA
while, in the absence of AA, no CV response was seen (Figure 4b), further emphasizing the
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effective electro-chemical properties of Yb2O3.CuO@rGO/GCE as an AA sensor. Figure 4c
displays EIS Nyquist plots of bare GCE, CuO/GCE, Yb2O3/GCE, Yb2O3.CuO/GCE, and
Yb2O3.CuO@rGO/GCE, and a relevant equivalent circuit is presented in the inset. The
Yb2O3.CuO@rGO/GCE electrode was found to have the shortest semicircle diameter, which
indicates that its charge transfer resistance (Rct = 9.2 kΩ) value is lower than that of other
electrodes including bare GCE (75.2 kΩ), CuO/GCE (35.2 kΩ), Yb2O3/GCE (94.7 kΩ), and
Yb2O3.CuO/GCE (22.9 kΩ), which were acquired through fitting utilizing the EIS Spec-
trum Analyzer Software. The smallest semicircular diameter of the Yb2O3.CuO@rGO/GCE
electrode suggests that the fabrication process lowered its Rct value. We therefore draw the
conclusion that the Yb2O3.CuO@rGO/GCE electrode provided improved electron transfer
performance than the other modified electrodes shown in Figure 4a.
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Figure 4. CVs recorded at scan rate 0.05 Vs−1 in 0.1 M PBS (pH 7.0) (a) CVs from bare GCE, CuO/GCE,
Yb2O3/GCE, rGO/GCE, Yb2O3.CuO/GCE, Yb2O3.CuO@rGO/GCE with 40 µM AA, (b) CVs from
the Yb2O3.CuO@rGO/GCE with 40 µM AA and without AA, and (c) EIS Nyquist plots acquired
using various electrodes in 1.0 mM [Fe(CN)6]3−/4− in 0.1 M KCl at +0.50 V, at signal amplitude
10 mV, and with frequency ranging from 0.1 Hz to 100 KHz with a relevant equivalent circuit in
the inset.

We investigated the impact of a pH between 6.0 and 8.0 with 40 µM AA to better
understand the electrochemical AA oxidation. Figure 5a,b shows that, for a pH of 6.0 to 7.0,
the anodic peak current (Ipa) value steadily increased and, for a pH 7.0 to 8.0, a declining
trend was seen. The extreme Ipa was seen at a pH ~ 7.0, as shown in Figure 5b. As a result,
pH 7.0 was set as the standard for the remaining tests in this paper. Figure 5c displayed a
straight-line plot for anodic peak potential (Epa) vs. pH having a regression Equation (1):

Epa(V) = 0.5614 − 0.0467pH (R2 = 0.9750) (1)
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Figure 5c showed that the gradient of −56 mV per pH unit over the selected pH
range is extremely near to the predicted value of −59, demonstrating that the quantity of
transported protons and electrons involved in this AA oxidation are equal [13,19].

Scan rate (v) analysis in Figure 6a shows the CVs of 40 µM AA acquired using different
scan rates (20–200 mVs−1) using a Yb2O3.CuO@rGO/GCE sensor. The Ipa value in Figure 6a
was rising as v increased, although the Epa value only marginally changed in a positive
way. The nonlinear change in Ipa vs. v in Figure 6b suggested that AA oxidation is not
a surface-controlled process [59] while, in Figure 6c, a linear Ipa vs. v1/2 curve was seen,
validating a diffusion-controlled process [60] using Equation (2) below.

Ipa(µA) = 190.3043 v1/2 (V1/2s−1/2) − 9.5808 (R2 = 0.9978) (2)

Additionally, in Figure 6d, a straight line from Epa vs. log(v) plot was seen using
Equation (3).

Epa (V) = 0.0615 log[v (Vs−1)] + 0.3385 (R2 = 0.9989) (3)

Figure 6a exhibited that for v > 70 mVs−1, the value of [Epa − Epc]/2 remained
essentially unchanged. Hence, at 100 mVs−1 scan rate, the [Epa − Epc]/2 value assume to
be 90.5/nα mV [61], consequently, it was determined that there were 2.29 ≈ 2 transferred
electrons (nα). Therefore, it is established that AA oxidation at the Yb2O3.CuO@rGO/GCE
surface was a two-electron-transfer system. Overall, the scan rate and pH investigations
determined that AA oxidation at the Yb2O3.CuO@rGO/GCE surface is a combined two-
electrons and two-protons reaction, which is consistent with the literature [13].
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3.2.2. Sensor Parameters Determination

We used amperometry for evaluating the sensor performance of the Yb2O3.CuO@rGO/
GCE sensor. An amperometric response was acquired at +0.3 V after adding AA of
varying concentrations (0.5–1744 µM) at consecutive time intervals. Figure 7a displays
the amperometric responses achieved from the Yb2O3.CuO@rGO/GCE sensor for AA
additions. Here, the current response in each AA addition increased to around 95% of
its maximum current in just 4 s. Figure 7b shows a linear segment of calibration plot for
0.5–1744 µM AA using the Equation (4).

