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Abstract: Single-atom nanozymes (SAzymes) have drawn ever-increasing attention due to their
maximum atom utilization efficiency and enhanced enzyme-like activity. Herein, a facile pyrolysis
strategy is reported for the synthesis of the iron–nitrogen–carbon (Fe-N-C) SAzyme using ferrocene
trapped within porous zeolitic imidazolate framework-8 (ZIF-8@Fc) as a precursor. The as-prepared
Fe-N-C SAzyme exhibited exceptional oxidase-mimicking activity, catalytically oxidizing 3,3′,5,5′-
tetramethylbenzidine (TMB) with high affinity (Km) and fast reaction rate (Vmax). Taking advantage
of this property, we designed two colorimetric sensing assays based on different interaction modes
between small molecules and Fe active sites. Firstly, utilizing the reduction activity of ascorbic acid
(AA) toward oxidized TMB (TMBox), a colorimetric bioassay for AA detection was established,
which exhibited a good linear range of detection from 0.1 to 2 µM and a detection limit as low
as 0.1 µM. Additionally, based on the inhibition of nanozyme activity by the thiols of glutathione
(GSH), a colorimetric biosensor for GSH detection was constructed, showing a linear response
over a concentration range of 1–10 µM, with a detection limit of 1.3 µM. This work provides a
promising strategy for rationally designing oxidase-like SAzymes and broadening their application
in biosensing.

Keywords: single-atom nanozyme; Fe-N-C catalysts; oxidase-like; colorimetric detection; ascorbic
acid; glutathione

1. Introduction

Along with the rapid progress made in nanoscience and nanotechnology, various
nanomaterials have been applied in many significant fields in biosensing [1–5], energy
storage [6–9], and catalysis [10–13]. Over the past two decades, nanomaterials with enzyme-
like characteristics, termed nanozyme, have attracted great attention because of their
easy preparation, good stability in harsh conditions, and low cost. Up to now, a va-
riety of nanomaterials have been discovered with enzyme-mimicking activity, such as
transition metal oxide-based nanomaterials [14–17], noble metal- or metal-based nanostruc-
tures [18–20], carbon-based nanomaterials [21–23], and metal–organic framework-based
nanostructures (MOFs) [24–26]. Although some progress has been made in this field, con-
ventional nanozymes still face great challenges such as insufficient enzyme-like activity
and low selectivity compared with natural enzymes.

Recently, single-atom nanozymes (SAzymes) have become a hot research topic [27].
As the atomically dispersed metal active sites of SAzymes are similar to the active centers
of natural metalloenzymes, they have been expected to improve enzyme-like activities.
Among them, Fe-N-C nanostructures have been supposed to be ideal nanozymes due to
coordinated Fe-Nx active sites and abundant C-N moieties. Up to now, Fe-N-C nanozymes
with different coordination structures have been developed and applied in various fields
such as bioassays [28,29], tumor therapy [30,31], wound antibacterial applications [32], and
organic pollutants degradation [33]. However, most of the reported Fe-N-C nanozymes are
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peroxidase mimics, and thus a novel approach to fabricate oxidase-like Fe-N-C nanozyme
is required.

Here, we successfully prepared a Fe-N-C SAzyme with atomically dispersed Fe-Nx
sites by pyrolysis of precursors consisting of ferrocene embedded in zeolitic imidazolate
framework-8 (ZIF-8@Fc) under high temperature. The Fe-N-C SAzyme showed an ex-
ceptional oxidase-mimicking catalytic activity. Based on the different interaction modes
between small molecules and Fe-N-C, two simple, sensitive, and selective colorimetric
assays were established, which were used for the detection of ascorbic acid (AA) and
glutathione (GSH).

2. Materials and Methods
2.1. Synthesis of Fe-N-C

Firstly, 1.19 g zinc nitrate hexahydrate was dissolved in 15 mL of mixed solvent
consisting of methanol and N,N-dimethylformamide (DMF) (with a volume ratio of 4:1).
Subsequently, the prepared solution was added to a 10 mL mixed solvent consisting of
methanol and DMF (with a volume ratio of 4:1) containing 2.628 g of 2-methylimidazole
until complete dissolution. Then, the above mixed solution was stirred for 3 min and left at
room temperature for 10 h. Finally, the white precipitate was collected by centrifugation
and washed with methanol for several times. With this, zeolitic imidazolate framework-8
(ZIF-8) was obtained.

The as-obtained ZIF-8 was dissolved in 40 mL of methanol. Then, 9 mg of ferrocene
(Fc) was dissolved in 10 mL of methanol to obtain a homogeneous solution. Subsequently,
the two solutions were mixed and stirred at room temperature for 4 h. The faint yellow
precipitate of ZIF-8@Fc was obtained by centrifugation and washed with methanol for
several times.

