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Abstract: A passive flexible patch for human skin temperature measurement based on contact sensing
and contactless interrogation is presented. The patch acts as an RLC resonant circuit embedding
an inductive copper coil for magnetic coupling, a ceramic capacitor as the temperature-sensing
element and an additional series inductor. The temperature affects the capacitance of the sensor
and consequently the resonant frequency of the RLC circuit. Thanks to the additional inductor, the
dependency of the resonant frequency from the bending of the patch has been reduced. Considering
a curvature radius of the patch of up to 73 mm, the maximum relative variation in the resonant
frequency has been reduced from 812 ppm to 7.5 ppm. The sensor has been contactlessly interrogated
by a time-gated technique through an external readout coil electromagnetically coupled to the patch
coil. The proposed system has been experimentally tested within the range of 32–46 ◦C, giving a
sensitivity of −619.8 Hz/◦C and a resolution of 0.06 ◦C.

Keywords: body temperature sensor; coil-coupled sensor; passive sensor; RLC resonator; contactless;
time-gated technique; autocorrelation

1. Introduction

Monitoring body temperature is crucial to diagnose the state of health and determine
flaws related to human diseases in advance [1]. Typically, human body temperature is
measured by relying on either contact or noncontact approaches. Contact approaches are
typically more reliable, but may require the use of disinfecting agents and longer measure-
ment time [2]. Contactless approaches provide faster temperature measurements at the
expense of a lower reliability due to the interface medium transmission coefficient and
sensor distance from the skin [2,3]. However, when continuous body-temperature mea-
surements are required, e.g., in domestic or hospital environments, light, unobtrusive and
battery-less contact sensors would be typically demanded. To achieve this purpose, the ex-
ploitation of flexible wearable sensors is progressively emerging as an effective approach for
monitoring human body temperature [4–7]. Near-Field Communication (NFC)-based tem-
perature sensors have been successfully employed in biomedical applications to develop
battery-less skin patches [8]. These sensors employ on-board active electronic integrated
circuits, typically a microcontroller with one or more connected sensors, that have to be
energized by a reader to transmit the information retrieved through a digital communica-
tion protocol. As an alternative, solutions based on passive resonant sensors that can be
suitably employed with flexible wearable sensors have been demonstrated [9,10].

A typical drawback of flexible sensors is the possible dependency of their performance
on the bending of the substrate housing the sensing element [11,12], requiring appropriate
techniques to eliminate or mitigate this undesired effect [13].

In this paper, a novel approach is proposed for human skin-temperature measurement
that is based on a passive flexible patch combining contact-sensing with contactless interro-
gation. Specifically, this work extends this technique to a flexible sensor patch attached onto
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a curved surface and achieves contactless interrogation independently of the curvature
radius of the flexible patch.

The fabricated patch can be stuck on the skin, e.g., the arm of a subject, and eventually
be covered by clothing since a contactless interrogation technique is performed from a
nearby interrogation unit.

Contactless measurement techniques have been adopted as an effective solution to
interrogate sensors in applications where cabled or battery powered approaches are not
feasible or are invasive [14,15].

Specifically, passive resonant sensors and electromagnetic interrogation techniques
have been successfully validated for quartz crystal resonators (QCR) [16], resonant piezo-
layer (RPL) sensors [17], MEMS resonators [18] and LC resonant sensors [15,19]. Both
frequency-domain and time-domain approaches can be used for the contactless interroga-
tion of such sensor type [16]. Frequency-domain techniques measure impedance, reflection
coefficients or a specific transfer function by simultaneously exciting and sensing the res-
onator [20–22]. Conversely, time-domain techniques, as proposed in this paper, exploit the
transient free response of the resonator by separating the excitation and detection phases in
time [23]. For both techniques, the independency of the sensing quantities from the reading
distance has been demonstrated [16].