I (µA) = 0.0214 [AA] (µM) + 0.1527 (R2 = 0.9989) (4)

As a result, the Yb2O3.CuO@rGO/GCE sensor’s linear detection range (LDR) was
determined to be 0.5–1571 µM. Additionally, the Yb2O3.CuO@rGO/GCE sensor’s estimated
sensitivity value was found to be 0.4341 µAµM−1cm−2 and limit of detection (LOD) and
limit of quantification (LOQ) were determined to be ~0.062 µM (S/N = 3) and 0.1887 µM,
respectively. The sensitivity was calculated using the equation, sensitivity = S/Aeff [62],
where Aeff stands for the surface area of the modified electrode (0.0493 cm2), as provided in
the electronic Supplementary Materials of Figure S1 [19,63,64]. The equations were used to
calculate LOD and LOQ are LOD = 3.3(Sb/S) and LOQ = 10(Sb/S), respectively [65]; here,
Sb (0.000403) stands for relative standard deviation (RSD) related to five blank responses,
and S stands for calibration curve’s slope.
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The electrocatalytic performance is dependent on two variables: (i) increase in Ipa and
(ii) decreased Epa. Hence, attempts have been made to improve the electrocatalytic activity
of GCEs by fabricating them using Yb2O3.CuO@rGO NC. The achieved results showed
that the Yb2O3.CuO@rGO/GCE sensor successfully satisfied both of the aforementioned
requirements. Figure 4a showed a substantial negative shift of Epa and a significant increase
in Ipa from the Yb2O3.CuO@rGO/GCE sensor compared to other electrodes used in this
study. We achieved about a three-fold Ipa from the Yb2O3.CuO@rGO/GCE compared to a
bare GCE during AA oxidation.

3.2.3. Selectivity, Repeatability, Reproducibility, and Stability

To test the Yb2O3.CuO@rGO/GCE sensor’s selectivity, we used common interfering
chemicals such as uric acid (UA), glucose (Glc), citric acid (CA), dopamine (DA), Cl-

ions, and NO3
- ions. Here, 90 µM AA and an equal concentration of each interfering

chemical were used to record the amperometric response (Figure 8a). While AA addition
generated a significant amperometric response, no response was observed for the interfering
chemicals. This confirms the selectivity of the Yb2O3.CuO@rGO/GCE assembly during the
AA detection. Furthermore, the various sensor characteristics of Yb2O3.CuO@rGO/GCE
were also investigated using CV with 40 M AA. A freshly fabricated Yb2O3.CuO@rGO/GCE
assembly was employed to measure 40 M AA for the repeatability study shown in Figure 8b.
Five runs with a 4.2% RSD and with nearly similar CV responses showed good repeatability.
Figure 8c showed the reproducibility study of the Yb2O3.CuO@rGO/GCE assembly that
used five newly modified Yb2O3.CuO@rGO/GCE electrodes (E1–E5). The Ipa variations in
CV responses revealed a 4.7% RSD, demonstrating remarkable reproducibility. In addition,
we recorded CV responses every fourth day for a newly modified Yb2O3.CuO@rGO/GCE
sensor to assess its stability while keeping it at room temperature. Figure 8d displays the
stability investigation bar graph. It demonstrates that the Ipa value in CVs was retained at
approximately 81% of its initial value after being stored for 20 days at ambient conditions
and that the Yb2O3.CuO@rGO/GCE sensor surface remained undamaged.

When the AA molecule touches the Yb2O3.CuO@rGO surface, an electro-oxidation re-
action occurs. AA molecules release electrons to the conduction-band of the Yb2O3.CuO@rGO
nanocomposite that ultimately enhance the conductivity of the Yb2O3.CuO@rGO/GCE
sensor and, hence, an enhanced CV response can be obtained. In comparison to other
AA sensors, the Yb2O3.CuO@rGO/GCE sensor demonstrated a greater sensitivity for AA
detection (Table 1) [13,17,39,65–73].
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−, and AA, (b) repeatability,
(c) reproducibility, and (d) stability investigations.

Table 1. Comparative ascorbic acid sensor performance employing various electrodes.

Electrode Technique LDR/µM LOD/µM Sensitivity/µAµM−1cm−2 Applied Potential/V Ref.