The above ZIF-8@Fc was transferred into a quartz boat and heated from room temper-
ature to 900 ◦C at a heating rate of 3 ◦C min−1 under a nitrogen atmosphere placed in a
tube furnace, followed by heating at 900 ◦C for 3 h. The pyrolyzed products were treated
with 0.5 M H2SO4. Finally, the Fe-N-C catalysts were obtained after washing with methanol
and drying in a vacuum oven.

2.2. Catalytic Activity of Fe-NC Nanozymes

Firstly, 6 µL of 1 mg mL−1 Fe-N-C was added to 291 µL of HAc-NaAc buffer (0.2 M,
pH 4.0). Then, 3 µL of 10 mM 3,3′,5,5′-tetramethylbenzidine (TMB) was quickly added,
and the mixed solution was incubated at room temperature for 10 min. Finally, absorption
spectra were recorded by a UV–vis spectrometer.

A steady-state kinetic assay was performed at room temperature by adding different
concentrations of TMB (10, 20, 30, 50, 80, 100, 200, and 300 µM).

2.3. Colorimetric Detection of AA

Firstly, 0.1 mM TMB was added to a HAc-NaAc buffer containing 20 µg mL−1 of
Fe-N-C, and then the mixture was incubated for 10 min at room temperature. Subsequently,
varying concentrations of AA (0, 0.1, 0.5, 1, 1.5, 2, 5, 10, 20, 40, 50, 80, and 100 µM) were
introduced, followed by incubation for 1 min. Finally, the absorption spectra were recorded
by a UV–vis spectrometer.

2.4. Colorimetric Detection of GSH

In brief, 20 µg mL−1 of Fe-N-C and varying concentrations of GSH (0, 1, 2, 5, 10, 20, 40,
50, 80, and 100 µM) were added to a HAc-NaAc buffer solution, and then 0.1 mM TMB was
immediately added of. After incubation for 10 min at room temperature, the absorption
spectra were recorded by a UV–vis spectrometer.
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3. Results and Discussion
3.1. Synthesis and Characterization of Fe-N-C

The Fe-N-C nanostructures were fabricated through a pyrolysis strategy. As illustrated
in Scheme 1, ZIF-8 was first synthesized, followed by the trapping of Fc as a Fe source.
Figures S2 and S3 revealed that the Brunauer–Emmett–Teller (BET) area of ZIF-8 was
1978.8 m2 g−1, and the average pore diameter was 14.2 Å. The unique pore structure of
ZIF-8 allowed the successful adsorption of Fc and the atomically dispersion of Fe sites
in ZIF-8@Fc. After a high-temperature pyrolysis treatment, ZIF-8 evolved into a carbon
support, while zinc atoms evaporated, and the Fe atoms were chemically bonded with N
atoms, resulting in the formation of Fe-Nx catalytic sites.
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Scheme 1. Schematic illustration of the synthesis process for Fe-N-C.

Next, the morphology and structure of the as-prepared Fe-N-C were characterized. As
shown in transmission electron microscope (TEM) and scanning electron microscope (SEM)
images (Figure 1A,B), Fe-N-C retained the original dodecahedron shape of ZIF-8 (Figure S1)
but showed some shrinkage and roughness on the surface. Further, high-angle circular
dark field-scanning transmission electron microscopy images (HAADF-STEM) image and
energy-dispersive spectroscopy (EDS) mapping (Figure 1C) showed the homogeneous
distribution of Fe, N, and C elements in the whole nanoframework of Fe-N-C. Aberration-
corrected high-angle annular dark-field scanning transmission electron microscopy (AC-
HAADF-STEM) images clearly revealed isolated dispersed bright dots, highlighted by
yellow circles (Figure 1D), which indicated the formation of Fe single atoms.

Then, X-ray diffraction (XRD) was used to explore the graphitization degree of the
pyrolyzed sample. As shown in Figure 2A, ZIF-8@Fc possessed similar characteristic
diffraction peaks to those of ZIF-8, suggesting the trapping of Fc could not change the
architecture of ZIF-8. After pyrolysis, the XRD patterns of Fe-N-C revealed two broad peaks
located at 24◦ and 43◦, corresponding to the (002) and (101) crystal faces of graphitic carbon,
respectively. In the spectrum from X-ray photoelectron spectroscopy (XPS) (Figure 2B), we
clearly observed the presence of C, N, Fe, and O elements in Fe-N-C, which was consistent
with the results of EDS elemental mapping. The atomic fractions of Fe and N were 0.07
and 6.14%, respectively (Table S1). The high-resolution N 1s spectrum of Fe-N-C was
deconvoluted into four fitted peaks at 398.36, 399.85, 401.19, and 402.97 eV (Figure 2C),
which were assigned to pyridinic N, pyrrolic N, graphitic N, and oxidized N species,
respectively [30]. Obviously, pyridinic and graphitic N were found to be the dominant
N species, which served as anchor points for Fe atoms and contributed to enhance the
enzyme-like activity of Fe-Nx sites. Nevertheless, the signal of Fe 2p in XPS could not be
probed clearly (Figure S4), which might be ascribed to the low loading of Fe atoms on the
sample surfaces.
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3.2. Oxidase-like Activity of Fe-N-C