The solution proposed in this work exploits a contactless interrogation technique
based on the magnetic coupling between a passive sensor unit (SU) and an electronic
interrogation unit (IU). The SU is based on an RLC resonant circuit and embeds a flexible
patch with an inductive copper coil for magnetic coupling, a ceramic capacitor as the
temperature-sensing element and an additional inductor to make the resonant frequency of
the SU independent of the unavoidable bending of the patch that is inherent to the body
conformation and movements. The IU includes a primary coil with front-end electronics
for contactless excitation and read-out. The proposed approach of interrogating the passive
SU offers high accuracy and, at the same time, paves the way to the fabrication of a fully
integrated compact system, since the use of bench instrumentation for the readout of the
resonant frequency is not required [24,25].

2. System Description

Figure 1a shows the typical application scenario for the proposed flexible patch, while
Figure 1b reports the top and bottom views of the proof-of-concept prototype patch stuck
on the arm skin of a human subject, respectively. The proposed sensor is expected to be
positioned on body parts, e.g., the arm, neck or temple, with a curvature radius typically in
the order of 70 mm. The patch is composed of a planar sensor coil with 10 turns of traces
patterned onto a copper foil on an adhesive paper substrate of 43 mm × 23 mm.
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The planar coil, with resistance R2 and inductance L2 is connected in series to the
inductor with parameters R3 and L3, and to the ceramic capacitor Cs, which was adopted as
the sensing element based on its temperature coefficient of capacitance (TCC). Both R3 and
Cs are commercially available, lightweight components with millimeter-size dimensions,
chosen not to limit the flexibility of the patch. An appropriate performance and adequate
comfort can be obtained by adjusting the size and form factors of the components, as well
as their placement with respect to the expected main bending direction of the patch. The
capacitor Cs is coated with an epoxy resin, which prevents capacitance variation due to
humidity. The contact between Cs and the skin required to measure temperature demands
additional passivation of the soldering joints to avoid degraded sensing performances due
to sweat or moisture.

The patch represents the SU of the proposed contactless interrogation system and its
equivalent RLC circuit is shown in Figure 2, along with a schematic diagram of the IU. The
primary coil L1 of the IU is magnetically coupled with the coil L2 of the SU through the
mutual inductance M, which depends on the distance d between the coils.
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The IU generates, by means of a Direct Digital Synthesis (DDS) chip with three
independent channels, namely CH1, CH2 and CH3, the sinusoidal signals used to excite
the SU and demodulate the signal received from the SU.

The excitation and detection phases are timed from the gating signal vG(t) generated by
CH1 with period TG. In the excitation phase, a sinusoidal signal ve(t) at angular frequency
ωe driving the coil L1 is generated by CH2 and amplified by A1.

Choosing ωe, close to ωs = 2πf s, the current induced in the coil L2, through the
magnetic coupling with L1, causes the RLC circuit to resonate at its natural resonant
frequency f s with quality factor Q, given by:

fs =
1

2π
√
(L2 + L3)Cs

, (1)

Q =
1

R2 + R3

√
L2 + L3

Cs
. (2)

Among the adopted components, the planar coil is the element that mostly depends
on the bending or deformations of the patch. However, assuming L3 >> L2 and R3 >> R2,
both f s and Q are independent of the electrical parameters of the planar coil, thus making
the bending uninfluential.
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After the excitation phase ends, the excitation signal ve(t) is switched off and the
detection phase begins. The resonator undergoes free decaying oscillations at an angular
frequency ωdm = ωs(1 − 1/(4Q2))1/2, inducing a current in L2. For Q ≈ 100, this results in a
relative deviation (ωs –ωdm)/ωs ≈ 10−5. Consequently, the voltage v1(t) across L1 can be
sensed and amplified by A3, providing the voltage vO1(t), which is down-converted by the
analog multiplier M1 that mixes it with the reference signal vR(t) = VRcos(ωRt) generated
by CH3 and amplified by A2.