PSi-MC/GCE Amp 0.5–2473 0.03 0.1982 +0.7 [13]

Poly(Py-oPD)/PGE SWV 1–1000 0.026 - - [17]

GO-IL/GCE Amp 10–4000 3.33 - +0.8 [66]

DMA/GCE Amp 25–1650 - 0.178 +0.35 [67]

PoPDoAP/GCE DPV 100–1000 36.4 0.0306 µAµM−1 - [68]

NFG/Ag/PANI Amp 10–11,460 8.0 - +1.2 [69]

PG/GCE Amp 9.0–2314 6.45 0.0667 µAµM−1 −0.01 [70]

ZnO/GCE Amp 1–800 0.27 0.1156 µAµM−1 +0.36 [71]

ERGO/GCE DPV 500–2000 150 0.0054 µAµM−1 - [72]

PMES/RGO/GCE DPV 30–100 0.43 - - [73]

NPG Amp 10–1100 2.0 0.0021 µAµM−1 +0.3 [74]

GCE/Au@Pd-RGO DPV 0.01–100 0.002 - - [75]

Yb2O3.CuO@rGO/GCE Amp 0.5–1571 0.062 0.4341 +0.25 This work

PSi-MC = porous silicon-mesoporous carbon; Amp = Amperometry, DMA = N,N Dimethylani-
line, GO-IL = Graphene oxide–Ionic liquid, PoPDoAP = Poly(o-phenylenediamineco-o-aminophenol),
NFG = nanoparticles grafted functionalized graphene, PG = pristine graphene, Poly(Py-oPD)/PGE = pencil
graphite electrode modified with a molecularly imprinted copolymer of pyrrole and o-phenylenediamine,
PMES = Poly(2-(N-morpholine)ethane sulfonic acid), ERGO = electrochemically reduced graphene oxide, and
NPG = nanoporous gold.



Biosensors 2023, 13, 588 12 of 16

Considering the experimental findings stated above, we may say that AA oxidation
at the Yb2O3.CuO@rGO NC is a combined two-electrons and two-protons transfer re-
action and, in this AA oxidation, the Yb2O3.CuO@rGO NC is exceedingly active. The
Yb2O3.CuO@rGO/GCE sensor’s appropriateness in detecting AA can be attributed to the
effective electrode-analyte interaction. Scheme 1 shows a concise model for electrochemical
AA oxidation at this novel Yb2O3.CuO@rGO/GCE sensor.
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3.3. Analyses of Real Samples: AA Detection from Blood Serum and Vitamin C Tablet

The developed suggested Yb2O3.CuO@rGO/GCE sensor’s efficacy was tested by mea-
suring AA in blood serums and vitamin C tablets utilizing the standard addition method.
Firstly, we measured the Yb2O3.CuO@rGO/GCE sensor’s (i–t) response at +0.3 V in
10 mL PBS with 200 µL of undiluted blood serum (BS1) and then three repeated injec-
tions of 50 µL 0.01 M AA. Such processes were carried out three times under the same
circumstances. Next, we performed the same standard addition procedure using the second
blood serum (BS2). Furthermore, we used a dissolved Vitamin C 1000 tablet (Vit-C) from
Dallah Pharma Factory, KSA as the real sample, as in our previous report [13]. Finally, we
repeated the whole standard addition process using 100 µL of Vitamin C and then three
repeated injections of 100 µL 0.01 M AA. Table 2 summarizes the outcomes of the real
sample investigations. These results indicate that, with approximately 100% quantitative
recovery, this novel Yb2O3.CuO@rGO/GCE sensor can be utilized to precisely assess the
presence of AA in real samples. Additionally, the measured level of AA in blood serums is
within AA levels typically found in adults (28.5–85.2 µM) [7] and, for the Vitamin C tablets,
the calculated AA amount was 98.1% of the manufacturer’s specification, confirming that
the newly-developed Yb2O3.CuO@rGO/GCE sensor is appropriately validated.

Table 2. AA Detection from commercial vitamin C tablets and blood serums (BS1 and BS2) using the
Yb2O3.CuO@rGO/GCE sensor.

Real
Samples

Added Std.
AA (µM)

Total AA
Measured (µM)

AA Measured in
Real Samples (µM)

Recovery
(%)

RSD (%)
(n = 3)

BS1 48.8
97.6

96.2
46.2

102.4
4.52147.4 103.7

BS2
48.8 88.1

36.5
105.7

4.1397.6 137.0 103.0

Vit-C
98.0 176.6

82.4
96.1

4.37194.2 271.1 97.2
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4. Conclusions

Herein, we successfully synthesized and characterized the Yb2O3.CuO@rGO nanocom-
posite. This nanocomposite material was then used to design a sensitive, selective, and
reusable electrochemical AA sensor. This AA sensor was developed by a facile technique
and is able to measure both high and low levels of AA because of its broad linear dy-
namic range and high sensitivity. Additionally, this AA sensor demonstrated a minimal
interference effect, a fast response time, a reasonable limit of detection, excellent stability,
reproducibility, and repeatability. These features make it a promising tool for detecting AA.
To further validate the Yb2O3.CuO@rGO/GCE sensor’s accuracy, it was tested utilizing
blood serums and vitamin C tablets, and the results were consistent and encouraging. Over-
all, the method of sensor fabrication presented in this study offers a promising platform for
developing a highly efficient AA sensor in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13060588/s1, Figure S1: (a) CVs recorded with 5 mM [Fe(CN)6]3−/4−

in 0.1 M KCl using the Yb2O3.CuO@rGO/GCE assembly for scan rates ranging from 20 to 120 mVs−1

(b) Ipa vs. ν1/2.
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