The enzyme-like activity of Fe-N-C was evaluated by using TMB as a chromogenic
substrate. In the presence of H2O2, the colorless TMB was catalytically oxidized, generating
a blue oxidized TMB product (TMBox) with a characteristic absorption peak at 652 nm. As
displayed in Figure 3A, when Fe-N-C was incubated with TMB for 10 min, we observed an
obvious absorption peak at 652 nm, as well as an apparent color change from colorless to
blue. In contrast, in the presence of Fe-N-C and H2O2, only a little higher absorbance at
652 nm was observed compared to that in normoxia. These results indicated the intrinsic
oxidase-like activity of Fe-N-C. By comparison, it was found, as shown in Figure 3B, that
Fe-N-C exhibited significantly enhanced oxidase-like activity compared with the ZIF-8@Fc
precursor, the ZIF-8 precursor, and Fe3O4 nanoparticles (NPs).
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Then, we explored the effect of pH, temperature, and catalyst concentration on the
oxidase-like activity of Fe-N-C. As depicted in Figure 3C, the oxidase-like activity of Fe-N-C
was dependent on the pH, providing a maximum absorbance at pH 3. To avoid the leaching
of ferrous or ferric irons in acid conditions, a mild HAc-NaAc (pH 4) buffer was chosen as
the reaction solution. Satisfactorily, Fe-N-C exhibited a similar catalytic performance in a
range of temperatures (Figure 3D). For convenience, room temperature was employed in
the subsequent assays. Moreover, the catalytic activity of Fe-N-C significantly increased
with the increasing catalyst concentration (1–20 µg mL−1), further presenting a tendency of
increasing slowly (Figure 3E). Thus, the optimal concentration of Fe-N-C was 20 µg mL−1.
In addition, the reaction time curve (Figure S5) showed that 10 min was the optimal time.

To obtain kinetic parameters for Fe-N-C, a steady-state kinetic assay with TMB was
conducted. As illustrated in Figure 3F, the reaction catalyzed by Fe-N-C demonstrated a
typical Michaelis–Menten curve within a suitable TMB concentration range (0–300 µM).
According to the fitted Lineweaver–Burk plot, the Michaelis constant (Km) and the reaction
velocity (Vmax) were obtained. As reported in Table S2, the Km value of Fe-N-C toward
TMB was 48 times lower than that of glucose oxidase, suggesting a high affinity toward the
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substrate. As listed in Table S2, compared to other nanozymes, Fe-N-C exhibited favorable
Km and Vmax values, which probably resulted from the uniform F-Nx active sites in Fe-N-C.

3.3. Colorimetric Assay for AA Based on the Reduction Activity

AA, an enzyme cofactor, plays an important role in many physiological and biochemi-
cal processes. An inappropriate AA content can result in many diseases, such as cancer,
liver damage, and Alzheimer’s disease [34–36]. Moreover, AA is generally employed as
an effective antioxidant in food, beverages, and pharmaceuticals, present in fruits and
vegetables. Therefore, it is significant to establish a simple and efficient strategy for the
determination of AA. Herein, based on the oxidase-mimicking activity of Fe-N-C and the
strong reduction effect of AA on the TMBox, a simple and label-free colorimetric method
for AA detection was established (Figure 4A). As displayed in Figure 4B, the relative ab-
sorbance at 652 nm (∆A652) (∆A652 = A0 − A, where A0 and A represent the absorbance
at 652 nm in the absence and presence of AA, respectively) augmented gradually as the
concentration of AA increased owing to the reduction activity of AA. Figure 4C revealed a
good linear relationship between relative absorbance and AA concentration ranging from
0.1 to 2 µM, with a good linear regression equation, ∆A = 0.07337CAA + 0.00056 (R2 = 0.996).
According to the signal-to-noise ratio of 3σ rule, the limit of detection was calculated to be
0.1 µM. As reported in Table S3, the sensitivity of our proposed AA biosensor was higher
than or comparable to those of the previously reported AA-sensing platforms.
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AA-sensing principle. (B) Relationship between the relative absorbance at 652 nm (∆A652) and the
concentration of AA. (C) Linear calibration plot for AA detection. (D) Selectivity test. Concentrations
of the interferents: 100 µM AA, 25 mM Zn2+ and Ca2+, and 10 mM Arg, Try, and Glu, 2.5 U mL−1

Pap, Pep, Lys, DNase, and AChE.