The resulting signal is fed to the low-pass filter LPF and amplified by A4, leading to
the sinusoidal damped signal vO(t) with angular frequency ωO = |ωdm − ωR| and decay
time τm = 2Q/ωs. As validated in [23], ωO and τm are not affected by the interrogation
distance d.

To determine ωO, the signal vO(t) is digitized and its autocorrelation function Rxx(τ) is
computed. The expression of Rxx(τ) is:

Rxx(τ) =
1
4
(MAO)

2e−|τ|/τm

[
τmcos(ωoτ) +

cos(ωoτ + 2θm + arctan(ωoτm))√
1/τ2

m + ω2
o

]
. (3)

The autocorrelation function Rxx(τ) can be used to determine ωO. Assuming that the
reference frequency ωR is constant and stable, the original angular frequency of vO1(t) can
be derived as ωdm = ωR ± ωO, and its variation ∆ωdm can be attributed to the frequency
variations in the SU resonant RLC circuit.

3. Experimental Results

The fabricated SU was experimentally characterized by means of an impedance ana-
lyzer (HP4194A), obtaining a resonant frequency f s at room temperature of 1.634 MHz. The
SU coil has R2 = 5.53 Ω and L2 = 5.07 µH without bending, while the additional series induc-
tor with dimensions of 10 mm × 2.5 mm has R3 = 196.85 Ω and L3 = 545.25 µH, measured
at f s. The capacitive temperature-sensing element is a ceramic capacitor with Cs = 17.02 pF
at 20 ◦C. The IU coil, which is a 6-turn planar coil milled from an 80 mm × 80 mm standard
flame-retardant (FR4) substrate, has R1 = 7.18 Ω and L1 = 8.94 µH.

Firstly, the effects of different patch bending conditions on the sensor coil were in-
vestigated by measuring the corresponding variations in L2 and R2. Figure 3a shows the
dedicated setup, which was purposely adopted to ensure a controlled bending of the patch.
The patch was attached to a flexible FR4 support. A C-shaped fixture with an aperture
C = 86 mm was installed on a micrometric position controller, which allows for the flexible
support to be grabbed close to its outer edges.
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The micrometric position controller forces a displacement a of the outer edges, and
thus a bending of the patch. With reference to Figure 3b, assuming that the deformation
can be approximated to an arc of a circumference, by applying Pythagorean theorem to the
triangle AOB the curvature radius r can be derived as:

r =
C2

8a
+

a
2

. (4)

Figure 4 shows the values of L2 and R2 as function of r from 73 to 925 mm, measured at
the SU resonant frequency f s = 1.634 MHz. As expected, the inductance of the patch mono-
tonically rises for increasing curvature radius values [11–13]. According to (1), the variation
of L2 induces a variation in f s. Considering the case with L3 = 0, the maximum relative
variation in f s caused by bending with respect to fs0 when a = 0 results in ∆fs/fs0 = 812 ppm.
On the other hand, when L3 is placed in series with L2, the maximum relative variation of
f s decreases to ∆fs/fs0 = 7.5 ppm. In summary, the insertion of the additional inductance
advantageously reduces the frequency relative variation due to bending by two orders
of magnitude.
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According to (1) and (2), the theoretical values of f s and Q with the additional inductor
L3 and a = 0 are f s0 = 1.644 MHz and Q0 = 28.

To test the sensor ability to detect the temperature T, a tailored experimental setup was
fabricated, as shown in Figure 5a. A chamber with an internal volume of (80 × 80 × 40) mm3

was assembled from a plastic box surrounded by polystyrene foam for thermal insulation.
A Peltier thermoelectric element installed at the bottom of the chamber was used to

electrically set the temperature of the inner volume.
The sensor patch was placed on the top of the chamber in adherence with the cover. A

Pt1000 temperature sensor read by a multimeter (Fluke 8840) was placed in thermal contact
with the SU and used as a reference temperature sensor. The primary coil L1 of the IU was
placed outside the cover at a distance d = 2 mm from the SU patch.
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The contactless reading of the patch sensor was tested within the temperature range
32–46 ◦C. The IU, shown in Figure 5b, was set up to excite the resonator close to f s with
f e = ωe/2π = 1.634 MHz and f R = ωR/2π = 1.734 MHz. Figure 6 shows the measured gating
signal vG(t) and the output signal vO(t), sampled at 2 MS/s.
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the resonator (orange curve) as a function of time.

The frequency f dm = ωdm/2π was derived via the autocorrelation function as ex-
pressed in (3). Figure 7 shows the obtained values of f dm, measured as a function of
temperature T.

The best-fit line for the experimental data provides a temperature sensitivity S of
−619.8 Hz/◦C, with a non-linearity error within ±1.48% of the span of about 8.3 kHz for
the explored temperature range.

At the constant temperature of 28 ◦C, 150 repeated measurements of the frequency
f dm were performed, obtaining the results plotted in Figure 8a. The distribution histogram
shown in Figure 8b leads to a standard deviation for f dm of σfdm = 37 Hz. Considering
the sensitivity S, the corresponding standard deviation for the temperature σT = σfdm/|S|
results equal 0.06 ◦C, which can be considered the equivalent temperature resolution at
one σ. This value is compliant with the application for body-temperature measurements.
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Considering the maximum variation ∆fs due to the variation of L2 caused by the bending
of the patch for a minimum curvature radius of 73 mm, the corresponding maximum
error in the temperature reading is ∆fs/S = 0.019 ◦C, which is lower than the obtained
resolution. Since the frequency f s is mainly affected by L3, and since L3 is not affected
by bending, the temperature measurements achieved at different curvature radii provide
comparable results.
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The stability of the proposed system over time was validated by placing the sensor
patch in the testing chamber of Figure 5a at a temperature of about 36 ◦C while reading a
reference temperature with a Pt1000 sensor and the resonant frequency of the patch every
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1 min over a timeframe of 4 h. Figure 9a shows the reference temperature T and f dm as a
function of time, while Figure 9b shows the values of f dm as a function of T.

The best-fit line for the experimental data gives a temperature sensitivity S of
−617.8 Hz/◦C, in good agreement with the sensitivity obtained exploring the temper-
ature range 32–46 ◦C. The obtained confirmed relationship between resonant frequency
and temperature proves the absence of any significant drift in the sensor output on a time
scale of hours.
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4. Conclusions

A passive flexible patch for body-temperature measurements combining contact sens-
ing with contactless readout by a nearby interrogation unit has been presented. The flexible
patch, forming the sensor unit, is composed of an inductive copper coil for magnetic cou-
pling, a ceramic capacitor as the temperature-sensing element based on its TCC, and an
additional inductor to make the resonant frequency of the resulting resonant RLC circuit
independent of the bending of the patch. The contactless reading exploits the magnetic
coupling between the interrogation and sensor units and operates by switching between
excitation and detection phases. The readout signal is down-mixed with a reference signal
and the frequency of the sensor unit related to the measured temperature is obtained by a
digital elaboration based on autocorrelation. A proof-of-concept prototype was developed
by employing a paper-based flexible patch and off-the-shelf components. The prototype
was experimentally tested within the temperature range 32–46 ◦C, offering a sensitivity of
−619.8 Hz/◦C and a resolution of 0.06 ◦C. Thanks to the additional inductor introduced in
the resonant RLC circuit of the patch, the maximum variation of the resonant frequency due
to the effect of the patch-bending was reduced to 7.5 ppm for a minimum curvature radius
of 73 mm, leading to an equivalent maximum error in the temperature reading of 0.019 ◦C.

Future developments will consider the fabrication of the patch sensor by adopting a
biocompatible substrate to allow for clinical experimentation.
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