To evaluate the selectivity of the AA-sensing platform, some possible interferents
commonly present in human serum such as amino acids, biologically related metal ions, and
enzymes were chosen for testing. These included tryptophan (Trp), arginine (Arg), glutamic
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acid (Glu), Zn2+, Ca2+, papain (Pap), pepsin (Pep), lysozyme (Lys), deoxyribonuclease
(DNase), and acetylcholinesterase (AChE). As shown in Figure 4D, none of the interferents
generated a significant relative absorbance change, even though their concentrations were
100, 250 times higher than that of AA or their activities were very high. This suggested that
the colorimetric AA assay we designed possessed high selectivity toward the target analyte.

3.4. Colorimetric Assay for GSH Based on Its Inhibitory Effect

GSH is an endogenous thiol antioxidant in organisms. It serves essential roles in
maintaining cellular redox homeostasis, radical signal transduction, and the regulation of
immune system functions. An abnormal level of GSH in the body can lead to a variety
of illnesses [37,38]. Hence, the development of a simple and sensitive method for GSH
detection has become more and more crucial for disease diagnosis. It has been reported
that thiols tend to coordinate with Fe atoms, resulting in the poisoning of Fe-based sites
and preventing the interaction with oxygen, thereby reducing the catalytic activity of
nanocatalysts. Based on the inhibitory effect of GSH on the oxidase-like activity of Fe-N-
C, we developed a simple and effective colorimetric assay for GSH detection, shown in
Figure 5A. As can be seen in Figure 5B, the relative absorbance at 652 nm was enhanced
along with the increasing concentration of GSH, which was due to the strong inhibition
of GSH of TMB oxidation. It was further found that the absorbance showed a linear
relationship with the GSH concentration in the range of 1–10 µM (Figure 5C). The linear
regression equation was ∆A = 0.01788CGSH + 0.00654 (R2 = 0.992), and the limit of detection
was 1.3 µM. By comparison with other reported GSH sensors, our proposed GSH biosensor
demonstrated high sensitivity (Table S4).
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Figure 5. Colorimetric detection of GSH based on its inhibitory effect. (A) Schematic illustration
of the GSH-sensing principle. (B) Relationship between the relative absorbance at 652 nm (∆A652)
and the concentration of GSH. (C) Linear calibration plot for GSH detection. (D) Selectivity test.
Concentrations of the interferents: 100 µM GSH, 25 mM Zn2+ and Ca2+, 10 mM Arg, Try, and Glu,
and 2.5 U mL−1 Pap, Pep, Lys, DNase, and AChE.

In addition, interference experiments were performed in the presence of some possible
interferents found in human serum. As displayed in Figure 5D, although the concentration
of the interferents was 100, 250 times greater than that of GSH, their corresponding colori-
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metric signal changes were almost negligible, which suggested the excellent selectivity of
our biosensor for GSH detection.

3.5. Practical Applications

To evaluate the application of Fe-N-C in practical tests, the contents of AA and GSH
spiked in human serum samples were determined. As shown in Tables S5 and S6, the recov-
ery of AA and GSH ranged from 96.1% to 111.9% and from 95.7% to 102.7%, respectively.
In addition, the RSD were less than 6.3% and 3.0%, respectively. Hence, we established
reliable sensing platforms for AA and GSH detection, which demonstrated great potential
in real applications.

4. Conclusions

In summary, a facile high-temperature pyrolysis strategy was utilized to prepare
a single-atom Fe-N-C nanozyme using Fc molecules trapped within ZIF-8 (ZIF-8@Fc)
as precursors. The as-prepared Fe-N-C showed enhanced oxidase-like activity, which
could be ascribed to the uniform Fe-Nx active sites. As proof-of-concept applications, we
utilized the Fe-N-C nanozyme to develop a sensing platform for AA detection based on
AA reduction activity, as well as another sensing platform for GSH detection based on
GSH inhibitory effect. The proposed Fe-N-C-based colorimetric strategies for AA and GSH
analysis showed high sensitivity and good selectivity. Our proposed biosensors possess
several merits. First, the construction of such biosensors only requires one nanomaterial
and is very simple and easy to operate. Secondly, the proposed biosensors present excellent
analytical performances, and their sensitivities were better than or comparable to those
of previously reported sensing platforms. Thirdly, the proposed colorimetric assays are
label-free, rapid (~10 min), and cost-effective, which are beneficial features for point-of-care
testing (POCT). They provide a promising analytical method for the detection of biological
small molecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
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for Fe 2p; Figure S5: Effect of the reaction time on the oxidase-like activity of Fe-N-C; Table S1:
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